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A response prediction model for 
taxane, cisplatin, and 5-fluorouracil 
chemotherapy in hypopharyngeal 
carcinoma
Qi Zhong1,2,3, Jugao Fang1,2,3, Zhigang Huang1,2,3, Yifan Yang1,2,3, Meng Lian1,2,3, 
Honggang Liu4, Yixiang Zhang5, Junhui Ye6, Xinjie Hui7, Yejun Wang7, Ying Ying8,  
Qing Zhang6 & Yingduan Cheng5

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. The 
five-year survival rate of HNSCC has not improved even with major technological advancements in 
surgery and chemotherapy. Currently, docetaxel, cisplatin, and 5-fluoruracil (TPF) treatment has 
been the most popular chemotherapy method for HNSCC; but only a small percentage of HNSCC 
patients exhibit a good response to TPF treatment. Unfortunately, at present, no reasonably effective 
prediction model exists to assist clinicians with patient treatment. For this reason, patients have no 
other alternative but to risk neoadjuvant chemotherapy in order to determine their response to TPF. In 
this study, we analyzed the gene expression profile in TPF-sensitive and non-sensitive patient samples. 
We identified a gene expression signature between these two groups. We further chose 10 genes and 
trained a support vector machine (SVM) model. This model has 88.3% sensitivity and 88.9% specificity 
to predict the response to TPF treatment in our patients. In addition, four more TPF responsive and four 
more TPF non-sensitive patient samples were used for further validation. This SVM model has been 
proven to achieve approximately 75.0% sensitivity and 100% specificity to predict TPF response in new 
patients. This suggests that our 10-genes SVM prediction model has the potential to assist clinicians to 
personalize treatment for HNSCC patients.

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide1. Risk factors 
for HNSCC include tobacco and alcohol consumption, as well as human papilloma virus (HPV) infection2. In the 
United States (U.S.) alone, there are approximately 40,000 new cases diagnosed annually and approximately 7,890 
of those cases led to death3. Despite major advancements in surgery and chemotherapy, the five- year survival rate 
of HNSCC has not improved4. In the past, surgeons have sometimes had to remove the functional organ for better 
prognosis. Currently, in order to improve the quality of life of HNSCC patients, especially for laryngeal, oro- and 
hypopharyngeal cancer, preserving a functional organ constitutes a focus for surgeons and oncologists5. With this 
aim, efficient chemotherapy treatment has become even more critical.

Based on clinical studies, results suggest that chemotherapy is the most beneficial treatment for HNSCC6,7. 
The prediction of patients’ response from induction chemotherapy, based on biomarkers, avoids the toxic effect 
of ineffective chemotherapy, as well as future delays of other therapeutic options. In addition, the development 
of personalized medicine strategies benefits both patients and countries. Several biomarkers possess potential 
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clinical significance to predict therapy response8. For example, low expression of the epidermal growth factor 
receptor (EGFR) is a potential biomarker in predicting chemotherapy response in HNSCC8–11. However, lower 
expression of EGFR failed to correlate with better survival rates in response to combined cisplatin and EGF inhib-
itor cetuximab12. Although lower CCND1 was an independent predictor of chemotherapy response and survival 
in induction groups8,13 multivariate analysis indicated that CCND1 provides no prognostic or predictive benefit 
in oral or oropharyngeal SCC14.

Currently, a single predictor marker is not sufficiently effective to predict chemotherapy response. Moreover, 
combined therapy is more popular and effective than single drug treatments. For instance, the combination of 
cisplatin and 5-fluoruracil (PF) induction chemotherapy has proven to be a successful treatment for HNSCC. 
However, with the increase of relevant clinical studies, TPF treatment has been more widely utilized with patients, 
since TPF has better survival and organ preservation rates compared to PF therapy in locally advanced laryngeal, 
oro- and hypopharyngeal cancer15,16. Even though some biomarkers have been reported to predict the response to 
induction chemotherapy, microarray-based gene expression profiles for predicting TPF chemotherapy have not 
yet been well investigated. In addition, there is currently no prediction model for TPF treatment.

The prediction of chemotherapy response, with a set of genes, has been widely used in breast cancer. 
Twenty-one gene expression levels were utilized as a guideline for adjuvant chemotherapy in hormone-receptor–
positive, HER2-negative, and axillary node–negative breast cancer15–17. This breast cancer model constitutes a 
good example of personalized medicine, and has also saved at least USD 300 million of unnecessary chemo-
therapy costs in the U.S. Here, we used microarray-based gene expression profiles to identify the gene signature 
that related to TPF response. We first identified a group of genes, which could predict chemotherapy response in 
HNSCC, in a SVM model. We further validated this gene signature with more patient samples. Our study pro-
vides a set of potential biomarkers to predict patient response to TPF treatment, as well as the possible benefits 
of: 1) avoiding toxic effects of ineffective chemotherapy; 2) avoiding delays for other therapeutic options; and 3) 
minimizing the cost of treatment18.

Results
Patients’ clinical characteristics.  Here, a total of 29 patients were enrolled in this study. Among them, 16 
patients were considered sensitive to TPF treatment, and 13 patients as non-sensitive to TPF treatment. We clas-
sified the sensitive and non-sensitive groups by patients’ response to chemotherapy. If tumor volume decreased 
approximately 70% after chemotherapy, we considered it as a chemotherapy-sensitive one. If tumor volume 
decreased less than approximately 25%, we considered it as a chemotherapy non-sensitive one. The decreased 
volume between 25–75% was excluded in our study. Then, we randomly chose the sensitive and non-sensitive 
samples for our study. The first 21 samples (twelve sensitive and nine non-sensitive) were used to set up the pre-
diction model for TPF treatment (Table 1), and the second group (four sensitive and four non-sensitive) was used 
to validate our prediction model (Table 1). Here, we excluded some factors that have prediction potential for TPF 
treatment, i.e., gender, age, primary site, stage, differentiation degree, gastrointestinal reaction, myelosuppression, 
family history, smoking history, and alcohol intake (Table 2).

Gene expression profiles.  Firstly, a microarray was performed for the first group patients’ samples. The 
data were analyzed by a standard approach19. The second group was used as a validation for our previous experi-
ment, and was analyzed in the same way.

A prediction model for TPF treatment in HNSCC.  Our hypothesis is that the mRNA expression pro-
files of the treatment-sensitive patients are distinct from those of the treatment non-sensitive patients. To prove 
this, we firstly used the limma package to select a set of differential expression genes (p value ≤ 0.01); and then 
generated the heatmap figure based on these genes (Fig. 1). All of the samples were clustered into two groups, i.e., 
the treatment-sensitive and treatment non-sensitive group. Based on the expression levels, the genes were also 
clustered into two groups. A set of genes was highly expressed in the treatment-sensitive samples, and another 
set of genes was highly expressed in the treatment non-sensitive samples. These results motivated us to build a 
model that can predict the response of the patient to the treatment based on his or her mRNA expression levels.

As described in the Methods section, we trained a SVM model and obtained 722 genes. To avoid the 
false-positive genes, based on our clinical knowledge, we selected 10 genes that are known to relate to TPF or be 
potentially involved in the treatment pathway. These genes are GATS, PRIC285, ARID3B, ASNS, CXCR1, FBN2, 
INMT, MYOM3, SLC27A5, and STC2. The gene list is found in Table 3. We estimated the performance of the 
model using the one-leave-out method based on the old data. The sensitivity and specificity of this model are 
88.3% and 88.9%, respectively (Fig. 2).

Further validation with eight more patients’ samples.  We trained a 10-genes prediction model with 
88.3% sensitivity and 88.9% specificity. Then, we aimed to determine if this model could be validated by more 
samples. We further checked the gene expression with eight more patients’ samples by microarray. Among them, 
four samples were sensitive and four samples were non-sensitive samples. We used our model to test those sam-
ples and found that our model has good performance. For the new data, we determined the sensitivity and spec-
ificity of our model as 75.0% and 100%, respectively. This suggested that our model is sufficient to predict TPF 
treatment performance in HNSCC.

Immunohistochemistry (IHC).  In order to confirm the protein levels of the candidate genes in sensitive 
and non-sensitive patients, we performed IHC for CXCR1 and ARID3B. We found that CXCR1 was upregulated 
in non-sensitive patients’ samples and ARID3B was downregulated in non-sensitive patients’ samples (Fig. 3). 
These findings correlated well with our microarray results.
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Discussion
Although TPF treatment is currently the most popular therapy for HNSCC patients, no effective prediction 
model exists to avoid unnecessary treatment and aid in relieving patients’ pain. Here, we identified the gene 
signature in TPF-sensitive and non-sensitive patients. In order to predict TPF treatment response, we selected 
10 genes that exhibit good correlation with treatment. Based on these 10 genes, a model was set up to predict 
TPF treatment in HNSCC patients. This model had 88.3% sensitivity and 88.9% specificity for prediction. We 
further validated this model with eight additional samples. Our model had 75.0% sensitivity and 100% speci-
ficity in those samples, which indicated that our prediction model is sufficient to predict the response to TPF 
treatment.

A major problem with the treatment options for HNSCC is that clinicians do not know the treatment response 
of each patient prior to chemotherapy, which will delay the best choice of treatment for patients. The purpose 
of personalized medicine is to separate patients into different groups. In this way, based on patients’ predicted 
response or disease risk, medical decisions, practices, interventions, and/or products are optimally tailored to the 
individual patient. Here, we developed a model to predict chemotherapy response based on a 10-genes model, 
which may be beneficially utilized for personalized medicine in HNSCC patients.

The 10-genes model is based on the gene expression of GATS, PRIC285, ARID3B, ASNS, CXCR1, FBN2, INMT, 
MYOM3, SLC27A5, and STC2. Among these 10 genes, some have been reported to be involved in cell cycle, apopto-
sis, and drug metabolism. For instance, ARID3B belongs to a subfamily of ARID (AT-rich interaction domain) tran-
scription factors. It could increase tumor growth in vivo, inducing expression of genes associated with metastasis and 
cancer stem cells20–22. ASNS (asparagine synthetase, ASNS) gene encodes an enzyme that catalyzes glutamine- and 

No. Gender Age Primary site TNM Stage
Differentiation 
degree

Cycles of 
chemotherapy Chemotherapy regimen Efficacy

Drug-sensitive group

  1 M 69 left pyriform sinus T4aN2M0 IVA high 3 TPF PR

  2 M 69 retropharyngeal wall T4aN2M0 IVA high 2 TPF PR

  3 M 49 aryepiglottic fold T3N2M0 IVA moderate 2 TPF CR

  4 M 62 right pyriform sinus T4aN2M0 IVA poor 2 TPF PR

  5 M 60 retropharyngeal wall T4bN2M0 IVA moderate 2 TPF PR

  6 M 69 right pyriform sinus T4aN0M0 IVA moderate 2 TPF PR

  7 M 49 aryepiglottic fold T4aN2M0 IVA moderate 2 TPF PR

  8 M 44 left pyriform sinus T4aN2M0 IVA poor 2 TPF PR

  9 M 60 left pyriform sinus T3N1M0 III moderate 3 TPF PR

  10 M 48 left pyriform sinus T4bN2cM0 IVB high 2 TPF PR

  11 M 53 right pyriform sinus T4aN0M0 IVA high 2 TPF PR

  12 M 45 left pyriform sinus T2N2M0 IVA moderate or poor 2 TPF PR

  13 F 48 left pyriform sinus T4bN2M0 IVB moderate 2 TPF PR

  14 M 59 retropharyngeal wall T3N0M0 III high 2 TPF PR

  15 M 57 right pyriform sinus involving 
oropharynx T4bN0M0 IVB moderate 2 TPF PR

  16 M 64 right pyriform sinus T4aN2M0 IVA poor 2 TPF PR

Drug non-sensitive group

  17 M 65 left pyriform sinus T4aN2M0 IVA high 2 TPF SD

  18 M 45 left pyriform sinus T2N3M0 IVB high 2 TPF PD

  19 M 69 left pyriform sinus T3N2M0 IVA moderate 2 TPF SD

  20 M 71 left pyriform sinus T4aN2M0 IVA poor 2 TPF SD

  21 M 69 right pyriform sinus T2N1M0 III high 2 TPF SD

  22 M 71 lateral pharyngeal wall T4aN0M0 IVA high 2 TPF SD

  23 M 43 postcricoid T4aN2M0 IVA moderate 2 TPF SD

  24 M 57 right pyriform sinus T4bN3M1 IVC high 2 TPF SD

  25 M 43 right pyriform sinus T4bN2M1 IVC poor 3 TPF SD

  26 M 58 postcricoid T4aN3M0 IVB poor 2 TPF SD

  27 M 63 left pyriform sinus T4aN1M0 IVA moderate 3 TPF + Nimotuzumab SD

  28 M 73 right pyriform sinus T3N0M0 III moderate 2 TPF SD

  29 M 61 retropharyngeal wall T4aN2M0 IVA high 2 TPF SD

Table 1.  Clinical characteristics of the first group of patients. CR, complete response: Disappearance; confirmed 
at four weeks; PR, partial response: 50% decrease; confirmed at four weeks; SD, stable disease: Neither PR nor 
PD criteria met; PD, progressive disease: 25% increase; no CR, PR, or SD documented before increased disease. 
13–16 are the second batch of the drug-sensitive group (bold). 26–29 are the second batch of the drug non-
sensitive group (bold).
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ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with chemotherapy resist-
ance and prognosis in several human cancers23–25. CXCR1 is a member of the G-protein-coupled receptor family and 
functions as a receptor for interleukin 8. CXCR1 promotes tumor growth, invasion, inflammation and metastasis, 
and the knockdown of CXCR1 will enhance the efficacy of chemotherapy26–29. FBN2 is a tumor suppressor in cancer 
and is frequently silenced by promoter methylation30,31. STC2 is an oncogenic gene that promotes cancer metastasis 
and epithelial-mesenchymal transition in cancers32,33, and the induction of oxaliplatin resistance in colorectal can-
cer34. These studies indicate that the genes in our prediction model possess known functions in cancer progression 
and chemotherapy.

Currently, our prediction model has approximately 75.0% sensitivity and 100% specificity for chemotherapy 
response prediction. Our future work will use more samples to continue validating our prediction model. Our 
work has the potential to assist clinicians to predict the treatment response of HNSCC patients prior to chemo-
therapy and enable clinicians to personalize medicine for each patient.

Characteristics

Response to chemotherapy

P value

Drug non-sensitive Drug-sensitive

No. of patients 
(n = 13) %

No. of patients 
(n = 16) %

Gender 1

  male 13 100 15 93.8

  female 0 0 1 6.3

Age 0.16

  41–60 5 38.5 11 68.8

  61–80 8 61.5 5 31.2

Tumor location 0.991

  left pyriform sinus 5 38.5 6 37.5

  right pyriform sinus 4 30.8 5 31.3

  retropharyngeal wall 1 7.7 3 18.8

  lateral pharyngeal wall 1 7.7 0 0

  aryepiglottic 0 2 12.5

  postcricoid 2 15.4 0 0

Family history 1 7.7 1 6.3 0.879

Stage 0.983

  III 2 15.4 2 12.5

  IVA 7 53.8 11 68.8

  IVB 2 15.4 3 18.8

  IVC 2 15.4 0

Differentiation degree 0.690

  poor 3 23.1 4 25.0

  moderate 4 30.8 7 43.8

  high 6 46.2 5 31.3

Gastrointestinal reaction 0.314

  0 4 30.8 9 56.3

  I 9 69.2 6 37.5

  III 0 1 6.3

Myelosuppression 0.789

  0 9 69.2 10 62.5

  I 3 23.1 2 12.5

  II 1 7.7 3 18.8

  III 0 0 1 6.3

Alcohol 0.704

  no 2 15.4 2 12.5

  occasional 1 7.7 3 18.8

  yes 10 76.9 11 68.8

Smoking 0.405

  smoking 10 76.9 13 81.3

  no smoking 3 23.1 3 18.8

Table 2.  Characteristics of patients.
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Methods
Patients’ samples.  All patients’ samples were collected before chemotherapy in Beijing Tongren Hospital 
from patients who had given consent. The first batch was collected from June, 2013 to February, 2014. The second 
batch was collected from January, 2015 to June, 2015. All experimental protocols were approved by the Ethics 
Committee of Beijing Tongren Hospital, and all experiments were carried out in accordance with relevant guide-
lines and regulations of the same Ethics Committee. All patients were diagnosed with advanced hypopharyngeal 
carcinoma before surgery or treatment. Patient samples were collected by biopsy. Fresh samples were snap-frozen 
in liquid nitrogen and stored at −80 °C until RNA extraction.

Patient treatment.  Patients were treated with TPF chemotherapy. The treatment procedure was as described 
previously35–37. Briefly, we performed three 21-day cycles of induction chemotherapy with docetaxel (75 mg/m2 
continuous i.v. infusion for more than 3 h on day 1), cisplatin (30 mg/m2), and 5-FU (500 mg/m2)37. We chose 29 
samples for our studies, i.e., 16 patients that responded well to TPF chemotherapy and 13 patients that ranged from 
no response to poor response to TPF treatment. These samples were then divided into two groups based on the new 
Response Evaluation Criteria in Solid Tumors38. The first group had 12 sensitive patients and nine non-sensitive 
patients. The second group had four sensitive patients and four non-sensitive patients. All patients’ information 
is summarized in Table 1 and Supplemental Table 1. The patients’ gender, age, primary site, TNM, stage, cycle of 
chemotherapy, chemotherapy regimen, gastrointestinal reaction, myelosuppression efficacy, family history, precan-
cerosis, gastroesophageal reflux, smoking history, and alcohol intake were included in our study.

Figure 1.  Heatmap of the first group of samples. Twenty-one samples were included in the first study. The rows 
represent the samples; the text at the right of each row describes the TPF sensitivity (Sen) or non-sensitivity 
(Non-sen) sample. The columns represent different expressed genes (DEGs). The color shows the expression 
levels of DEGs in the samples (z-score normalized by columns).

No. Gene title
Gene 
symbol Gene function

Gene fold change log2 
(sensitive/non-sensitive)

1 GATS GATS stromal antigen 3 opposite strand 0.874254

2 helicase with zinc finger 2 PRIC285 nuclear transcriptional co-activator for peroxisome proliferator activated 
receptor alpha −0.72736

3 AT-rich interaction domain 3B ARID3B
embryonic patterning, cell lineage gene regulation, cell cycle control, 
transcriptional regulation and possibly in chromatin structure 
modification

0.457583

4 asparagine synthetase (glutamine-
hydrolyzing) ASNS synthesis of asparagine 0.554069

5 C-X-C motif chemokine receptor 1 CXCR1 transduces the signal through a G-protein activated second messenger 
system −0.62679

6 fibrillin 2 FBN2 a component of connective tissue microfibrils, and may be involved in 
elastic fiber assembly 1.747669

7 indolethylamine N-methyltransferase INMT detoxification of selenium compounds −0.44659

8 myomesin 3 MYOM3 link the intermediate filament cytoskeleton to the M-disk of the myofibrils 
in striated muscle −0.83787

9 solute carrier family 27 (fatty acid 
transporter), member 5 SLC27A5 capable of activating very long-chain fatty-acids containing 24- and 

26-carbons 0.902843

10 stanniocalcin 2 STC2 regulation of renal and intestinal calcium, and phosphate transport, cell 
metabolism, or cellular calcium/phosphate homeostasis 1.031989

Table 3.  A list of genes that could predict the response in our SVM model.
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RNA extraction.  In total, 16 TPF-sensitive patient samples and 13 TPF non-sensitive patient samples were 
chosen for microarray study. RNA was extracted from the samples by Qiagen RNeasy Mini Kit. Gene expression 
profiles were then analyzed by microarray (Chip type Human-HT-12-V4, illumina).

Data analysis, gene selection, and model construction.  The microarray data from the CEL files were 
normalized using RMA. We used the genes that were significantly differentially expressed (DEs) in the TPF-sensitive 
group or in the TPF non-sensitive group as features to construct the prediction model. Because our sample size was 
small, to robustly estimate our model and pick up the DEs as much as possible, we built an iterative one-leave-out 
process. We removed one patient from the first batch of data, and inferred the DEs based on the remaining data. The 
expression levels of these DEs were used to construct the prediction model (SVM). We then predicted the group of 
leave-out patients. We repeated the two steps until all 21 patients in the first batch had been removed once. So, we 

Figure 2.  Principal components analysis. X-axis: the first principal component; y-axis: the second principal 
component. The scores of the first (PC1) and second (PC2) principle components were plotted. The color shows 
the category (Sen or Non-sen) of the sample.

Figure 3.  Immunostaining of candidate genes. (A,B) Presentative IHC images of CXCR1 and ARID3B with 
different (A) 100X; (B) 400X. (C) Statistical analysis of the immunohistochemistry results for CXCR1 and 
ARID3B. Student t-test, *p < 0.05, **p < 0.01.
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could obtain the average of the sensitivity and specificity based on the first batch of data alone. Here, we used the 
limma package to find the DEs and the required p-value < 0.01. Then, we collected all DEs from the 21 rounds, and 
totally, we obtained 722 genes. All genes were listed as Supplemental Table 2. To avoid false-positive genes, based 
on our clinical knowledge, we selected 10 genes that are known to relate to TPF or be potentially involved in the 
treatment pathway. The expression levels of the selected genes in the first batch of data were used to train the support 
vector machine model and predict the group of patients in the second batch of data independently.

Estimation of predictive power for the new data.  We used two values to estimate the performance 
of the predictive model based on the new data: Sensitivity: True Positive/(True Positive + False Negative); 
Specificity: True Negative/(True Negative + False Positive). Here, “positive” means that the individual patient is 
sensitive to the treatment; “negative” means that the individual patient is not sensitive to the treatment. With the 
first-round data, we applied the one-leave-out cross validation method to estimate the performance of the SVM 
model. For the second-round data, we trained SVM using the first-round data with all 21 samples, and calculated 
the sensitivity and specificity.

Patient samples and IHC.  Thirty TPF-sensitive patient samples and 30 TPF non-sensitive hypopharyn-
geal carcinoma patient samples were collected in Beijing Tongren Hospital with patients’ permission. IHC was 
performed on 4-µm sections of formalin-fixed, paraffin-embedded human hypopharyngeal carcinoma tissues. 
Sections were deparaffinized, rehydrated, and subjected to heat-induced antigen retrieval. After incubation with 
blocking solution, sections were incubated with anti-CXCR1 antibody (Abcam) or ARID3B antibody (Abcam) 
for 1 h, biotinylated secondary antibody for 30 min, and then streptavidin horseradish peroxidase for another 
10 min. Sections were developed with 3,3′-diaminobenzidine chromogen and further stained with hematoxylin. 
An H-score was assigned to each tissue based on the product of staining intensity ((−), no staining; (+), weak; 
(++), moderate; and (+++), strong) and the percentage of stained cells (0–0%, 1–1% to 30%, 2–31% to 70%, 
and 3–71% to 100%).

Statistical analysis.  The data are presented as mean values ± standard deviation (SD) and statistically com-
pared between groups using one-way analysis of variance followed by Student’s t-test. The significance of the var-
iables was tested using a multivariate Cox’s regression model and a logistic regression model. A p-value of <0.05 
was considered statistically significant.
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