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ABSTRACT

Background. Predictive models and clinical risk scores for hospital-acquired acute kidney injury (AKI) are mainly focused on
critical and surgical patients. We have used the electronic clinical records from a tertiary care general hospital to develop a
risk score for new-onset AKI in general inpatients that can be estimated automatically from clinical records.

Methods. A total of 47 466 patients met inclusion criteria within a 2-year period. Of these, 2385 (5.0%) developed hospital-
acquired AKI. Step-wise regression modelling and Bayesian model averaging were used to develop the Madrid Acute Kidney
Injury Prediction Score (MAKIPS), which contains 23 variables, all obtainable automatically from electronic clinical records
at admission. Bootstrap resampling was employed for internal validation. To optimize calibration, a penalized logistic
regression model was estimated by the least absolute shrinkage and selection operator (lasso) method of coefficient
shrinkage after estimation.

Results. The area under the curve of the receiver operating characteristic curve of the MAKIPS score to predict hospital-
acquired AKI at admission was 0.811. Among individual variables, the highest odds ratios, all >2.5, for hospital-acquired
AKI were conferred by abdominal, cardiovascular or urological surgery followed by congestive heart failure. An online tool
(http://www.bioestadistica.net/MAKIPS.aspx) will facilitate validation in other hospital environments.

Conclusions. MAKIPS is a new risk score to predict the risk of hospital-acquired AKI, based on variables present at
admission in the electronic clinical records. This may help to identify patients who require specific monitoring because of a
high risk of AKI.
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INTRODUCTION

Predictive models and clinical risk scores for hospital-acquired
acute kidney injury (AKI) are mainly focused on critical and sur-
gical patients, which are high-risk groups for severe AKI requir-
ing dialysis. A PubMed search with the terms ‘clinical predictive
models’ and ‘acute kidney injury’ from 2017 to the present date
yielded 41 publications of clinical models for AKI in the inten-
sive care unit (ICU) and cardiac surgery settings, and 6 in non-
surgical populations, mainly for prediction of contrast nephrop-
athy. Prediction in the critical care setting emphasizes moderate
and severe AKI. However, there is a need for clinical predictive
models that predict AKI in general hospital-acquired settings
and for milder forms of AKI [1–4]. Evidence of increased in-hos-
pital and long-term mortality and risk of progression to chronic
kidney disease (CKD) even after mild forms of AKI, recognition
of the epidemiology of community-acquired AKI (CA-AKI) and
AKI outside ICU settings, and the identification of systematic
deficits in the diagnosis and management of AKI are some of
the premises to create valid tools to identify at-risk patients for
hospital-acquired AKI [5–9]. As electronic medical records and
big data become more accessible, reliable and user-friendly clin-
ical prediction models may become a feasible option for AKI
prediction. We have now employed a large database of clinical
and analytical electronic records to develop a tool that uses
these records to predict the risk of hospital-acquired AKI at
admission.

MATERIALS AND METHODS

We followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
statement for reporting multivariable prediction model devel-
opment and validation (Supplementary data, Table S1). The
hospital is a tertiary care referral hospital, affiliated with the
Universidad Autónoma de Madrid. In Spain, access to primary
and specialized care and hospitalization is free at the point-of-
care. Primary and specialized cares are integrated and allow ac-
cess to each others’ clinical records.

We used the Fundación Jiménez Dı́az Hospital electronic
medical records of hospitalized patients who had been dis-
charged from 1 January 2015 to 31 December 2016. Patient
comorbidities, diagnosis and procedures were classified accord-
ing to the International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM). Blood and urine
analysis data from inpatient and outpatient settings were avail-
able for cohort patients for up to 730 days prior to the hospitaliza-
tion date. The study complied with the Declaration of Helsinki
and Spanish law, and was approved by the Investigación
Sanitaria-Fundación Jiménez Dı́az ethics Committee, which
waived the need for informed consent, given the nature of the
study.

Study population

We identified all patients �18 years of age who had been dis-
charged during the study period. We excluded patients on
chronic dialysis, admitted for a renal transplant or with hospital
stay <24 h. Patients who had AKI within the first 48 h of hospital
admission were excluded from the model estimation as they
were considered to have CA-AKI. Exceptions to this rule were
patients admitted for elective surgery in whom the blood sam-
ple diagnostic of AKI was obtained post-surgery.

Baseline kidney function

Baseline kidney function was defined as the most recent serum
creatinine between 1 and 365 days prior to the hospitalization
date. The Modification of Diet in Renal Disease (MDRD-4) equa-
tion [10, 11] was used to estimate the glomerular filtration rate.
If there was no serum creatinine within 365 days prior to hospi-
talization, the baseline was the lowest serum creatinine during
hospitalization. Serum creatinines obtained during renal re-
placement therapy were excluded. There were 9116 admissions
that lacked baseline serum creatinine (16.8%).

Definition of AKI

Following Kidney Disease: Improving Global Outcomes (KDIGO),
hospital-acquired AKI was defined as an increase in serum cre-
atinine during hospitalization of �0.3 mg/dL or >50% over the
baseline that occurred after the first 48 h of hospital admission
[12] or as the requirement of renal replacement therapy. Of
note, the KDIGO definition may be used in general wards and
differs from the prior RIFLE (Risk, Injury, Failure, Loss and End-
stage renal disease) criteria, in that there is no requirement for
the increase in serum creatinine to be sustained. This is differ-
ent from RIFLE criteria, developed for ICUs, in which daily avail-
ability of labs is routine and in which the increase in serum
creatinine should be sustained (>24 h). Severity was categorized
according to KDIGO. For elective surgery, if AKI was present
within 24 h of admission and sampling diagnostic of AKI was
post-surgery, the patient was considered to have hospital-ac-
quired AKI and included in the study, since these patients usu-
ally had a baseline a few days before admission, and were
otherwise stable until the surgical procedure.

Study outcome

The outcome was development of hospital-acquired AKI.

Statistical analysis

R software version 3.3.1 was used.

Candidate predictor variables. We identified demographic, co-
morbid and laboratory candidate predictor variables for inclu-
sion in our model based on a review of the literature and on
availability in the electronic clinical records [7, 13–24].
Comorbidities that compose the Charlson Index [25, 26] present
at admission were included individually, to identify those with
more weight as predictor variables. For laboratory variables, we
selected the values closest to the hospitalization date from the
first 24 h of the admission up to 730 days before admission.
Admission type and nature of surgery were also included as
potential predictor variables (Supplementary data, Table S2).
Code diagnoses representing each comorbidity are presented in
Supplementary data, Table S3. For continuous variables with a
possible non-linear relationship with the logit response, a re-
stricted cubic spline with three knots was evaluated. Finally,
only one quadratic equation was employed in the final model
(potassium). Of note, the laboratory value estimated glomerular
filtration rate (eGFR) was not included in the final multivariable
analysis, as we were concerned that including eGFR would over-
estimate the model. Instead, we included the ICD-9 diagnosis of
renal disease as a broader way of including CKD as a risk factor
for AKI. The renal disease diagnosis was more frequent in
patients with AKI {odds ratios (ORs) 1.94 [95% confidence inter-
val (CI) 1.66–2.27]}.
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Multivariable discovery. We performed backward step-wise re-
gression modelling using Akaike information criterion and then
applied Bayesian model averaging (BMA) to optimize model per-
formance by reducing the number of variables [27]. For internal
validation, bootstrap resampling was used [28, 29]. To estimate
the model, numerical variables were escalated by subtracting
the median and dividing by median absolute deviation. This is
reflected in the coefficients and makes them comparable.

The first multivariate model to predict hospital-acquired AKI
was developed using all available variables. The best possible
predictive model with the lowest number of variables possible
was obtained through an heuristic procedure. The model in-
cluding all variables [Supplementary data, Table S4, area under
the curve (AUC)¼ 0.81] was refined by step-wise selection. To
further reduce the number of variables, the BMA selection algo-
rithm was applied, yielding a final model with 23 variables, 7 of
them laboratory values, which had the good predictive ability
[estimated AUC: 0.811; AUC after bootstrap resampling (n¼ 1000
samples): 0.810]. No interactions between variables were con-
sidered in modelling. The variance inflation factor did not show
evidence of collinearity between variables in the selected model
[30–32].

Model calibration. To optimize the calibration of the model, a
penalized logistic regression model was estimated by the least
absolute shrinkage and selection operator (lasso) method for
the variables in the final model. Lasso shrinks data values to-
wards a central point or mean and adds a penalty to the abso-
lute value of the magnitude of the coefficients [33, 34].
Rheumatic disease and cerebrovascular disease are not in-
cluded in the penalized model. The AUC receiver operating
characteristic curve (ROC) for the penalized logistic regression
model was 0.809 (95% CI 0.801–0.816).

Random forest. Five hundred trees were generated and three
variables were tried at each split. Out of bag estimate of error
rate was 30.8%.

Predicting model performance. Model performance was
assessed by the AUC of the ROC. pROC package was used to plot
ROC and 95% CI [35].

Missing data. Missing data were handled with a simple imputa-
tion method by which missing data were replaced by the me-
dian of the cohort patients. Missing data for laboratory results
were more common in the group that did not develop hospital-
acquired AKI. There were no missing data in the diagnosis and
procedural information.

RESULTS

Within a 2-year period, 61 705 patients were discharged and
54 095 were eligible for analysis (Figure 1). Of these, 6629 (12.3%,
95% CI 12.0–12.5%) had CA-AKI and were excluded.

A total of 47 466 patients were analysed and included in the
discovery and internal validation cohorts. Of these, 2385 (5.0%,
95% CI 4.8–5.2%) developed hospital-acquired AKI (1864 KDIGO
Stage 1, 378 Stage 2 and 143 Stage 3). The incidence of hospital-
acquired AKI was 5.2% (1217/23 481) in 2015 and 4.9% (1168/
23 985) in 2016. The length of stay (LOS) was longer for the AKI
group [median AKI versus non-AKI: 10.0 (6.0–17.0) versus 4.0
(3.0–7.0) days, P< 0.0001; mean AKI versus non-AKI: 15.5 6 22.2
versus 6.1 6 7.5 days, P< 0.0001]. When adjusted for age and
comorbidities, the mean LOS was 8.7 days longer for AKI

patients (P< 0.0001). Mean All Patients Refined Diagnosis-
Related Groups (APR-DRG) weight (1.97 6 2.09 versus 0.99 6 0.76
units; P< 0.0001) and mortality were also higher [16% (382/2385)
versus 2.6% (1151/45 081), P< 0.0001)] in AKI than in non-AKI.
Overall mortality was 3.2% in the study period. Supplementary
data, Table S5, shows the admission department. A higher fre-
quency of AKI was observed among patients admitted to the
ICU (20.7% of admitted patients had AKI), nephrology (17.5%),
cardiology and cardiac surgery (12.7% each), and vascular and
endovascular surgery (8.3%) than from other departments.

Table 1 presents comorbidity and admission characteristics.
Mean age of the general hospitalized population was 62.1 years.
AKI patients were older (74.3 6 15.0 versus 61.4 6 20.1 years,
P< 0.0001), more frequently male (53% versus 43%, P< 0.0001)
and admitted urgently more frequently (72% versus 54%,
P< 0.0001) than non-AKI patients. Past myocardial infarction,
congestive heart failure, peripheral vascular disease, chronic pul-
monary disease, connective tissue disease, peptic ulcer, liver dis-
ease and kidney disease were also more frequent in AKI patients.

Table 2 presents baseline analytical values. AKI patients had
a lower baseline eGFR and higher serum creatinine, urinary
protein-to-creatinine and urinary albumin-to-creatinine, al-
though median values were within the normal laboratory range.
Very small nominal differences for some biochemistry and hae-
matology exams that remained within the normal range were
statistically significant between AKI and non-AKI patients.

Multivariate analysis

Several initial multivariate models using comorbidities, base-
line laboratory values and type of surgery and admission had
AUC close to 0.80 for the prediction of hospital-acquired AKI. A
random forest model using the same variables as in the initial
logistic model yielded similar AUC-ROCs: AUC for predicting
hospital-acquired AKI was 0.818 (95% CI 0.8098–0.8252).

The final model, which we termed the Madrid Acute Kidney
Injury Prediction Score (MAKIPS), was obtained by step-wise re-
gression followed by BMA and bootstrap validation (Table 3).
The original C-index and corrected C-index were similar: 0.811
and 0.810, respectively. (Supplementary data, Figure S1). Table 3
presents the OR for hospital-acquired AKI conferred by
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FIGURE 1: Disposition of patients.
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individual variables in the model. The highest ORs (all >2.0)
were conferred by abdominal surgery (OR 3.92; 95% CI 3.13–4.89),
cardiovascular surgery (OR 2.94; 95% CI 2.94–4.29) and urological
surgery (OR 2.91; 95% CI 2.34–3.60) followed by congestive heart
failure (OR 2.73; 95% CI 2.42–3.08), hemiplegia/paraplegia (OR
2.10; 95% CI 1.52–2.84) and urgent admission (OR 2.13; 95% CI
1.89–2.40). Among continuous variables, the highest OR was
conferred by increasing age (OR 162; 95% CI 1.51–1.74) and urea
and uric acid levels (OR 1.06 for both; 95% CI 1.04–1.09 and 1.01–
1.11, respectively). The year of discharge was not significant
when added to the model.

To correct the overestimation of the model without affecting
its discrimination capacity, a penalized logistic regression
model was estimated by the lasso method of coefficient shrink-
age after estimation (Table 4). The AUC-ROC for the penalized
logistic regression model was 0.809 (95% CI 0.801–0.816) and had
21 variables (Supplementary data, Figure S2).

A web-based calculator (http://www.bioestadistica.net/
MAKIPS.aspx) is available to calculate the MAKIPS and calculate
whether the risk of AKI is >20%. We envision that the model
will be most useful in settings in which the information can be
directly and automatically obtained from electronic clinical
records.

DISCUSSION

The main finding is the description of the MAKIPS, a risk score
to predict hospital-acquired AKI at admission from electronic
medical records. It comprises 21 baseline variables, including

comorbidities, laboratory values and elective surgical interven-
tions if applicable, that are easily accessible and available from
electronic records and have a good predictive ability (ROC-
AUC¼ 0.81).

Clinical risk scores for AKI in non-critical populations are of-
ten limited to very specific diseases or populations, such as cir-
rhosis, contrast nephropathy or patients receiving cisplatin [36–
40]. The MAKIPS was developed and internally validated for a
general hospitalized population, with a large variety of comor-
bidities, and medical and surgical conditions. In the field of gen-
eral non-critical emergency admissions, there is, to the extent
of our knowledge, one clinical risk score that has been exter-
nally validated: the AKI prediction score (APS), which comprises
seven clinical variables: age, respiratory rate, the AVPU (alert,
voice, pain or unresponsive) scale of responsiveness, CKD
Categories G3–5, heart failure, diabetes and liver disease. It was
externally validated in a single UK non-specialist acute hospital,
yielding an AUC-ROC of 0.65 (95% CI 0.62–0.67) in patients with
known baseline creatinine [41]. The incidence of hospital-
acquired AKI in the aforementioned study was 8.1%. The AUC of
the MAKIPS equation (0.811; 95% CI 0.795–0.825 in the validation
cohort) compares favourably with the APS. While the APS is a
simple score designed to be calculated manually or by filling a
checklist by clinicians, the MAKIPS may be calculated automati-
cally from electronic clinical records.

The incidence of hospital-acquired AKI in our study (5%) is
below that reported in part of the literature for global incidence
for AKI as defined with the KDIGO criteria, which were esti-
mated in a meta-analysis to be 21.6% [42]. However, it is in line

Table 1. Comorbidity and admission characteristics of the cohort patients

Variables Total Non-AKI AKI P-value

n 47 466 45 081 2385
Men, % (n) 43.5 (20 647) 43.0 (19 389) 52.7 (1258) <0.0001
Mean age (years), mean6SD 62.1620.1 61.4620.1 74.3615.0 <0.0001
Diabetes, % (n) 12.2 (5786) 11.5 (5200) 24.6 (586) <0.0001
Hypertension, % (n) 30.3 (14 392) 28.8 (13 027) 57.2 (1365) <0.0001
Cardiovascular disease, % (n) 7.6 (3596) 7.0 (3157) 18.4 (439) <0.0001
Cerebrovascular disease, % (n) 6 (2842) 5.7 (2607) 9.8 (235) <0.0001
Anaemia, % (n) 11 (5205) 10.2 (4605) 25.1 (600) <0.0001
Myocardial infarction, % (n) 2.8 (1363) 2.6 (1172) 8.0 (191) <0.0001
Congestive heart failure, % (n) 6.7 (3222) 5.8 (2622) 25.1 (600) <0.0001
Peripheral vascular disease, % (n) 3.9 (1867) 3.7 (1679) 7.8 (188) <0.0001
Dementia, % (n) 0.6 (319) 0.6 (298) 0.8 (21) 0.25
Chronic pulmonary disease, % (n) 13.4 (6385) 13.0 (5869) 21.6 (516) <0.0001
Connective tissue disease, % (n) 1.7 (809) 1.6 (732) 3.2 (77) <0.0001
Peptic ulcer disease, % (n) 0.5 (265) 0.5 (237) 1.1 (28) <0.0001
Liver disease, % (n) 5.3 (2535) 5.1 (2317) 9.1 (218) <0.0001
Hemiplegia, % (n) 1.0 (506) 1.0 (454) 2.1 (52) <0.0001
Renal disease, % (n) 6.0 (2849) 5.1 (2336) 21.5 (513) <0.0001
Malignancy, % (n) 15.0 (7142) 14.7 (6652) 20.5 (490) <0.0001
Metastatic solid tumour, % (n) 6.5 (3107) 6.4 (2901) 8.6 (206) <0.0001
AIDS/HIV, % (n) 0.6 (294) 0.6 (281) 0.5 (13) 0.73
Urgent admission, % (n) 54.6 (25 916) 53.6 (24 200) 71.9 (1716) <0.0001
Surgical patients, % (n) 45.6 (21 633) 45.7 (20 626) 42.2 (1007) <0.0001
ASA classification, % (n)a <0.0001

Total (n) 21 568 20 787 781
I 14.5 (3132) 14.9 (3107) 3.2 (25)
II 53.6 (11 560) 54.2 (11 263) 38.0 (297)
III 29.7 (6401) 28.8 (5987) 53.0 (414)
IV 2.2 (475) 2.1 (430) 5.8 (45)

aThis was available in many surgical patients. Slight discrepancies between surgical patients and ASA classification explained by emergency surgery without ASA or

ASA assessment with later cancelled surgery. ASA, American Society of Anesthesiologists.
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Table 2. Baseline analytical values

Serum biochemistry n Total Non-AKI AKI P-value

sCr (mg/dL) 38 350 0.80 (0.60–1.00) 0.80 (0.60–1.00) 0.93 (0.70–1.30) <0.0001
eGFR (mL/min/1.73 m2) 38 350 91.33 (72.23–116.42) 92.15 (73.10–117.11) 72.40 (50.36–99.89) <0.0001
Uric acid (mg/dL) 26 541 5.10 (4.00–6.50) 5.10 (3.90–6.40) 6.00 (4.60–7.50) <0.0001
Albumin (g/dL) 32 952 4.00 (3.70–4.30) 4.10 (3.70–4.30) 3.80 (3.40–4.10) <0.0001
Calcium (mg/dL) 27 891 9.00 (8.50–9.30) 9.00 (8.50–9.30) 8.70 (8.20–9.20) <0.0001
Ionic calcium (mg/dL) 6018 4.46 (4.29–4.65) 4.46 (4.29–4.65) 4.45 (4.21–4.65) 0.13
Phosphate (mg/dL) 24 272 3.40 (3.00–3.80) 3.40 (3.00–3.80) 3.40 (2.90–3.80) 0.78
Alkaline phosphatase (UI/l) 26 346 76.50 (61.00–99.00) 76.00 (60.00–99.00) 80.00 (64.00–108.00) <0.0001
Glucose (mg/dL) 45 629 98.00 (87.00–120.00) 98.00 (86.00–119.00) 111.00 (93.00–144.00) <0.0001
HbA1c (%) 9022 6.00 (5.50–6.80) 6.00 (5.50–6.80) 6.30 (5.70–7.30) <0.0001
LDH (UI/l) 26 767 371.00 (371.00–452.00) 368.00 (316.00–449.00) 410.00 (342.00–517.00) <0.0001
CRP (mg/dL) 26 040 2.40 (0.90–6.30) 2.30 (0.90–6.30) 3.00 (1.30–7.10) <0.0001
Total proteins (g/dL) 26 225 6.60 (6.10–7.10) 6.60 (6.10–7.10) 6.40 (5.90–6.90) <0.0001
Sodium (mEq/l) 43 690 139.00 (137.00–141.00) 139.00 (137.00–141.00) 138.00 (136.00–141.00) <0.0001
Potassium (mEq/l) 34 882 4.10 (3.80–4.40) 4.10 (3.80–4.40) 4.20 (3.80–4.60) <0.0001
CO2 (mEq/l) 1795 29.00 (26.00–31.00) 29.00 (26.00–31.00) 28.00 (25.00–31.00) 0.0448
Urea (mg/dL) 38 355 36.00 (27.00–49.00) 36.00 (27.00–48.00) 48.00 (35.00–68.00) <0.0001
Haematology

Haemoglobin (g/dL) 46 405 12.90 (11.60–14.20) 13.00 (11.60–14.20) 12.20 (10.70–13.50) <0.0001
Leucocytes (per mL) 46 398 7.94 (6.19–10.35) 7.90 (6.18–10.28) 8.62 (6.42–11.74) <0.0001

Urinary biochemistry
Density 29 803 1.010 (1.010–1.020) 1.010 (1.010–1.020) 1.010 (1.010–1.020) <0.0001
Creatinine (mg/dL) 11 002 74.00 (50.00–112.00) 74.00 (50.00–113.00) 69.00 (48.00–96.00) <0.0001
Albumin (mg/l) 8998 7.90 (3.30–32.40) 7.50 (3.20–29.60) 17.80 (4.60–89.90) <0.0001
Sodium (mEq/l) 3212 62.00 (35.00–92.00) 62.00 (35.00–92.00) 61.00 (39.00–89.00) <0.0001
UACR (mg/g) 8999 10.00 (3.97–40.35) 9.32 (3.85–35.17) 24.74 (6.81–148.00) <0.0001
UPCR (mg/g) 4669 87.20 (52.10–251.30) 83.30 (51.10–210.10) 169.60 (70.02–751.83) <0.0001

Values expressed as median (IQR 25–75%).

IQR, interquartile range; sCr, serum creatinine; eGFR (mL/min/1.72 m2) assessed by the MDRD-4 equation; HbA1c, glycated haemoglobin; LDH, lactate dehydrogenase;

CRP, C-reactive protein; UACR, urinary albumin:creatinine ratio; UPCR: urinary protein:creatinine ratio.

Table 3. Final multivariate model selected by step-wise logistic regression followed by BMA: MAKIPS

Variables Estimate SE Z-value OR (2.5–97.5%) P-value

Intercept �4.5460 0.0695 �65.37 <0.0001
Abdominal surgery 1.3662 0.1141 11.97 3.92 (3.13–4.89) <0.0001
Cardiovascular surgery 1.2688 0.0963 13.17 3.56 (2.94–4.29) <0.0001
Urological surgery 1.0682 0.1104 9.68 2.91 (2.34–3.60) <0.0001
Congestive heart failure 1.0043 0.0621 16.17 2.73 (2.42–3.08) <0.0001
Hemiplegia 0.7409 0.1596 4.64 2.10 (1.52–2.84) <0.0001
Renal disease 0.6595 0.0679 9.71 1.93 (1.69–2.21) <0.0001
Rheumatic disease 0.3848 0.1294 2.97 1.47 (1.13–1.88) 0.001
Liver disease 0.4832 0.0800 6.04 1.62 (1.38–1.89) <0.0001
Malignancy 0.3281 0.0607 5.41 1.39 (1.23–1.56) <0.0001
Cardiovascular disease 0.1637 0.0672 2.44 1.18 (1.03–1.34) 0.01
Cerebrovascular disease 0.1908 0.0770 2.48 1.21 (1.04–1.40) 0.01
Anaemia 0.477 0.054 8.73 1.61 (1.45–1.79) <0.0001
Diabetes 0.150 0.0597 2.52 1.16 (1.03–1.31) 0.01
Surgical admission 0.5338 0.0626 8.53 1.71 (1.51–1.93) <0.0001
Urgent admission 0.7554 0.0603 12.54 2.13 (1.89–2.40) <0.0001
Age (years) 0.4842 0.0361 13.40 1.62 (1.51–1.74) <0.0001
Uric acid (mg/dL) 0.0614 0.0239 2.57 1.06 (1.01–1.11) 0.01
Urea (mg/dL) 0.0624 0.0119 5.23 1.06 (1.04–1.09) <0.0001
Calcium (mg/dL) �0.1887 0.0210 �8.97 0.83 (0.79–0.86) <0.0001
Leucocytes (n/mL) 0.0388 0.0080 4.85 1.04 (1.02–1.05) <0.0001
Sodium (mEq/L) �0.0455 0.0142 �3.20 0.96 (0.93–0.98) 0.001
Glucose (mg/dL) 0.0465 0.0097 4.77 1.05 (1.03–1.07) <0.0001
(Potassium)2 (mEq/L) 0.0188 0.0060 3.11 1.02 (1.01–1.03) 0.001

The comorbidities variables refer to all diseases in that category of ICD-9 code (see Supplementary data, Table S3, for more information).
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with that reported in general hospitals. In this regard, it is use-
ful to note that 54% of the patients included in the widely cited
meta-analysis were ICU and cardiac surgery patients [42]. AKI
incidence in these high-risk groups is reported between 24.1%
and 76.6% [43] and they are often over-represented in AKI epide-
miological studies. Our incidence is closer to that reported
across European population cohorts. The global incidence of
AKI (CA-AKI plus hospital-acquired AKI) was 8.4% for patients
with baseline eGFR >60 mL/min/1.73 m2 and 17.6% in those with
<60 mL/min/1.73 m2 in Scotland [44] and 12% in Ireland [45].
This is similar to the 16.7% (9014/54 095) combined incidence of
CA-AKI and hospital-acquired AKI in our study. A Swiss study
excluding critical patients and, similar to our study, CA-AKI,
reported an incidence of hospital-acquired AKI of 4.11% [46].
The design of this Swiss study is the most comparable to our de-
sign and the incidence of hospital-acquired AKI was also very
similar. In multicentre studies from China on general-hospital-
ized population and using the KDIGO criteria, hospital-acquired
AKI incidence varies between 3.0% and 11.6% [7, 47]. AKI inci-
dence, even if defined with the same KDIGO criteria, may vary
with case-mix (primary, secondary or tertiary care centres), ex-
clusion or inclusion of CA-AKI, availability of baseline creatinine
determination and clinical application of the criteria (revised
versus non-revised by nephrologist) [48]. The incidence of CA-
AKI, defined as AKI by KDIGO criteria that are already present
when the patient arrives at the emergency room, has been
reported at 8.3% in the recent ICE-AKI (Impact analysis of a
Clinical prediction rule and Electronic AKI) study [49]. Previous
reports from the UK, Canada and Portugal had reported CA-AKI
incidences of 4.6, 19.6 and 23.6%, respectively, of urgent admis-
sions [5, 9, 20, 50]. CA-AKI incidence in our cohort (12%) was
similar to that reported in the literature for similar study popu-
lations. Of note, our 17.5% incidence of in-hospital AKI may

seem low for a Nephrology Department, but CA-AKI, a frequent
cause of admission in Nephrology, was excluded from the
analysis.

Among the study strengths were that this was a large study
with internal validation. In our study, models derived from lo-
gistic and machine-learning techniques such as random forest
approaches had similar AUC-ROCs. The logistic model was cho-
sen as clinicians are more familiar with its methodology and in-
terpretation. The model can predict baseline risk for hospital-
acquired AKI using variables that are widespread in clinical
practice and in electronic clinical records, so it would ideally be
automatically calculated upon admission (elective or urgent), to
maximize prophylactic measures, which according to the
NCEPOD (National Confidential Enquiry into Patient Outcome
and Death) report, remains an unmet clinical need [51]. Thus,
poor recognition of AKI risk factors in routine clinical practice
led to inadequate clinical management in 29% of AKI cases [51],
including failures in physiological monitoring, timely laboratory
tests, intravenous fluids and recognition of acute illness, sepsis
and hypovolemia. A risk score for AKI may help identify the
patients in which these basic actions are absolutely paramount.
Furthermore, the dataset was generated in a tertiary academic
hospital caring for all types of medical and surgical patients and
was not limited to ICU or high-risk surgical patients.

Our study is limited to a single centre. Although data were
obtained prospectively through electronic medical records, part
of the medical records was based on previously coded events in
the hospital database. Identification of comorbidities was based
on ICD-9 codes, which may be unreliable, and the absence of
urine output data prevented a more precise AKI definition. In
those patients with no available baseline creatinine, AKI may
have been misdiagnosed. An external validation of the model is
needed to address its generalizability to other centres or coun-
tries with different case-mix or healthcare systems. In this re-
gard, in Spain, primary care and specialized care and
hospitalization are free at the point-of-care and there are no
barriers to access specialized care. Specifically, in Madrid, pri-
mary care and specialized care are integrated. Thus, the model
should be validated in settings of limited access to healthcare.
In this sense, an external validation with a validation dataset
from another hospital, or a new prospectively collected dataset
within our own institution temporally separated from the de-
velopment cohort, would strengthen the study, as the penalized
model was developed using the current dataset.

In conclusion, we have generated the MAKIPS score, which
can be automatically calculated from electronic clinical records
to predict at admission the risk of hospital-acquired AKI.
Prediction of AKI risk may be more useful in decreasing the inci-
dence of AKI than current electronic alerts that do alert, but
only after AKI has already occurred. However, external valida-
tion in other health-care and hospital settings is required. For
this purpose, an online tool has been set up. Furthermore, fu-
ture research should focus on impact analysis and the use of
machine-learning techniques to evaluate AKI risk and
prediction.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.
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