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Abstract

Introduction: The risk of hepatocellular carcinoma persists in some patients despite

achieving sustained virologic response with current interferon‐free direct‐acting
antiviral therapy for hepatitis C. The subject of an even higher carcinoma risk in this

context has been reported and is currently being debated. The quest for under-

standing this paradox relative to the dynamics of inflammatory biomarkers in

cirrhosis patients receiving antiviral therapy thus remains a subject of importance.

Objective: Here, we aimed at evaluating the effects of direct‐acting antiviral ther-

apy‐induced hepatitis C cure on plasmatic markers of systemic inflammation

measured before, during and after treatment. Specifically, soluble immune mediator

phenotype associations that impact the odds of hepatocellular carcinoma devel-

opment and the related changes that arise upon direct‐acting antiviral‐mediated

hepatitis C clearance in cirrhosis patients was investigated.

Methods: Employing multiplex technology that measured up to 91 circulating

biomarker proteins, we profiled the plasma soluble immune mediator concentra-

tions of cirrhosis patients who developed posttreatment hepatocellular carcinoma

and their respective negative controls, before and after direct‐acting antiviral

treatment.

Results: Elevated pretherapy concentrations of specific soluble immune mediators

including MCP‐3, GDNF, CDCP1, IL‐17C, IL‐17A, signalling lymphocytic activation

family 1, CCL11, FGF‐5, LIF‐R, interleukin 10 (IL‐10), IL‐10RA, IL‐15RA, beta NGF,

CCL28, CCL25 and NT‐3 distinguished patients who developed posttreatment he-

patocellular carcinoma relative to those that did not. Particularly, GDNF, FGF‐5 and

IL‐15RA displayed independent predictive biomarker attributes for delineating

carcinoma emergence regardless of de novo or recurrence groupings. Upon suc-

cessful therapy, the elevated pretherapy soluble immune mediator establishment of

the patients who eventually developed hepatocellular carcinoma stayed largely
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unperturbed whereas a panel of some 38 soluble immune mediators in the post-

therapy carcinoma‐free patients experienced significant ameliorations.

Conclusions: These results have considerable implications for delineating potential

hepatocellular carcinoma emergence before initiating direct‐acting antiviral therapy
for hepatitis C in cirrhosis patients. They provide preliminary contribution to

unravelling cases where the benefit of direct‐acting antiviral therapies would be

superior to the risk of developing carcinoma.
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Key Summary

Established knowledge on this subject

� Current interferon (IFN)‐free direct‐acting antivirals (DAAs) are effective at eliminating

hepatitis C virus (HCV), but risks of residual liver disease and development of hepatocellular

carcinoma persists.

� The hepatic inflammation that occurs during chronic hepatitis C causes systemic changes in

blood soluble immune mediators (SIMs) that impact carcinogenetic processes involved in

the growth, invasion and metastasis of hepatocellular carcinoma (HCC).

� DAA‐induced HCV cure does not lead to a complete immunological restitution of the

altered soluble inflammatory compartment in chronic hepatitis C.

Significant and/or new findings of this study

� An elevated pre‐therapy plasma profile of an extended repertoire of SIMs in cirrhosis was

associated with HCC development post‐DAA therapy.

� Successful DAA therapy did not alter the baseline elevated plasma SIM profile of cirrhosis

patients that developed post‐therapy HCC contrary to its effect in those that remained

HCC‐free.

INTRODUCTION

Hepatocellular carcinoma (HCC) still emerges in some patients

despite clearance of hepatitis C virus (HCV) upon successful antiviral

therapy. This has been shown not only for interferon (IFN)‐based
therapies1 but also for therapies using IFN‐free direct‐acting antiviral
(DAA) regimens.2 Several studies have demonstrated that HCV cure

by IFN‐free DAA therapy does not seem to alter the short‐term risk

of HCC emergence, as it tends to remain still high, particularly in

patients with established liver cirrhosis.3–6 There have been further

concerns as to whether the risk of HCC recurrence may even be

increased following IFN‐free HCV therapy with DAAs.7 A need thus

exists to evaluate whether, and to what extent, HCC development is

impacted by hepatic immune events in cirrhosis patients who receive

IFN‐free DAA therapy.

Preliminary reports provided an indication of a possible associ-

ation between serum levels of distinct cytokines and the develop-

ment of HCC.8,9 Specifically, HCV clearance by IFN‐free DAA therapy

was reported to coincide with the induction of a rapid reduction in

inflammation but increase in key HCC angiogenesis drivers such as

the vascular endothelial growth factor (VEGF); an immune balance

modification that may affect the anti‐tumour surveillance

machinery.9

Further, a potential pretreatment modification of a repertoire of

soluble immune mediators in the serum of patients who eventually

developed de novo HCC upon DAA therapy compared to controls

was reported.8 This gave an early indication that a skewed balance of

mediators within the inflammatory milieu existent before DAA

therapy may contribute to the post‐DAA therapy emergence of HCC.

The basis for this observation could perhaps be grounded in findings

from a previous report that implicated specific soluble immune me-

diators (SIMs) as being involved in carcinogenetic processes that

impact growth, invasion and metastasis of HCC; the cancer which

occurs almost exclusively in inflamed livers.10 Further to this, we

recently showed that SIM‐mediated immune surveillance of HCC

may be important for HCC development.11 Based on this back-

ground, we here aimed to address specific SIM‐phenotype associa-

tions that impact the odds of HCC development and the related

changes that ensue upon IFN‐free therapy‐mediated HCV clearance

in cirrhosis patients.
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MATERIALS AND METHODS

Patient population

In this study, we enrolled a total of 31 patients with baseline HCV‐
related liver cirrhosis who had undergone IFN‐free hepatitis

C therapy with DAAs at the liver outpatient clinic of Hannover

Medical School (MHH). The criteria of cirrhosis diagnosis were

based on liver histology (F5 and F6 according to ISHAK [modified

Knodell score]), transient elastography (>14.5 kPa), and definite

morphological signs in ultrasound, magnetic resonance imaging

(MRI) and computed tomography (CT) as detailed previously.3 All

patients had no coexistent chronic inflammatory disease(s) or any

known cancers other than HCC. Of these patients, 15 were those

who had developed posttreatment HCC at some point during

treatment or within a 24‐weeks follow‐up period (herein referred

to as Cirrh‐to‐HCC). Control groups including 16 age‐matched pa-

tients who remained HCC‐free upon therapy (herein referred to as

Cirrh‐to‐NoHCC) and 10 healthy individuals were also recruited. All

patients were HCC‐free by ultrasound, CT or MRI technology

before therapy start. In furtherance, an HCC emergence surveil-

lance schedule was routinely done upon therapy initiation for all

patients during antiviral therapy and during a 6‐month follow‐up
period. This surveillance schedule involved ultrasound imaging

routinely performed at 3‐month intervals during antiviral therapy

and 6 months after therapy. This surveillance schedule is borne out

of routine clinical practice at our centre. The Cirrh‐to‐HCC patients

included four recurrences and 11 de novo cases. Overall, no ana-

lysed clinical parameter statistically differentiated the two stratified

cohorts of HCC or HCC‐free from each other. While the Cirrh‐to‐
HCC patients had a median albumin, platelets, bilirubin, aspartate

aminotransferase, alanine aminotransferase and fibroscan of 32 g/L,

102 tsd/il, 16 imol/l, 99 U/L, 59 U/L, 27.40 kPa, respectively, the

Cirrh‐to‐NoHCC had these measures at 32 g/L, 90 tsd/il, 18 imol/L,

75 U/L, 87 U/L, 21.50 kPa, respectively.

Characteristics of patient cohorts and a description of the

different DAA regimens for treatment according to international

guidelines (HCV guidelines, European Association for the Study of

the Liver, American Association for the Study of Liver Diseases) have

been detailed in Table 1.

Measurement of plasma SIM concentrations

We performed multianalyte plasma SIM profiling employing a

multiplex technology (Olink's Proseek Multiplex Inflammation), which

simultaneously measured the expression of 91 multiple biomarker

proteins (Table S1), based on a proximity extension assay. The pre-

cision, reproducibility and scalability of this SIM measurement

technology have been previously described.12–14 Plasma SIM con-

centrations of patients were analysed at baseline, and longitudinally

at the end of therapy and follow‐up of therapy as detailed in the

Supporting Information Material. The precise time‐points at which

plasma were sampled and used for SIM assessments is detailed in

Table S2. Based on a standardised limit of detection, a total of 17

proteins that had a missing data frequency of more than 45% were

excluded from the analysis.

Statistical analyses

Data were analysed using the GraphPad Prism software (GraphPad

Software) or Microsoft Excel (for spider graphs). Quantitative ana-

lyses were done using the Student' t test or the Mann–Whitney test

according to the distribution of data. For multiple comparisons, one‐
way analysis of variance with a posttest correction was used. Mul-

tiple t tests were controlled using the false‐discovery rate (FDR)

correction approach, with a desired FDR (Q) of 10%. In general,

p < 0.05 were considered to be statistically significant. The statistical

test used for each analysis is detailed in the respective figure legends.

RESULTS

Pretherapy‐elevated plasma SIM profiles
characterised cirrhosis patients that developed HCC
upon DAA therapy

Circumventing the low throughput of conventional methods, we here

applied the innovative Proseek multiplex technology to profile mul-

tiple SIMs (n = 91) in the plasma of cirrhosis patients who either

developed HCC (Cirrh‐to‐HCC) or remained HCC‐free (Cirrh‐to‐
NoHCC) following HCV treatment with current IFN‐free DAAs. Upon

a comparison of SIM concentrations at baseline, we observed a

similar pattern of expression between Cirrh‐to‐HCC and Cirrh‐to‐
NoHCC patients relative to normal values. Thus, compared to healthy

individuals, SIMs that were upregulated, downregulated or remained

unaltered occurred in a similar manner between the two cohorts

(Figure 1a). Generally, most (i.e., over 50%) of the SIMs analysed here

displayed superior mean plasma concentrations at this time‐point in
the patients with baseline cirrhosis irrespective of their HCC status

following treatment. Interestingly however, we identified a set of 16

SIMs including MCP‐3, GDNF, CDCP1, interleukin (IL) 17C (IL‐17C),
IL‐17A, signalling lymphocytic activation family 1 (SLAMF1), CCL11,

fibroblast growth factor‐5 (FGF‐5), LIF‐R, IL10, IL‐10RA, IL‐15RA,
beta NGF, CCL28, CCL25 and NT‐3 that were present at significantly

higher concentrations in the Cirrh‐to‐HCC patients after correcting

for multiple comparisons.

(Figure 1a,b). In addition, FGF‐23, FGF‐19, MMP‐10 and Flt3L

displayed a trend of superior pretherapy plasma concentration in the

Cirrh‐to‐HCC cohort. We further discovered IL‐12B (an upregulated

SIM) and the stem cell factor (SCF) (a downregulated SIM) as the only

two SIMs that were rather significantly lower in the Cirrh‐to‐HCC
compared to the Cirrh‐to‐NoHCC cohort (Figure 1c).

Further calculating the area under the receiver operating char-

acteristic curves (AUROCs), three of the 16 elevated SIMs showed
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values above 0.80 (Figure 2a). We further evaluated the potential

correlation between baseline plasma SIM levels and the emergence

of recurrence and de novo HCC upon DAA treatment initiation.

Overall, nine of the 16 SIMs (i.e., GDNF, IL‐17A, IL‐15RA, SLAMF1,

CCL11, IL10‐RA, LIF‐R, IL10, CCL28) that showed elevated concen-

trations in the Cirrh‐to‐HCC patients together with other SIMs such

as CCL4 and the delta and Notch‐like epidermal growth factor‐
related receptor were particularly present at higher concentrations

at baseline in the patients that developed de novo HCC (Figure 2b).

Here too, the three SIMs that displayed an AUROC above 0.8 were

GDNF (0.9156), IL‐10RA (0.8071) and IL‐15RA (0.8121) (data not

shown). Notably, while SIMs such as CCL25, CDCP1 and IL‐17C were

significantly higher in both recurrence and de novo HCC (Figure 2c),

the plasma concentrations of IL‐17C and the FGF‐5 and FGF‐23
were particularly higher in recurrence HCC with FGF‐5 in particular

having an AUROC of 9333 (Figure 2d).

Successful DAA therapy did not alter the baseline
plasma SIM profiles in cirrhosis patients that
developed posttherapy HCC

To further assess the possible existence of a differential regu-

lation of distinct SIMs during IFN‐free treatment of hepatitis C

in relation to HCC emergence, we studied the plasma SIM ki-

netics in the two Cirrh‐to‐HCC and Cirrh‐to‐NoHCC patient

cohorts (Figure 3). Plasma were longitudinally sampled at

baseline (therapy start), end‐of‐therapy and follow‐up (i.e., at

least 12 weeks postsustained virologic response [SVR]) and the

concentrations of the described SIMs measured. Patient Cirrh‐16
who had received IFN‐based therapy was exclude from the

analysis. Patients Cirrh‐15, HCC‐1, HCC‐9 and HCC‐14 for whom

no plasma samples were available at end‐of‐therapy and/or follow‐up
were also excluded from the analysis. We observed that while the

HCC‐free control cohort experienced significant therapy‐mediated

SIM reductions of some n = 38 SIMs at end‐of‐therapy and/or

follow‐up (Figure 3b), those in the eventual HCC developers

remained fairly stable with only 16 SIMs experiencing relatively

partial but significant reductions (Figure 3a,b). But for GDNF which

dipped at end‐of‐therapy and even restored at follow‐up, the SIMs

that showed comparatively elevated pretreatment concentrations in

the Cirrh‐to‐HCC patients remained stable all through the treat-

ment period as well as follow‐up (Figure 3a). In both cohorts, SCF,

FGF‐21 and FGF‐23 showed significant increments upon therapy.

Aside from the relatively reduced reductions in the plasma SIM

concentrations of the Cirrh‐to‐HCC patients following DAA ther-

apy, there were a considerable number of other SIMs (CCL25, TGF‐
alpha, CCL23, CST5, IL15RA, beta‐NGF and FGF‐5) that rather

trended upwards compared to their counterparts in the Cirrh‐to‐
NoHCC patients.

The few SIMs that appeared normalised in the Cirrh‐to‐HCC
cohort seemed to emanate from the de novo rather than the recur-

rence HCC subgroup (data not shown). These results highlight an

overall nonperturbation of the soluble immune compartment in
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patients who developed HCC contrary to those who remained HCC‐
free upon DAA treatment.

DISCUSSION

In this plasma screening of a large repertoire of SIMs relative to HCC

emergence upon IFN‐free therapy for hepatitis C, we showed that a

spectrum of pretreatment SIM expressions were highly elevated in

patients who later developed HCC and distinguished them from

those who did not. Furthermore, pretreatment SIM levels could

differentiate de novo from recurrence of HCC emergence. Finally, we

demonstrated for the first time that alteration in the inflammatory

patterns during IFN‐free HCV therapy differ in significant pro-

portions between Cirrh‐to‐HCC and Cirrh‐to‐ NoHCC patients.

Chronic unresolved inflammation is known to promote and

exacerbate malignancies. A clear example is HCC, which has over

90% of its cases arising in the context of liver injury and inflamma-

tion. Our study here suggests a pre‐existing hyperactivated profile in

Cirrh‐to‐HCC patients as evidenced by elevated baseline
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concentrations of a myriad of SIMs. To the best of our knowledge,

these findings show for the first time that elevated pretherapy SIM

concentrations (such as those of GDNF, FGF‐5 and IL‐15RA) could
serve as independent predictive biomarkers for HCC emergence, and

distinguish Cirrh‐to‐HCC from Cirrh‐to‐ NoHCC patients regardless

of de novo or recurrence classification. A prior example suggestive of

an association between pretherapy serum SIM levels and the emer-

gence of de novo HCC upon DAA treatment in patients with HCV

infection has recently been shown.15 Our data here drawn from

Olink's innovative multiplex technology fairly confirms this obser-

vation, although with a different set of SIMs aside eotaxin (CCL11).

This study thus extends the spectrum of SIMs whose baseline con-

centrations and possible networks could be linked with HCC

emergence in cirrhosis patients receiving DAA therapy for hepatitis

C. Whether the activated immune system is a cause or consequence

of therapy‐related HCC emergence is an intriguing concern. The re-

sults from our data here however seem to suggest the latter as the

more plausible option. The elevated pretreatment SIM profile exis-

tent before the induction of any therapy‐mediated immune changes

could indicate a systemic response of already ongoing immune sur-

veillance against early malignant lesions. This systemic inflammation

could in turn lead to tumour‐specific CD8+ T‐cell functional

exhaustion, or inhibition as exemplified by the increased pretherapy

anti‐inflammatory cytokine IL‐ 10. IL‐10 is a critical immune regula-

tory molecule, which can deregulate cytokine production and T‐cell
proliferation and has a modulatory effect on hepatic
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fibrinogenesis.16,17 In the midst of the pretherapy hyper‐immune

profile which characterised the Cirrh‐to‐HCC patients, the concom-

itant elevated levels of IL‐10 and its receptor IL10RA at baseline was

not surprising. In this setting, IL‐10 levels may play a role in tuning

the prevailing proinflammatory SIM ensemble whiles its engagement

with elevated IL10RA may directly inhibit CD8+ T‐cell function as

shown before18 and tilts the existing HCC antitumour T‐cell sur-
veillance establishment out of balance. Together with the notable

reduction in the immuno‐stimulatory cytokine IL‐12B, this may

culminate in the reduced functionality of HCC‐specific immune‐sur-
veilling T cells, which may favour HCC progression, as we demon-

strated recently.11 This assertion lends credence from evidence

suggesting that tumour cells have the capacity to secrete distinct

SIMs to foster their growth and metastasis as well as subverting

hosts' immune anti‐tumour reactions.19,20

Aside from IL‐10, the SLAMmolecules are known for their roles in

regulating immune responses, pathophysiology of neoplasm trans-

formations and entry pathways of certain viruses.21 Recently, SLAM

molecules have come to the fore for their potential in diagnosis and

therapy of various cancers. The SLAMF1 in particular is the prototype

member of the SLAM family of molecules that initiates signal trans-

duction networks in many immune cells including T and B cells, den-

dritic cells, monocytesmacrophages, natural killer cells and natural

killer T cells that constitutively express them, thus modulating their

activation and differentiation.22–24 In patients with colon cancer, for

example, upregulation or silencing of SLAMF1 expressed in lympho-

cytes was reported to be accompanied by increased or reduced lym-

phocytic cytotoxic activity, respectively.25 In ourCirrh‐to‐HCCpatient

cohort, the elevated SLAMF1 profile existent before DAA therapy

initiation was an interesting observation in this regard. On the one

hand, it fits verywell into our assertion that the elevated SIMprofile (as

exemplified by SLAMF1) and characteristic systemic inflammation,

may be a response to occult HCC in the liver. However, the charac-

teristically higher SLAMF1 level in the patientswhodevelopeddenovo

relative to recurrence HCC and the observation that SLAMF1 levels

stayed unaltered upon DAA therapy widen the dimension of plausible

conclusions, and warrants further investigation.

Furthermore, assessing the potential immune correlates of IFN‐
free therapy‐mediated HCV clearance with emergence of HCC by

analysing longitudinal SIM kinetics, we confirmed our earlier report

that innate SIM immunity may not necessarily normalise but experi-

ence strong reduction in the levels of specific SIMs in the cirrhosis

control cohort that did not develop HCC.26 Previous studies had re-

ported a similar decline in the mean levels of the SIMs IP‐10, MCP‐1,
MIP‐1ß, IL‐1819 and also of CCL‐2, CCL‐3, CCL‐4, CXCL‐8, CXCL‐10,
IL‐1b, IL‐15, IFN‐y, IL‐4, IL‐10, TGF‐b, FGFb and PAI‐120 following

IFN‐free antiviral therapy in patients with chronic hepatitis C.

Strikingly, however, no significant changes of such magnitude

were observed in the cirrhosis patients who were treated with DAAs

and eventually developed HCC. This relatively sustained release of

specific SIMs in these patients indicates independent activation of

the immune system of the HCV infection in such a setting. It further

entrenches the assertion that the systemic inflammation may be a

response to occult HCC in the liver as we earlier opined. On another

score, it may be indicative of the mechanistic involvement of distinct

SIMs in the emergence of HCC. This is of interest given the proven

dysregulatory activity pretherapy SIMs such as MCP‐3, GDNF,

SLAMF1, CCL11, CCL25, beta NGF and NT‐3 may have on the

mitogen‐activated protein kinase pathway. Further studies are thus

required to address the paradox of whether the unaltered SIM

expression is a cause or consequence of HCC development upon

DAA therapy of hepatitis C.

On several scores, our findings in this study confirm and

extend previous reports, especially by Debes et al.8 and Villani

et al.9 However, one notable exception deserves a mention. The

kinetics of plasma VEGF levels which were reported to be elevated

until end‐of‐therapy before it normalised at SVR12 in chronic

hepatitis C patients receiving IFN‐free DAA therapy could not be

confirmed. In our observation, VEGFA levels significantly declined

in the cirrhosis patients that remained HCC‐free posttherapy at

both end‐of‐therapy and follow‐up contrary to the unaltered

levels in the patients who eventually developed HCC posttherapy,

suggesting an association between VEGFA levels and HCC

growth. On the contrary, other growth factors such as FGF‐21,
FGF‐23 and SCF significantly increased in both cohorts in coinci-

dence with HCV clearance whilst TGF‐alpha, FGF‐5, beta‐ NGF and

other mediators such as IL‐15RA, CCL25, CCL23 and CST5 all

trended upwards exclusively in the Cirr‐to‐HCC cohort. The dif-

ferences in observations could stem from the difference in sample

size, peculiar cohort characteristics and the contributory role of the

other members of the VEGF family that were nondiscriminatorily

measured in Villani et al.9 compared to our assay which measured

only VEGFA.

Our study has obvious strengths and limitations. The major

strengths include the (a) prospective collection of samples, (b) large

panel of SIMs analysed, (c) unbiased approach of SIM profiling and (d)

homogeneous treatment cohort and follow‐up for screening.

Notwithstanding, the number of HCC cases which still remains

small and the accompanying small fractions of recurrence and de novo

cases are the notable limitations. As a next step in this project, we aim

to conduct a large prospective dedicated study, which will address the

shortcomings of these findings and thus provide a better insight into

the pretherapy HCC immuno‐surveillance establishment and the

changes it experiences following DAA‐induced HCV cure.

In summary, we discovered that the pretreatment activation

profile of the soluble immune compartment as measured by highly

elevated SIM patterns correlates with posttherapy HCC develop-

ment. We further demonstrate how the elevated SIM establishment

existent before DAA therapy stays unperturbed upon DAA therapy in

patients who develop posttherapy HCC contrary to those who

remain HCC‐free. These findings provide an important basis for a

potential build‐on to unravel cases where the benefit of DAA ther-

apies would be unequivocally superior to the risk of developing HCC.

Attainment of this feat would potentially contribute to improving the

management of HCC and the quality of life of patients with chronic

hepatitis C.
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