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Abstract

Isomer search or molecule enumeration refers to the problem of finding all the isomers for a

given molecule. Many classical search methods have been developed in order to tackle this

problem. However, the availability of quantum computing architectures has given us the

opportunity to address this problem with new (quantum) techniques. This paper describes a

quantum isomer search procedure for determining all the structural isomers of alkanes. We

first formulate the structural isomer search problem as a quadratic unconstrained binary

optimization (QUBO) problem. The QUBO formulation is for general use on either annealing

or gate-based quantum computers. We use the D-Wave quantum annealer to enumerate all

structural isomers of all alkanes with fewer carbon atoms (n < 10) than Decane (C10H22).

The number of isomer solutions increases with the number of carbon atoms. We find that

the sampling time needed to identify all solutions scales linearly with the number of carbon

atoms in the alkane. We probe the problem further by employing reverse annealing as well

as a perturbed QUBO Hamiltonian and find that the combination of these two methods sig-

nificantly reduces the number of samples required to find all isomers.

Introduction

As quantum computers with more qubits and increased accuracy become available, interest in

solving useful problems in the near-term has increased. The Ising problem is among this

group. This problem is well-known to be NP-complete and is therefore efficiently mappable to

all other NP-complete problems, such as the graph-coloring problem [1]. Since both gate-

based and annealing quantum computers can solve the Ising problem [2, 3], it has been of par-

ticular interest to the quantum computing community for both near-term and long-term

applications. It has already been successfully used to solve several problems such as graph par-

titioning and community detection [4, 5].
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Given the structural formula of a molecule, one can always construct a graph defining the

connectivity of the atoms. Thus the corresponding graph of a molecule, called a molecular

graph, is defined as a labeled graph with a vertex set consisting of the atoms of the molecule

and edges representing the chemical bonds existing between the atoms [6]. For the case of

hydrocarbons, we refer to the molecule as saturated if the bond between atoms is single and

unsaturated if the bond is a double bond. In this vain, a saturated hydrocarbon is defined as a

simple molecular graph whose vertices represent hydrogen and carbon atoms, and edges rep-

resent single bonds between the atoms [6]. These simple molecular graphs could be either

cyclic or acyclic. The acyclic saturated hydrocarbons are known as alkanes with molecular

formula CnH2n+ 2 while the cyclic saturated hydrocarbons are referred to as the cycloalkanes

with molecular formula CnH2n. A general formula for the saturated hydrocarbons is given as

Cn H2n−2(k−1), where k is the number of independent loops. A given molecular formula could

correspond to different molecules with distinct structural arrangements. The molecules with

identical formulas but distinct structures are called isomers. They are classified as structural

isomers if their bonding patterns and atomic organization is distinct, or as stereoisomers if the

bonding patterns are fixed while the spatial arrangement is distinct [7]. The goal of this work is

to enumerate the structural isomers of any given molecular formula for alkanes by encoding

this problem into a quantum computing framework.

Isomer search, or molecule enumeration, is the process of searching for all isomers of a

given molecule. The search space could be structural (2D) or spatial (3D), but for our purposes

the focus will be on structural isomer search. The enumeration of structural isomers is of inter-

est to numerous fields. Examples include pharmaceutical applications as proper identification

of isomers “would facilitate resource reduction, including animal usage, and may benefit other

areas of pharmaceutical structural characterization including impurity profiling and degrada-

tion chemistry” [8]. Moreover, the oil and gas industry relies on knowledge of the structures of

isomers of hydrocarbons and alkanes for processes related to refinement [9, 10]

Over the years, many search procedures have been developed for enumerating molecules.

Most of these procedures incorporate various techniques such as the labeled enumeration (a

procedure for enumerating all 2
ðnðn� 1ÞÞ

2 labeled graphs of n nodes), orderly generation method (a

procedure that dwells on a so-called canonical representation of graphs such that the canoni-

zation process induces an ordering on the edges of the graph), random sampling (techniques

that generate structures from randomly selected branches of the construction trees of deter-

ministic structural generation algorithms), Monte-Carlo and simulated annealing (a procedure

that focuses on minimizing random displacements on atoms by performing a bond order

switch), and genetic algorithms (a procedure for which mutations are carried out using bond

perturbations, crossover operations executed using a generated n-tuple code, and selection

operators defined by root-mean-square deviation between experimental chemical shifts, and

predicted chemical shifts from neural network technology) [11].

The work of Nobel Laureate J. Lederberg [12] on the topology of molecules in 1969 is con-

sidered to be the genesis of algorithmic and computational approaches to the field of molecular

structure enumeration. A particularly large step was when the algorithm was finally incorpo-

rated into the DENDRAL (Dendritic Algorithm) code [13] for enumerating isomers of acyclic

compounds containing carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) atoms [14].

Since then, the field has seen the development of several distinct types of algorithms (exhaus-

tive, automated and stochastic) and codes for structural elucidation using different classical

approaches with diverse input criteria [11]. In order to generate the isomers, most of these

codes, including SKELGEN, CAMGEC, AEGIS, ISOGEN, GI, and MOLGEN [15–20] require

only the molecular formula as input. Others, such as DENDRAL, GalvaStructures, CONGEN,
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GENOA, ASSEMBLE 2.0, CHEMICS, EPIOS, GEN, StructEluc, COCON, SpecSolv, ESESOC,

SIGNATURE, SENECA, COCOA, SESAMI, CISOC-SES, and X-PERT take as input any com-

bination of molecular formula, spectral information and spectroscopic data, fragments, molec-

ular weight, molar mass, and constraints such as long-range distance constraints [13, 21–39].

Here we introduce, formulate, and apply quantum isomer searching. Based on the graph-

coloring problem, and formulated as a QUBO/Ising model, our approach is able to identify

structural isomers of a given molecule in a way that can be implemented on both quantum

annealers and gate-based quantum computers. This particular model is able to search for

structural isomers of alkanes.

In order to validate our formulation, the search is implemented on the D-Wave 2000Q

machine, a state-of-the-art quantum annealer with 2048 superconducting qubits arranged in a

sparse chimera graph [40]. It is a quantum computing device that works using quantum

annealing, a method that makes use of quantum tunneling and quantum entanglement in

order to solve combinatorial optimization problems through minimizing the Ising objective

function:

f ðσÞ ¼
X

i

hisi þ
X

i<j

Ji;jsisj ð1Þ

for which σi 2 {−1, 1} are magnetic spin variables subject to local fields hi and nearest neigh-

bor interactions with coupling strength Ji,j. Any problem to be solved on a D-Wave system is

modeled as a search for the minimal energy of the Ising Hamiltonian. When the variables σi
in Eq 1 are restricted to take values from the set {0, 1}, then the minimization problem is said

to be a quadratic unconstrained binary optimization (QUBO). A typical QUBO model can be

transformed into an Ising model with the transformation s ¼ 2x � 1n, where entries of x
represent the nQUBO variables and 1n is a vector of ones. In the following sections, we for-

mulate the quantum isomer search problem as a QUBO, then describe and present its

implementation.

In our formulation, an alkane with n carbons requires 4(n − 2) logical qubits that are fully

connected. However, D-Wave 2000Q’s chimera graph is sparse, and therefore may require a

logical qubit to be represented by a chain of physical qubits [41]. This architecture can limit

the complexity of possible problems and creates the difficult task of mapping the necessary

connections of the logical qubits onto the possible connections of the physical qubits in a pro-

cess known as “minor embedding” [41]. This leads to the D-Wave 2000Q being capable of rep-

resenting up to 64 fully connected logical qubits or variables, meaning that our method can

find isomers of alkanes with up to n� 18 carbon atoms (Octadecane).

An important aspect of this problem is that there are multiple correct answers for a given

QUBO, i.e. more than one answer satisfies all given constraints. In the case of D-Wave 2000Q,

this means that all of these answers have the global minimum energy. In this way, the ground

state is degenerate, and to fully answer a given problem, all answers with that energy must be

found. This degeneracy is an essential, and necessary part of the problem since the purpose is

to find all valid solutions. Quantum annealers are ideal for sampling degenerate solutions

because of their ability to introduce some randomness in their exploration of the search space.

However, this creates complications because it requires the search space to be explored to an

exhaustive degree, which quickly becomes more difficult as the problem size increases. This is

a well-known issue with annealing devices, and previous results have found that it can be diffi-

cult to sample all degenerate solutions in a fair way [42]. To this end, we apply techniques in

an attempt to encourage the search space to be more fully explored than it is with a typical

anneal.
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Methods

In graph theory, a tree is defined as an acyclic connected graph and it is known that a tree with

n� 2 vertices has at least two vertices of degree 1. Trees with vertices of maximum degree k
are said to be k-trees. As our problem formulation considers trees with maximum degree con-

straints, we recall two theorems (see [43]) about the degree sequence of any given tree to aid in

the understanding of the formulation.

Theorem 0.1. Let d1� d2� . . .� dn� 0 be a sequence of integers. Then d1, d2, . . ., dn is a
degree sequence of a tree if and only if

1. di� 18i = 1, 2, . . ., n

2.
Pn

i di ¼ 2ðn � 1Þ

Theorem 0.2. Let d1, d2, . . ., dn be a degree sequence of a tree. Then there are

ðn � 2Þ!
Qn

i¼1
ðdi � 1Þ!

labelled trees with the degree sequence d1, d2, . . ., dn n� 2.

Theorem 0.1, establishes a necessary and sufficient condition for a degree sequence to be a

tree, however Theorem 0.2 shows that this tree is not unique, that there are several labeled

trees on n vertices with the same ordered degree sequence. In other words, there is surjective

relationship between any disordered degree sequence and the chemical isomers structure set.

To make the relationship between structures and sequence more clear, in Fig 1, we show that

two degree sequences can give the same chemical structure.

QUBO formulation

Employing acyclic molecular tree graphs to represent alkanes, as well as considering the spe-

cific properties of these graphs, we formulate isomer search as a quadratic unconstrained

binary optimization (QUBO) problem that can be solved via quantum annealing or gate-based

quantum computers. We start off this section by constructing the QUBO objective function

for searching for the isomers based on their degree sequences.

Given a molecular formula for an alkane, CnH2n+2, we consider the carbon-carbon connec-

tivity and set up a degree sequence (d1, d2, . . ., dn) of the corresponding acyclic molecular tree

graph. In this case di is the degree of the carbon atom—i.e, if its a primary, secondary or

Fig 1. Isomorphism of trees. Two isomorphic tree graphs with degree sequences (1,2,2,1) (left) and (1,1,2,2) (middle) that both correspond to the

straight chain isomer (right) of C4H10.

https://doi.org/10.1371/journal.pone.0226787.g001
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tertiary carbon. For our purposes, the hydrogen atoms are irrelevant because they can be

inferred from the arrangement of the carbons and can therefore be dropped from the graph.

Using the constraints on degree sequences of tree graphs we need to construct the QUBO

objective function of the form

yTQy ¼
Xn

i¼1

yiQii þ
X

i6¼j

yiyjQij

where each element yi of the vector y belongs to the set {0, 1}. Recall that trees with n� 2

nodes are such that at least two nodes are of degree 1. Without loss of generality, these

nodes can be reordered such that they are located at the first and last positions of the

corresponding degree sequence. This enables us to set a constraint as d1 = dn = 1. These

nodes correspond to carbons that are in methyl groups (CH3). Furthermore, the carbon-car-

bon bond in alkane is such that each carbon atom is bonded to at most 4 other carbon

atoms. This implies that alkanes are 4-trees which gives rise to another constraint 1� dj� 4

for j = 2,. . ., n − 1. By the properties of trees, we establish that the sum of the degree

sequences must be 2(n − 1), i.e. d1+ d2 + . . . + dn = 2(n − 1). Thus by Theorem 0.1 we obtain

a necessary and sufficent condition that will enable us obtain the structures of the 4-trees

(alkanes):

d1 ¼ dn ¼ 1 ð2Þ

1 � dj � 4 for j ¼ 2; . . . ; n � 1 ð3Þ

Xn� 1

j¼2

dj ¼ 2ðn � 2Þ ð4Þ

To convert the di to binary, we define decision variable yij based on the graph-coloring idea

for which a node i is assigned a color j, by considering degrees as colors, that is j = 1, . . ., 4

since the maximum degree is 4. In other words, the number of carbon bonds for an individual

atom is one hot encoded in a bit string of length 4.

yij ¼
1 if node i is of degree jðdi ¼ jÞ

0 otherwise

(

For these variables, we can establish the constraints:

X4

j¼1

yij ¼ 1 i ¼ 1; . . . ; n ð5Þ

y11 ¼ yn1 ¼ 1

Xn

i¼1

X4

j¼1

jyij ¼ 2ðn � 1Þ ð6Þ

Fig 2 shows, using 2-methylbutane (an isomer of pentane C5H12) as an example, how a

given alkane can be represented as a molecular graph, a tree graph, a degree sequence, and a

one hot encoded bit string. For alkanes with n� 6 carbons, there are often different
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permutations that create equivalent isomers. Alternatively, some degree sequence can lead to

disconnected structures that needs to be cleaned up in a post-processing step.

In this new formulation, there are 4n variables, 8 of which are already predetermined as a

result of the constraint y11 = yn1 = 1. Thus, we can restrict the problem to onlyM = 4(n − 2)

variables. This, not only reduces computational complexity but also enables us to explore

larger alkanes due to the restrictions on the number of variables or qubits on current

machines. For the D-Wave 2000Q machine, this means the ability to explore alkanes with up

to 18 carbon atoms instead of 16 carbon atoms.

For simplicity, let us re-number the indices as

y ¼ ðy11; y12; y13; y14; y21; y22; . . . ; yðn� 2Þ1; yðn� 2Þ2; yðn� 2Þ3; yðn� 2Þ4Þ

¼ ðy1; y2; . . . ; yMÞ ¼

y1

y2

..

.

yM

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 RM

We introduce positive penalty constants Pi and proceed with the construction of the QUBO

by following the methods in [44]. We penalize the n constraints in Eq 5 with penalty constant

Fig 2. Encoding of 2-methylbutane. Representation of 2-methylbutane (an isomer of pentane C5H12) as a one hot

encoded bit string, degree sequence, graph, and molecular graph (clockwise from the top left).

https://doi.org/10.1371/journal.pone.0226787.g002
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P1 and the constraint in Eq 6 with penalty constant P2 as follows:

P1

X4

i¼1

yi � 1

 !2

¼ P1 �
X4

i¼1

yi þ 2
X

1�i<j�4

yiyj

 !

þ P1

P1

X4

i¼1

y4þi � 1

 !2

¼ P1 �
X4

i¼1

y4þi þ 2
X

1�i<j�4

y4þiy4þj

 !

þ P1

P1

X4

i¼1

y8þi � 1

 !2

¼ P1 �
X4

i¼1

y8þi þ 2
X

1�i<j�4

y8þiy8þj

 !

þ P1

..

.

P1

X4

i¼1

y4ðn� 3Þþi � 1

 !2

¼ P1 �
X4

i¼1

y4ðn� 3Þþi þ 2
X

1�i<j�4

y4ðn� 3Þþiy4ðn� 3Þþj

 !

þ P1

) P1

Xn� 3

j¼0

X4

i¼1

y4jþi � 1

 !2

¼ P1 �
XM

i¼1

yi þ 2
Xn� 3

k¼0

X

1�i<j�4

y4kþiy4kþj þ ðn � 2Þ

" #

ð7Þ

P2

Xn� 2

i¼1

X4

j¼1

jyij � 2ðn � 2Þ

 !2

¼ P2

XM

i¼1

½ði � 1Þð mod 4Þ þ 1�yi � 2ðn � 2Þ

" #2

ð8Þ

Let 1 be theM ×Mmatrix of ones and 1M be theM column vector of ones. Let U = [uij]4×4

be a 4 × 4 upper triangular matrix with entries defined by

uij ¼
1 if i < j

0 otherwise
:

(

That is,

U ¼

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

We define aM ×M (block) diagonal matrix DU with each diagonal block consisting of the

matrix U as

DU ¼ diagðU; . . . ;UÞ:

Eq 7 can then be rewritten as

P1

Xn� 3

j¼0

X4

i¼1

y4jþi � 1

 !2

¼ P1 �
XM

i¼1

yi þ 2
Xn� 3

k¼0

X

1�i<j�4

y4kþiy4kþj þ ðn � 2Þ

" #

¼ P1½� 1TMy þ 2yTDUy þ ðn � 2Þ�:

ð9Þ
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To rewrite Eq 8 in matrix form, we first define αi = (i − 1) mod 4 + 1. Then

P2

XM

i¼1

½ði � 1Þ mod 4þ 1�yi � 2ðn � 2Þ

" #2

¼ P2

XM

i¼1

aiyi � 2ðn � 2Þ

" #2

¼ P2 ð
XM

i¼1

aiyiÞ
2
� 4ðn � 2Þ

XM

i¼1

aiyi þ 4ðn � 2Þ
2

" #

¼ P2

XM

i¼1

a2

i y
2

i þ 2
X

1�i<j�M

aiajyiyj � 4ðn � 2Þ
XM

i¼1

aiyi þ 4ðn � 2Þ
2

" #

:

ð10Þ

Now, define the followingM ×Mmatrices andM column vectors

Da ¼ diagða1; . . . ; aMÞ ð11Þ

α ¼ ða1; . . . ; aMÞ ¼

a1

..

.

aM

2

6
6
6
6
4

3

7
7
7
7
5

ð12Þ

Ua ¼ ½uij�M�M with uij ¼
aj if i < j

0 otherwise

(

ð13Þ

Then

P2

XM

i¼1

a2

i y
2

i þ 2
X

1�i<j�M

aiajyiyj � 4ðn � 2Þ
XM

i¼1

aiyi þ 4ðn � 2Þ
2

" #

¼ P2½yTD2
a
yþ 2yTDaUay � 4ðn � 2ÞαTy þ 4ðn � 2Þ

2
�

ð14Þ

Adding all these equations, Eqs 9 + 14, gives

P1½� 1TMy þ 2yTDUy þ ðn � 2Þ� þ P2½yTD2
a
y þ 2yTDaUay � 4ðn � 2ÞαTyþ 4ðn � 2Þ

2
�

¼ yT½P2D2
a
þ 2ðP2DaUa þ P1DUÞ�y þ ½� 4ðn � 2ÞP2α � P11MÞ�

Ty

þ½4ðn � 2Þ
2P2 þ ðn � 2ÞP1�

ð15Þ

¼ yTAy þ bTy þ c; ð16Þ

where

A ¼ P2D2
a
þ 2ðP2DaUa þ P1DUÞ; ð17Þ

b ¼ � ½4ðn � 2ÞP2αþ P11M�; ð18Þ

c ¼ 4ðn � 2Þ
2P2 þ ðn � 2ÞP1: ð19Þ
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Eq 16 with A, b, c defined by Eqs 17–19 respectively, gives us the objective function for our

problem and hence we need to solve the minimization problem

min
y2f0;1gM

yTAy þ bTyþ c: ð20Þ

Let us define a diagonal matrix Db out of the vector b above, that is

Db ¼ diagðb1; b2; . . . ; bMÞ

where the bi are the vector components of b in Eq 18. Then we solve the QUBO problem

min
y2f0;1gM

yTAy þ bTy ¼ min
y2f0;1gM

yTAy þ yTDby since y2

i ¼ yi 2 f0; 1g

¼ min
y2f0;1gM

yTQy where Q ¼ Aþ Db

ð21Þ

In terms of the individual variables, the full QUBO objective function can be expressed as:

f ðyÞ ¼ min
y2f0;1gM

P1

Xn� 1

i¼2

X4

j¼1

yi;j � 1

 !2

þ P2

Xn� 1

i¼2

X4

j¼1

jyi;j � 4ðn � 2Þ

 !2

: ð22Þ

However, D-Wave 2000Q only accepts hi values between -2 and 2 and Ji,j values between -1

and 1, so the resulting coefficients must be scaled to fit within these ranges. This can help

increase the energy gap between the ground state and the first excited state, making it less

likely that excited states will be sampled. While the D-Wave Ocean software [45] can do this

on its own, it was done manually since this allowed some experimentation with the range used

as it has been observed that it may sometimes be useful to restrict Ji,j values to be greater than

-0.8 [46]. This was done, although no significant benefit was observed.

It is important to note that, as a result of the constraint relating to the sum of the degrees of

the atoms, the resulting QUBO is fully connected. Each atom must take into account the num-

ber of carbon bonds of all other atoms in order to determine if its coloring violates this con-

straint. This can be visualized using the graph representations of the QUBOs (which is what

would be embedded into the D-Wave chimera graph) for Butane (n = 4) and Heptane (n = 7)

given in Fig 3.

Fig 3. Graphs of QUBOS. A: Butane (C4H10), B: Heptane (C7H16).

https://doi.org/10.1371/journal.pone.0226787.g003
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Implementation

The QUBO for a given alkane is embedded into the D-Wave 2000Q_5 chimera graph. This is

the newly released lower-noise machine that is available via D-Wave’s Leap™ quantum cloud

service [47]. It was also implemented on the D-Wave 2000Q_LANL machine at Los Alamos

National Laboratory [48], but no significant difference in performance were noted. Once the

QUBO is embedded using D-Wave Ocean [45], the annealer attempts to find the lowest

energy solutions, i.e. the bit strings that violate the fewest constraints. This was done using the

standard 20μs anneal time. It is important to remember that the lowest energy solutions found

by annealing are the valid isomers. Note that this is different from finding the most chemically

stable isomer.

The sampled results are then filtered such that only the lowest energy solutions (the iso-

mers) are returned. These one hot encoded results are decoded into the degree sequences and

graphs in the method described previously, checked and filtered for redundancy, and returned.

As n increases, the relative number of possible results (24(n−2)) grows more quickly than the

number of isomers. Furthermore, it is known that larger problems on imperfect quantum

annealers have lower probabilities of sampling a ground state solution [49]. Therefore, it

becomes necessary to increase the number of samples taken from the embedded QUBO.

To address this problem, an increasingly perturbed QUBO was also used. In this formula-

tion, after every 10,000 samples, the outer product of the ground state result with the most

counts, |ψi, with itself was added to the QUBO in an attempt to impose a penalty on returning

that result in the next iteration. This new QUBO is represented as

Q0 ¼ Qþ ljcihcj: ð23Þ

The idea behind using this perturbed QUBO is that, by penalizing previously returned

results, subsequent sampling runs would be encouraged to explore different parts of the search

space that may have valid solutions that had not been visited. Because the search space

becomes extremely large as n increases, it is possible that this may help facilitate the identifica-

tion of all isomers of larger molecules. To the best of our knowledge this is the first time that

such a technique has been used to boost the solution space exploration in quantum annealers.

Finally, reverse annealing was added. Rather than ending in a classical state after slowly

turning down the strength of the transverse field, this method does the opposite by taking a

fully classical state as input, which is then stimulated with an increasingly high transverse field

until it reaches the pause location, s� [50]. At this location, HðtÞ ¼ Hðs�Þ, where Hð0Þ and

Hð1Þ are the starting and ending Hamiltonians of a forward anneal, respectively. Following

this step, the system pauses for some pre-determined time and progresses as a typical forward

anneal as the transverse field is gradually weakened, eventually ending once again in a classical

state [50]. The classical input states were the results given by a typical forward anneal, the

pause location was chosen to be s� = 0.5, and the system was paused for h = 85μs. One of the

ideas behind reverse annealing is that it allows the search space surrounding candidate solu-

tions given by a forward anneal to be further explored [50]. If the forward anneal returns a

local minimum then reverse annealing may stimulate that solution to an extent that the system

settles into a nearby global minimum [50]. Such a result could make it more likely that a given

run returns a result with the minimum energy, which may help with the successful enumera-

tion of all isomers and even decrease the number of samples necessary to find them all.

When one expands the QUBO into the Pauli basis, variational methods, such as the varia-

tional quantum eigensolver (VQE) [51] or the quantum approximate optimization algorithm

(QAOA) [52], employed on gate-based machines can also approximate solutions to the Ising

Problem [2]. As a result, we explored the possibility of using IBM Q’s Qiskit software on the
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available QASM simulator [53]. Because of the requirement of 4(n − 2) qubits, IBM Q’s Tokyo,

which has 20 qubits and is currently their largest available device, can only handle alkanes with

fewer carbon atoms than Octane (C8H18) [54]. However, Google Bristlecone’s 72 qubits will be

able to encode 18 carbon atoms, allowing Icosane’s (n = 20) 366,319 structural isomers to be

searched for [55].

Results

Using Python packages NumPy [56], D-Wave Ocean [45], Sympy [57], NetworkX [58],

and Matplotlib [59] and the D-Wave 2000Q hardware, all structural isomers for Butane

(C4H10), Pentane (C5H12), Hexane (C6H14), Heptane (C7H16), Octane (C8H18), and Nonane

(C9H20) were identified. These molecules have 2, 3, 5, 9, 18, and 35 isomers, respectively. Fig 4

shows the returned graphs and their corresponding isomers for Heptane (C7H16).

Without using QUBO perturbation and reverse annealing, it was found that 10,000 samples

were sufficient to find all isomers for Butane (C4H10) and Pentane (C5H12), but the larger

alkanes often needed well over 50,000 samples in order to be fully captured. Information evalu-

ating and describing the results is given below.

Fig 5 gives information on the Hamming distances of all of these isomers. The Hamming

distance between two isomers is the number of bit flips that must be made in order to turn one

isomer into the other. The left figure shows all pairwise Hamming distances for a given n, and

the right figure shows the minimum Hamming distance to each isomer for a given n. As can

be seen, while the pairwise Hamming distances tend to follow a fairly wide distribution, almost

every isomer has another isomer within the minimum possible Hamming distance (4).

Figs 6 and 7 give information on the frequency with which isomers are found for Butane

(C4H10) and Heptane (C7H16). In both figures, it is easily seen that isomers of Butane, with

only 4 carbon atoms, are much more easily found than those of Heptane (C7H16). Fig 6 (left)

demonstrates that ground state results, i.e. those that violate no constraints, are found several

Fig 4. Heptane isomers. Created graphs and corresponding isomers for Heptane (C7H16) Left: Returned graphs with degree sequences, Right: Isomers

of Heptane.

https://doi.org/10.1371/journal.pone.0226787.g004
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hundred times per 10,000 anneals when Butane (C4H10) is being investigated. However, as the

Fig 6 (right) shows, only a handful are sampled for Heptane (C7H16). Fig 7 (left) shows that

each isomer is, on average, found several hundred times per 10,000 samples whereas the right

plot shows that isomers of Heptane (C7H16) are generally found less than once per 10,000

samples.

Our sample reduction methods were also explored and evaluated. Perturbing the QUBO

clearly had an effect on the distribution of the returned results. Fig 8 gives the distributions of

the returned isomers with (left) and without (right) perturbing the QUBO for Pentane (C5

H12) after 10,000 samples using λ = 5(10−5). The distributions for the non-perturbed QUBO

runs, Fig 8 (left), are somewhat uniform. Every isomer is found during each iteration, and the

isomers are roughly returned at the same rate. The randomness of the annealing will always

introduce some fluctuations. However, these fluctuations are not too large and tend to settle

back to normal by the next iteration. This is starkly contrasted by Fig 8 (right). This shows the

distributions when QUBO perturbation is used and as can easily be seen, this method

Fig 5. Measures of Hamming distances. Left: All pairwise Hamming distances, Right: Minimum Hamming distance to each isomer.

https://doi.org/10.1371/journal.pone.0226787.g005

Fig 6. Number of results returned for each energy. Number of results out of 10,000 samples returned at each energy. Left: Butane (C4H10), Right:

Heptane (C7H16).

https://doi.org/10.1371/journal.pone.0226787.g006
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drastically changes the results for subsequent runs. The isomer that is sampled the most fre-

quently for a given iteration is typically sampled significantly fewer times during the next itera-

tion. Eventually, an isomer that has been sampled the most frequently is penalized to the

extent that it is never sampled again. By the final iteration, each isomer has at some point been

the most frequently sampled. This seems to drive the QUBO so far away from them that none

of them are sampled.

This QUBO perturbation technique and reverse annealing were tried alone and in tandem.

It was found that, by themselves, each typically led to a reduction in the number of samples

needed, but combining them decreased the number of samples even more significantly. The

effect of these methods on the search for isomers of Heptane (C7H16) was measured by finding

the number of iterations of 10,000 samples that were necessary to find all isomers. As this is

not a constant number, the experiment was repeated 25 times for each of the four methods

(only forward annealing, forward annealing with QUBO perturbation, reverse annealing, and

Fig 7. Distribution of returned isomers. Average number of times each isomer was returned per 10,000 samples. Left: Butane (C4H10), Right: Heptane

(C7H16).

https://doi.org/10.1371/journal.pone.0226787.g007

Fig 8. Sequential distributions of results. Distributions of returned isomers of Pentane (C5H12) after each run of 10,000 samples. Left: Not using

QUBO perturbation, Right: Using QUBO perturbation.

https://doi.org/10.1371/journal.pone.0226787.g008
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reverse annealing with QUBO perturbation). The results are shown in Table 1. This gives the

average and median number of runs needed to find all isomers for each different technique

over the 25 runs. As it shows, both QUBO perturbation and reverse annealing separately out-

perform a typical forward anneal, but combining the two gives the largest reduction in the

number of samples needed.

When the runtime scaling was evaluated, it was found that the time taken to generate

10,000 samples grows fairly linearly with n, with each additional carbon atom adding roughly

20 microseconds to the total runtime, seen in Fig 9. This happens despite the fact that the num-

ber of parameters grows quadratically. QPU access time includes everything that is done on

the QPU: QPU programming time and QPU sampling time. QPU programming time mea-

sures how long it takes to initialize the problem on the QPU, a procedure that is only done

once per 10,000 samples. QPU sampling time includes the time it takes to perform and readout

all anneals, with delays in between subsequent samples to allow for the system to return to its

initial temperature [60]. After all samples are collected, they then undergo post-processing in

an attempt to improve the quality of the solutions [61, 62]. These three times are shown in

Fig 9 (left). As can be seen, while QPU access time dominates, post processing time has the

Table 1. Number of runs to find all Heptane isomers.

FA FA + QP RA RA + QP

Mean 9.68 8.44 8.04 6.56

Median 9 7 8 6

Average and median number of samples (in 10,000s) needed to find all isomers of Heptane (C7H16) using forward

annealing (FA), forward annealing and QUBO perturbation (FA + QP), reverse annealing (RA), and reverse

annealing and QUBO perturbation (RA + QP). s� = 0.5, h = 85μs, λ = 5(10−6).

https://doi.org/10.1371/journal.pone.0226787.t001

Fig 9. Benchmark times. Time taken per 10,000 samples for 4� n� 9. Left: QPU programming time, QPU access time, and total post processing time.

Right: total real time (+3.159 seconds). Note that the left panel is on a log scale.

https://doi.org/10.1371/journal.pone.0226787.g009
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largest relative scaling. This is reflected in the right panel of Fig 9, which shows that the total

time grows linearly with the number of atoms.

Finally, there was also some attempt to use IBM Q’s Qiskit to implement the search on

their hardware [53]. Current attempts on the IBM Q simulator using this method have been

able to identify all isomers of Butane (C4H10) and calculate the correct ground state energy of

the QUBO Hamiltonian. However, 2-methylpropane (an isomer of Butane C4H10) is found

very often, typically well over five hundred counts per 8,192 samples. This generally makes it

one of the three most common results. However, unbranched Butane (C4H10) occurs much

more rarely.

Discussion

These results are a proof of concept that quantum isomer search using a QUBO formulation is

a valid method. With this approach all isomers for all alkanes with fewer carbon atoms than

Decane (C10H22) were identified. However, as the number of carbon atoms grows, it becomes

more and more essential to take more samples. As shown in Table 1, combining reverse

annealing with our method of perturbing the QUBO after every iteration of 10,000 samples

decreased the number of samples required to find all isomers. Therefore, we can speculate that

perturbing the QUBO and reverse annealing are important methods that may significantly

help expand the search space, decrease the runtime, and facilitate the complete identification

of isomers for larger molecules.

It is important to note that the necessity of increasing the number of samples as the problem

size grows is indicative of imperfect hardware. This scaling is not an inherent part of the quan-

tum isomer search algorithm. Increasing the problem size decreases the probability of finding

a successful answer due to annealing error and imperfect hardware [49]. It is not surprising

that more runs are needed for larger molecules, especially when the quadratic scaling of

parameters and the limited connectivity of the D-Wave 2000Q’s chimera graph are taken into

account. This is a large contributor to the need for more sampling for larger molecules and

comes from imperfect hardware rather than the scaling of the algorithm itself.

Evidence for this can be seen in Fig 10. This figure compares the number of samples

returned for each energy when the isomers of Octane (C8H18) are searched for. As is easily

seen, the number of ground state samples is significantly lower for the quantum annealer (left)

when compared to the simulated annealer (right). This indicates that the algorithm is working

correctly, but the hardware is limiting its performance. Furthermore, every isomer was able to

Fig 10. Number of results returned for each energy. Left: using quantum annealing, Right: using simulated annealing.

https://doi.org/10.1371/journal.pone.0226787.g010
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be found within 10,000 samples when simulated annealing was used, regardless of the size of

the molecule. This also indicates the fact that the imperfect hardware is limiting the perfor-

mance and is responsible for the increase in the number of samples needed for larger mole-

cules to some extent.

We speculate, however, that as the hardware’s performance increases, it may be the case

that the quantum annealer will outperform the simulated annealer, particularly in runtime.

This is due to the linear scaling of the quantum runtime with problem size, whereas simulated

annealing has been found to scale exponentially in some cases [50]. In fact, some problems

with 945 variables were found to run over 108 times slower when simulated annealing was

used [63]. Embedding 13 carbons, i.e. searching for isomers of Pentadecane (C15H32), requires

946 variables. Because this molecule has fewer than 18 carbons, it is small enough to already be

embedded on D-Wave 2000Q. Therefore, this enormous potential decrease in runtime may

occur for isomers that are small enough to be embedded on current hardware. However, as

discussed earlier, even though a molecule with this size can be embedded, the hardware’s error

makes searching for the 4,347 isomers impractical. As a result, this runtime decrease will have

to wait for better hardware. We make no claim that the potential decrease in runtime will be of

the same magnitude as that found in [63]. However, the complexity of the isomer search prob-

lem along with the sheer magnitude of the runtime decrease that was demonstrated suggest

that some decrease in runtime should be expected when quantum isomer search is applied to

larger molecules.

Degeneracy is an additional issue that pertains to the need for thorough sampling. As

described earlier, the global minimum is degenerate in that there are multiple solutions that

satisfy all constraints and all of these need to be sampled in order to ensure that all isomers are

found. This necessitates a very thorough exploration of the search space. Such a requirement is

the reason that QUBO perturbation was added. The results seem to suggest that this would

encourage a wider exploration of the search space. The complication is furthered by the fact

that for several isomers, there are multiple permutations of a degree sequence that lead to iden-

tical graphs. Therefore, in a way the degeneracy is two-fold. There are multiple valid and dis-

tinct global minima, but there are also multiple valid yet identical global minima. The

degeneracy will only increase as the problem size increases and is perhaps one of the largest

limitations.

The degeneracy is further complicated by the Hamming distances between the isomers.

The Hamming distance is a measure of how many modifications need to be made to a result in

order to transform it into another result. Because of the one hot encoding of the degrees,

changing the degree of one carbon requires 2 bit flips. The constraint pertaining to the sum of

the degrees means that if one degree is changed, at least one other degree must be changed and

at most (n − 2) degrees. The total number of carbons embedded may be changed. Therefore,

the Hamming distance between any two isomers of a given n is strictly within 4 and 2(n − 2),

inclusive. As can be seen in the left panel of Fig 5, the pairwise distribution of Hamming dis-

tances follows this pattern. However, when the minimum Hamming distance to a given isomer

is calculated, as is shown in the right panel of Fig 5, it is seen that for almost every isomer for

all n another isomer can be made by changing only 2 degrees. Therefore, while any two iso-

mers may be far apart, almost every isomer has another isomer quite close by.

When measured in Hamming distances, the isomers can form very close clumps of ground

state results. It is possible that this property helps simulated annealing deal with degeneracy in

an effective way. Once a given clump is found, the other isomers can be found by only flipping

a handful of bits. The implications for quantum annealing are less clear. It is entirely possible

that a clump may be found, but not all isomers within that clump are found because the quan-

tum annealing explores so vastly that it may quickly leave the clump. Alternatively, it is

Quantum isomer search

PLOS ONE | https://doi.org/10.1371/journal.pone.0226787 January 15, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0226787


possible that the annealer would be drawn to larger clumps, i.e. isomers from the clumps that

contain many molecules with small Hamming distances would be more likely to be visited and

explored. It is possible that this is an issue that can be addressed to some extent by the intro-

duction of reverse annealing. Its ability to do local searches surrounding the candidate solution

given by forward annealing may allow it to explore a given clump more fully. Furthermore,

QUBO perturbation may help the annealing explore between clumps by driving the search

away from clumps with answers that were already visited. This complementary combination

of exploring within and between clumps introduced by reverse annealing and QUBO pertur-

bation may be the reason that combining the two methods is so effective in terms of decreasing

the number of samples needed to find all isomers. There very well may be other implications

that we have not brought up, so this may be an interesting direction for further research on

degenerate problems.

On D-Wave 2000Q, the sampling of a QUBO that grows quadratically in the number of

parameters can be done in linear time. Despite the fact that more samples are required for

larger molecules, the linear scaling of sampling time is an important quality. When combined

with the significant reduction in samples needed due to QUBO perturbation and reverse

annealing it becomes an encouraging sign for the feasibility of applying this method to larger

molecules.

Even though the current results on the IBM Q hardware are not competitive with those

from D-Wave 2000Q, the rapidly increasing performance and growing number of qubits on

this and other gate-based machines makes this direction a promising avenue for further

research. However, variational techniques on gate-based machines may not have the linear

runtime scaling that is found when quantum annealing is used. This is because these tech-

niques will likely use QUBO Hamiltonians that come with a quadratically scaling number of

terms due to the quadratic scaling of the problem. Because the expectation value of all of these

terms must be taken when a technique such as VQE is used, this will likely result in a runtime

that scales closer to quadratic than linear. Furthermore, initial results do not seem to indicate

that these variational techniques can handle degeneracy as effectively as quantum annealing.

However, it seems that this limitation may be addressed to some extent by QUBO perturbation

as well as other methods including low-energy subspace sampling using something akin to a

subspace-search variational quantum eigensolver [64].

Conclusion

We have demonstrated that quantum isomer search using the QUBO formulation is possible

and effective. With our approach, the sampling time grows linearly with the number of carbon

atoms. All isomers for all alkanes with fewer carbon atoms than Decane (C10H22) were identi-

fied and enumerated using this approach on the D-Wave 2000Q system. Alkanes with fewer

carbon atoms than Nonadecane (C19H40) can be embedded directly into the D-Wave 2000Q

for the quantum isomer search. However, the next-generation D-Wave with 5000 qubits is

coming soon. Along with its decrease in noise and significant increase in the number of physi-

cal qubits, it will also feature a more connected Pegasus graph in which each physical qubit is

connected to 15 others rather than only 6 [65]. This combination will allow the isomers of

much larger molecules to be searched for. It is likely that as the problem size increases, the

importance of the significant sample reduction and wider exploration of the search space

made possible by perturbing the QUBO and adding reverse annealing will quickly grow.

The natural next step of this problem is to implement it on a gate-based quantum com-

puter. Variational methods on these computers can also solve the Ising problem, so quantum

isomer search is possible on those machines. However, all available gate-based quantum
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computers have significantly fewer qubits than D-Wave 2000Q, so they can only search for iso-

mers of relatively small molecules. Regardless, the number of qubits that these machines have

is quickly growing as their noise is decreasing, so it is a promising direction of future work.
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9. Mäki-Arvela P, Kaka khel T, Azkaar M, Engblom S, Murzin D. Catalytic Hydroisomerization of Long-

Chain Hydrocarbons for the Production of Fuels. Catalysts. 2018; 8(534).

10. Ranzi E, Pierucci S, Dente M, van Goethem M, van Meeuwen D, Wagner E. Correct Molecular Recon-

struction of Cracking Feeds: a Need for the Accurate Predictions of Ethylene Yields. Chemical Engi-

neering Transactions. 2015; 43:871–876.

11. Faulon JL, Visco DP, Roe D. Enumerating Molecules. In: Reviews in Computational Chemistry. vol. 21.

Hoboken, New Jersey: John Wiley & Sons Inc.; 2005. p. 209–275.

12. Lederberg J. Topology of Molecules. In: The Mathematical sciences; a collection of essays. Cam-

bridge, Mass.: M.I.T. Press; 1969. p. 37–51.

13. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. Applications of Artificial Intelligence for

Organic Chemistry: The DENDRAL Project. New York: McGraw-Hill; 1980.

14. Lederberg J, Sutherland GL, Buchanan BG, Feigenbaum EA, Robertson AV, Duffield AM, et al. Appli-

cations of artificial intelligence for chemical inference. I. Number of possible organic compounds. Acyclic

structures containing carbon, hydrogen, oxygen, and nitrogen. Journal of the American Chemical Soci-

ety. 1969; 91(11):2973–2976. https://doi.org/10.1021/ja01039a025

15. Hendrickson JB, Parks CA. Generation and enumeration of carbon skeletons. Journal of Chemical

Information and Computer Sciences. 1991; 31(1):101–107.

16. Contreras ML, Valdivia R, Rozas R. Exhaustive generation of organic isomers. 1. Acyclic structures.

Journal of Chemical Information and Computer Sciences. 1992; 32(4):323–330.

17. Luinge HJ. AEGIS, a Structure Generation Program in Prolog. MATCH. 1992; 27:175.

18. Zhu SY, Zhang JP. Exhaustive generation of structural isomers for a given empirical formula—a new

algorithm. Journal of Chemical Information and Computer Sciences. 1982; 22(1):34–38.

19. Barone R, Barberis F, Chanon M. Exhaustive Generation of Organic Isomers from Base 2 and Base 4

Numbers. MATCH. 1995; 32:19–25.

20. Kerber A, Laue R, Moser DA. Structure Generator for Molecular Graphs. Analytica Chimica Acta. 1990;

235:2973.

21. Le Bret C. Exhaustive Isomer Generation using the Genetic Algorithm. Match. 2000; 41: 79–97.

22. Carhart RE, Smith DH. Applications of artificial intelligence for chemical inference–XX. Computers &

Chemistry. 1977; 1:79–84.

23. Carhart RE, Smith DH, Gray NAB, Nourse JG, Djerassi C. GENOA: A computer program for structure

elucidation utilizing overlapping and alternative substructures. Journal of Organic Chemistry—J ORG

CHEM. 1981; 46.

24. Badertscher M, Korytko AI, Schulz KP, Madison MS, Munk ME, Portmann P, et al. Assemble 2.0: a

structure generator. Chemometrics and Intelligent laboratory Systems. 2000; 51(1):73–79. https://doi.

org/10.1016/S0169-7439(00)00056-3

Quantum isomer search

PLOS ONE | https://doi.org/10.1371/journal.pone.0226787 January 15, 2020 19 / 21

https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.22331/q-2018-12-21-114
http://doi.acm.org/10.1145/3149526.3149531
http://doi.acm.org/10.1145/3149526.3149531
https://doi.org/10.1021/acs.analchem.5b04068
http://www.ncbi.nlm.nih.gov/pubmed/26752623
https://doi.org/10.1021/ja01039a025
https://doi.org/10.1016/S0169-7439(00)00056-3
https://doi.org/10.1016/S0169-7439(00)00056-3
https://doi.org/10.1371/journal.pone.0226787


25. Funatsu K, Miyabayashi N, Sasaki S. Further development of structure generation in the automated

structure elucidation system CHEMICS. Journal of Chemical Information and Computer Sciences.

1988; 28(1):18–28.

26. Carabedian M, Dagane I, Dubois JE. Elucidation by progressive intersection of ordered substructures

from carbon-13 nuclear magnetic resonance. Analytical Chemistry. 1988; 60(20):2186–2192. https://

doi.org/10.1021/ac00171a005

27. Bohanec S, Zupan J. Structure Generator GEN. MATCH. 1992; 27:49.

28. Elyashberg ME, Blinov KA, Williams AJ, Martirosian ER, Molodtsov SG. Application of a New Expert

System for the Structure Elucidation of Natural Products from Their 1D and 2D NMR Data. Journal of

Natural Products. 2002; 65(5):693–703. https://doi.org/10.1021/np0103315 PMID: 12027744
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