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P H Y S I C S

Experimental test of quantum causal influences
Iris Agresti1, Davide Poderini1, Beatrice Polacchi1, Nikolai Miklin2,3, Mariami Gachechiladze4, 
Alessia Suprano1, Emanuele Polino1, Giorgio Milani1, Gonzalo Carvacho1,  
Rafael Chaves5*, Fabio Sciarrino1*

Since Bell’s theorem, it is known that local realism fails to explain quantum phenomena. Bell inequality violations 
manifestly show the incompatibility of quantum theory with classical notions of cause and effect. As recently 
found, however, the instrumental scenario—a pivotal tool in causal inference—allows for nonclassicality signa-
tures going beyond this paradigm. If we are not limited to observational data and can intervene in our setup, then 
we can witness quantum violations of classical bounds on the causal influence among the involved variables even 
when no Bell-like violation is possible. That is, through interventions, the quantum behavior of a system that 
would seem classical can be demonstrated. Using a photonic setup—faithfully implementing the instrumental 
causal structure and switching between observation and intervention run by run—we experimentally witness 
such a nonclassicality. We also test quantum bounds for the causal influence, showing that they provide a reliable 
tool for quantum causal modeling.

INTRODUCTION
The inference of cause-effect relationships from data is a keystone 
of any empirical science. Notwithstanding, distinguishing causation 
from correlations in practice is often a controversial matter. With-
out a direct intervention on the underlying mechanism generating 
the data, it might not be possible to distinguish between causation and 
confounding effects (common causes) (1, 2). The simplest scenario in 
which that becomes possible is the instrumental causal model (3, 4), 
shown in Fig. 1A. That is achieved without any assumptions on the 
variables, apparatuses, or physical mechanism involved, through 
an approach called “device independent” in the context of quantum in-
formation (5–7). With the help of an instrumental variable X, the 
causal effect of a variable A over another variable B can be estimated 
without any interventions, a reason why such a tool has found use 
in a variety of fields (8–16). Nevertheless, to be applicable, one has 
to guarantee that the instrument satisfies a number of conditions 
that is the instrumental inequalities (17), the violation of which shows 
its inadequacy.

This causal inference framework, however, breaks down when 
quantum effects come into play. As recently found and experimen-
tally demonstrated (18–21), with quantum entanglement acting as 
the common source, instrumental inequalities can be violated even 
by a perfect instrument. This not only shows that fundamental re-
sults in causality theory have to be reevaluated but also displays the 
value of moving beyond the paradigmatic Bell’s theorem (22, 23), 
because considering different causal structures (18, 24–29) leads to 
previously unidentified forms of nonclassical correlations and a broader 
understanding of the role of causality in quantum theory (30–34). 
A remarkable feature of the instrumental scenario, the one that we 
will focus on in this paper, is the fact that nonclassical behaviors can be 
witnessed without the need of violating a Bell inequality, something 
considered quintessential in standard scenarios (35). Considering 

the simplest instrumental scenario, with dichotomic variables only, 
it was theoretically shown that, although no Bell inequality can be 
violated by a quantum common source (36), an entangled state can 
indeed violate the classical bounds for the causal effect of A over B 
(37). That is, even if the observed correlations admit a classical 
explanation (no Bell violation), they fail to do so if an intervention 
is performed.

Here, we provide the experimental demonstration of such a 
phenomenon. Exploiting interventions on a photonic platform 
equipped with an active feed-forward of information and implement-
ing the causal scenarios in Fig. 1, we detect a quantum signature in 
a setup that cannot violate any Bell inequality and thus would seem 
classical otherwise. More precisely, using interventional data, we 
experimentally observe violations of the classical lower bounds for the 
causal influence between two variables, by producing several quan-
tum states characterized by different degrees of entanglement. In 
addition, resorting to observational data, we test the quantum bound 
proposed in (37), showing its relevance for quantum causal model-
ing. Our results offer an alternative and more general method to witness 
nonclassical correlations and quantify causal influences in quantum 
experiments. In particular, we show that the incompatibility of 
quantum predictions with classical concepts can go beyond the para
digmatic Bell’s theorem, opening a venue of research that might 
lead to deeper insights into quantum causality (31, 32, 41) and prac-
tical applications (21).

RESULTS
Measuring causal effects in classical and quantum physics
The mantra in statistics that “correlation does not imply causation” 
subsumes the idea that correlations observed between variables A 
and B do not imply that one is the cause of the other, as a third, 
potentially unobservable, variable  could be a source of the cor-
relations. Direct causation and common source models generate 
the same set of possible probability distributions p(a, b), making it 
impossible to distinguish both mechanisms from observational data 
alone unless further assumptions are imposed (16) or one is able to 
intervene in the system (1, 39, 40). Considering the most general 
causal model
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	​ p(a, b) = ​∑ 

​ ​​p() p(b∣a, ) p(a∣)​	 (1)

where the statistics of B suffer both the influence of A and the com-
mon source , an intervention on A, denoted by do(a), erases all 
external influences on that variable, putting it under the experi-
menter’s control and implying that

	​ p(do(a) , b) = ​∑ 

​ ​​p() p(b∣a, ) p(do(a))​	 (2)

That is, by intervening, we effectively break all sources of con-
founding (see Fig. 1B). Interventions offer a natural way to quantify 
the causal influence of A over B, for instance, via a measure called 
average causal effect (ACE) (1, 41) defined as

	​ ACE = ​max​ 
a,​a ′ ​,b

​ ​∣p(b∣do(a)) − p(b∣do(a′))∣​	 (3)

By this definition, if ACE is nonzero, then we can be sure that A 
has a direct causal influence over B.

Despite the fact that the intervention is a powerful tool for iden-
tifying causal relationships between two variables, it has a major 
drawback in that it can be difficult or even impossible to implement 
in practice. For this reason, one might rather consider the use of 
an extra variable, an instrumental variable X, which is in the full 
control of the experimenter, has a direct causal link to A only and is 
assumed to be independent of any confounding factors . The cor-
responding causal structure can be represented by the directed 
acyclic graph (DAG) in Fig. 1A, where each node represents a random 
variable and the directed edges encode their causal relations. Classi-
cally, such a causal model implies that the observed correlations 
p(a, b∣x) can be decomposed as

	​ p(a, b∣x) = ​∑ 

​ ​​p(a∣x, ) p(b∣a, ) p() ​	 (4)

where a and b are the values assumed by the random variables A and 
B, respectively, and x is the value of the instrument X. The probabil-
ities of B upon an intervention on A can be calculated as

	​ p(b∣do(a)) = ​∑ 

​ ​​p(b∣a, ) p()​	 (5)

where the conditional probabilities p(b∣a, ) and p() are the same as 
in Eq. 4. When the probabilities p(b∣do(a)) are calculated as in Eq. 5, 
i.e., when the experiment in question includes no quantum effects, 
we refer to the ACE in Eq. 3 as classical ACE (cACE).

Notably, as proven in (41), the instrumental scenario allows for 
estimating the strength of causal influence cACE lower bound as

​ cACE  ≥ ​ cACE​ LB​​  =  2p(0, 0∣0) + p(1, 1∣0) + p(0, 1∣1) + p(1, 1∣1) − 2 ​	(6)

That is, simply relying on the observed data p(a, b∣x), we can 
estimate the effect of a possible intervention. Moreover, the estima-
tion is achieved device independently without resorting to the pre-
cise description of the system under study.

Note, however, that for the bound in Eq. 6 to apply, one has to 
guarantee that the used instrument complies with the instrumental 
decomposition in Eq. 4. That is precisely the role of the so-called 
instrumental inequalities (1, 17), an example of which is

	​​ ∑ 
b
​ ​​ ​max​ x​ ​  p(a, b∣x) ≤ 1​	 (7)

whose violation signals the use of an inappropriate instrument and 
makes the causal bound in Eq. 6 unwarranted.

Hence, from a causal perspective, both instrumental inequalities and 
the ACE inequality of Eq. 6 are nothing else than classical constraints 
arising from imposing a causal structure to a given experiment, anal-
ogously to Bell inequalities. However, it turns out that this classical 
framework is incompatible with quantum predictions (18, 19, 37), 
offering a venue to detect the presence of nonclassical behaviors.

According to Born’s rule, observed quantum correlations in the 
instrumental scenario are given by

	​ p(a, b∣x) = Tr [(​M​a​ x ​ ⊗ ​N​b​ a​) ​ϱ​ AB​​]​	 (8)

where the common source is a bipartite quantum state ϱAB and ​​M​a​ x ​​ 
and ​​N​b​ a​​ are the operators describing the measurements on each sub-
system. Note that x is used to choose Alice’s measurement setting 
and the outcome a of Alice’s measurement is used to determine Bob’s 
measurement setting, accordingly. In turn, interventions are de-
fined in the quantum case as

	​ p(b∣do(a)) = Tr[(1 ⊗ ​N​b​ a​) ​ϱ​ AB​​ ] = Tr[​N​b​ a​ ​ϱ​ B​​]​	 (9)

where ϱB is the reduced state of Bob’s system. Under an interven-
tion, the observed quantum ACE (qACE) is thus given by

	​ qACE  = ​ max​ 
a,​a ′ ​,b

​ ​(Tr[(​N​b​ a​ − ​N​b​ ​a ′ ​​) ​ϱ​ B​​ ])​	 (10)

For the simplest instrumental scenario where all variables, in-
cluding the instrument, are binary, previously unknown forms of 
nonclassical behavior are manifested. The only class of instrumental 
inequalities that is relevant in this scenario, those in Eq. 7, cannot 
be violated (36), implying that all possible observed correlations 
p(a, b∣x) have a classical explanation. That, however, does not pre-
clude nonclassical effects for interventions. The quantum description 

A

B

Fig. 1. Directed acyclic graph of the instrumental scenario. (A) The instrumen-
tal scenario, where X stands for the instrument, A and B are the variables between 
which causal influence is to be estimated, and  (that, in the quantum case, would 
be represented by a shared quantum state ϱAB) represents any latent factor or com-
mon cause affecting them. (B) Intervention in the instrumental scenario, where the 
independent variable I forces the value of A, by cutting all the incoming arrows of A. In 
these graphs, circular nodes indicate observable variables, while latent variables 
are depicted as triangles.
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for observations in Eq. 8 combined with that for interventions in 
Eq. 9 implies that the classical bound in Eq. 6 no longer holds and 
the qACE is rather lower-bounded by (37)

	​​ qACE​ LB​​ = ​ ∑ 
x=0,1

​​​(p(0, 0∣x) + p(1, 1∣x)) −  − 1​	 (11)

where ​  = ​ min​ ±​​ ​{​∏ a=0,1​ ​​ [ 1 ± ​∑ x=0,1​ ​​ ​(− 1)​​ x​(p(a, 0∣x) − p(a, 1∣x ))]}​​ ​
1 _ 2​​​. It fol-

lows that, for some probability distributions, i.e., for given states and 
observables, the following condition can occur

	​ cACE ≥ ​ cACE​ LB​​ ≥  qACE ≥ ​ qACE​ LB​​​	 (12)

implying that the amount of quantum causal influence between A 
and B can be lower than the minimum required by any classical sys-
tem. This proves that, even if no Bell/instrumental inequality is vio-
lated, one can still witness nonclassicality via interventions.

In the following, we show two instances of this nonclassical be-
havior, corresponding to correlations produced by a bipartite quan-
tum state given by

	​ ∣( ) 〉  =  cos ( ) ∣00〉 + sin ( ) ∣11〉​	 (13)

and two sets of different measurement settings, to which we will refer 
as MS1 and MS2. In Fig. 2, in particular, the bounds cACELB and 
qACELB are depicted by the red and blue curves, respectively, and 
the measured value of qACE (if an intervention is performed) is 
given by the green curve. These curves are functions of the parame-
ter , which characterizes the entanglement of the state in Eq. 13. In 
further detail, the measurement setting MS1, corresponding to Fig. 2A, 
shows that, even if a quantification of the qACE leads to trivial values 
for every angle , nonetheless, a classical explanation for the result-
ing correlations would require a nonzero amount of causal influ-
ences, as soon as the state in Eq. 13 is not separable, i.e., both sin () 
and cos () are not zero. This result, besides being a signature of a quan-
tum behavior, can also be interpreted as a quantum advantage in 
generating these correlations. Another interesting feature is that the 
maximum quantum violation is achieved for a nonmaximally entangled 
state (37). On the other hand, MS2, corresponding to the results dis-
played in Fig. 2B, witnesses that, in addition to a quantum violation of 
the cACE lower bound, also nontrivial amounts of quantum causal in-
fluences can be achieved. In other words, even in the presence of a quan-
tum common source, we can put a nontrivial lower bound on the causal 
influence without the need of interventions.

In this work, our aim is to experimentally demonstrate the afore-
mentioned predicted quantum violations, as displayed in Fig. 2. By 
doing so, we experimentally show nonclassical behaviors in a sce-
nario where no standard quantum violation of a Bell/instrumental 
inequality is achievable. A detailed description of the measurements 
belonging to the two settings can be found in the next section and in 
Materials and Methods.

Experimental setup
To test quantum violations of causal bounds as in Eq. 12, we need an 
experimental apparatus implementing the instrumental causal pro-
cesses represented in Fig. 1, allowing for the generation of both ob-
servational and interventional data. The causal structure in Fig. 1A is 
used to observe correlations of the kind p(a, b∣x) and evaluate the 
classical and quantum lower bounds cACELB and qACELB, through 
Eqs. 6 and 11, respectively. In turn, with the intervention illustrated 
in Fig. 1B, the probabilities p(b∣do(a)) are retrieved, to evaluate the 

qACE, as in Eq. 10. To enforce that the observational data and the 
interventional one refer to the same experimental conditions, it is 
pivotal that, when changing between both configurations, the appa-
ratus is maintained unaltered. Furthermore, to exclude time-dependent 
behaviors, it is crucial that, at each experimental run, we can decide 
randomly whether to implement the observational setup of Fig. 1A 
or the interventional one of Fig. 1B.

We achieve these conditions by exploiting the photonic platform 
depicted in Fig. 3. Through a process of spontaneous parametric down- 
conversion (SPDC) in a periodically poled tytanil phosphate crystal 
within a Sagnac interferometer, we generate two-photon polarization- 
entangled states. Considering the presence of both white and col-
ored noise in our quantum state, typical of SPDC quantum-state 
sources (42), our experimental states are well modeled as (see the Sup-
plementary Materials for further details)

	​​ 
​ϱ​ noise​​ =  v∣​​​ +​ 〉〈 ​​​ +​∣+

​   
​+ (1 − v ) ​(​​ ​  ─ 2 ​(∣00〉〈00∣+ ∣11〉〈11∣) + ​ 1 −  ─ 4 ​  𝕀​)​​​

​​	 (14)

A

B

Fig. 2. Quantum and classical predictions for the ACE in the instrumental process. 
Within the instrumental process, qACE (green curve) can be lower than predicted 
by the classical theory of causality. Such a gap between the classical cACELB (red 
curve) and quantum qACELB (blue curve) can emerge through suitable choices of 
the state shared by the parties and of the performed measurements. For the state 
in Eq. 13, we report the quantum violation, i.e., cACELB > qACE, obtained by two 
measurement setting choices, MS1 (A) and MS2 (B), for different values of the 
parameter  > 0 (see Materials and Methods). The regions of interest where classical 
lower bounds are violated are depicted in yellow. The difference between the plots 
relies on the choice of measurement operators (see Materials and Methods). (A) 
Although qACE is zero, a classical explanation requires a substantial amount of causal 
influence to explain the observed correlations. (B) Example of observational correlations 
where the quantum bound becomes nontrivial and thus shows that causal influ-
ences can be estimated even in the presence of quantum common causes.
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where ∣± 〉 = cos ()∣00 〉 ± sin () ∣11〉 and ∣0〉 and ∣1〉 are en-
coded in the horizontal and vertical photon polarization. The  pa-
rameter is set by rotating the source half-wave plate (HWP) H1 (see 
Fig. 3) by /2.

To achieve the correct instrumental causal structure, we imple-
ment the direct influence from Alice to Bob through a fast electro-
optical device [Pockels cell (PC)]. This device swiftly selects Bob’s 
measurement basis within nanoseconds time, according to an electronic 
signal corresponding to Alice’s outcome. More precisely, when Alice’s 
outcome is 0, the PC is triggered by the application of a high voltage 
and inserts a  phase shift between two polarization directions form-
ing an orthogonal basis. Instead, when Alice’s outcome is 1, the PC 
is not triggered, and it performs the identity operator.

Then, to switch between the causal processes in Fig. 1 (A and B),  
we put an optical switcher Alice’s side. Such a switcher is con-
trolled by a quantum random number generator (QRNG) and se-
lects on which of three paths Alice’s photons are sent. In particular, 
the QRNG generates two bits q1 and q2. If q1 = 0, then photons are sent 
to an in-fiber polarizing beam splitter (PBS), whose output modes 
are connected to two detectors 0 and 1, corresponding to Alice’s 
possible outcomes. In this case, Alice will implement a regular mea-
surement and the apparatus will generate the observational data 
p(a, b∣x). The measurement basis is selected through the HWP H2, 
rotated by an angle x. In this way, Alice’s measurement will corre-
spond to a projective measurement on the xz plane of the Bloch 
sphere, given by

	​ M(​​ x​​) = cos (​​ x​​) ​​ z​​ + sin (​​ x​​) ​​ x​​​	 (15)

Instead, if q1 = 1, then no measurement is performed and an inter-
vention is carried out. In particular, if q2 = 0, then Alice’s outcome 

is forced to be 0 and photons are sent to the detector i0. On the con-
trary, if q2 = 1, then Alice’s outcome is forced to be 1 and photons 
are sent to detector i1. Hence, the QRNG represents the indepen-
dent variable I belonging to the causal structure in Fig. 1B.

On the other side, Bob’s measurement station is composed of a 
HWP (H3), rotated by 1/4 and preceded by the PC, which is put 
between two HWPs (H4 and H5), rotated by /2. In this way, when 
triggered, the cell inserts a  shift between the two orthogonal 
polarization states cos ()∣0 〉 + sin ()∣1〉 and − sin ()∣0 〉 + 
cos ()∣1〉. At the end, a PBS performs a projective measurement 
on the xz plane.

Hence, when the PC is not triggered, i.e., when Alice’s outcome 
is 1, Bob’s measurement, by the sole action of the HWP H3, will be 
the following

	​ N(​​ 1​​) = cos (​​ 1​​) ​​ z​​ + sin (​​ 1​​) ​​ x​​​	 (16)

On the other hand, when Alice’s outcome is 0, the combined ac-
tion of the triggered PC and the wave plates (see Fig. 3) will lead to 
the following measurement

	​ N(​​ 0​​) = cos (​​ 0​​) ​​ z​​ + sin (​​ 0​​) ​​ x​​​	 (17)

Furthermore, to properly reproduce both causal scenarios in Fig. 1, 
the PC needs to be activated not only when a regular measurement 
is performed and Alice’s outcome is 0 but also when intervention 
do(a = 0) is made. Instead, when do(a = 1) is performed, N(1) must 
be implemented, so the PC must not be activated. Hence, the elec-
tronic signals produced by detectors 0 and i0 are inputted to a de-
vice performing a logic OR operation. The OR signal is sent to the 
PC driver, selecting Bob’s measurement basis and thus switching 

-

Fig. 3. Experimental apparatus. A polarization-entangled photon pair is generated via spontaneous parametric down-conversion (SPDC) type II in a periodically poled 
titanyl phosphate, within a Sagnac interferometer. The entanglement degree is selected by rotating the half-wave plate (HWP) H1. On Alice’s side, a quantum random 
number generator (QRNG) and an optical switcher (O.S.) select, run by run, whether observational or interventional data is collected. In the first case, Alice’s measure-
ment basis is selected by rotating the HWP H2; otherwise, her outcome a is determined by the QRNG, sending the photon to detector i1 or i0. On Bob’s side, the measure-
ment basis is chosen according to a, driving a fast electro-optical device [Pockels cell (PC)]. When Alice’s detector 0 or i0 clicks (a = 0), a high voltage (∼1350 V) is applied 
to the PC. In this case, the PC inserts a  phase between two orthogonal polarization states (selected by H4 and H5). Instead, if detector 1 or i1 clicks (a = 1), then the se-
quence of H4, PC, and H5 performs the identity. After the PC, a HWP H3, followed by a bulk polarizing beam splitter (PBS), performs the polarization projection. Hence, 
when a = 1, Bob’s measurement is selected by the sole H3, while, when a = 0, it results from the combined action of the PC, in between H4 and H5, and H3. To provide the 
time for outcome a to be registered and, when needed, trigger the PC, Bob’s photon is delayed through a 25-m single-mode fiber, by ∼120 ns.
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from N(1) to N(0), while a copy of the signal from the detector is 
sent to a coincidence counter. To achieve the feed-forward of infor-
mation between Alice and Bob (the causal arrow between their 
measurement outputs), Bob’s photon goes through a 25-m-long 
single-mode fiber, corresponding to a delay of ∼120 ns. This delay 
on the arrival of the second photon is necessary, because Bob’s 
measurement needs to occur after Alice’s outcome has been regis-
tered and communicated. Details on the angles of the measurement 
operators can be found in Materials and Methods.

Experimental results
For different values of  in the entangled state of Eq. 13, we collected 
the observational data p(a, b∣x) and the interventional data p(b∣do(a)). 
With the former, we computed the lower bounds for the causal in-
fluence cACELB and qACELB, as prescribed in Eqs. 6 and 11, respec-
tively. With the second set of data, we quantified the actual value of 
the qACE as described in Eq. 10. As previously mentioned, our aim 
is to experimentally reproduce the curves in Fig. 2, brought by the 
measurement settings MS1 and MS2 on a state of the form reported 
in Eq. 13. In particular, MS1 maximizes the quantum violation of 
the classical causal bound in Eq. 6 for given amounts of entanglement 
in the source (Fig. 2A). In turn, MS2 (Fig. 2B) shows cases where 
the quantum bound leads to nontrivial (larger than zero) lower 
bounds on the qACE.

To benchmark our experimental results, we take into account not 
only the noisy state of Eq. 14 but also other imperfections within the 
apparatus, e.g., the nonperfect  phase inserted by the PC, the dif-
ferent efficiencies of the detectors, and possible imperfections in the 
wave plate rotation angles. A comparison between modeled and 
experimental results of the observational data p(a, b∣x), for the two 
scenarios, is presented in Fig. 4, showing that those probabilities are 
very well described by our modeling of the experiment.

In turn, Fig. 5 shows in details the quantum violation of the clas-
sical causal bound in Eq. 6. More precisely, by performing interven-
tions, we can show that the experimentally measured quantum causal 
effect qACE (green triangles) violates the classical lower bound cACELB 
(red points). In particular, Fig. 5A is obtained performing the 
measurements belonging to MS1, and it shows that the maximal 
violation of the classical bound does not correspond to a maximally 

entangled state. In turn, Fig. 5B, corresponding to the set MS2, adds a 
complementary aspect, showing that qACELB (blue dots) can provide 
nontrivial and fairly tight lower bound to the estimation of causal 
influence even in the presence of a source of quantum correlations.

DISCUSSION
In this work, we have experimentally shown that the instrumental 
scenario leads to a previously unknown kind of nonclassical cor-
relation. Differently from Bell’s theorem, we have a temporal 
correlation scenario where Bob’s measurement input is defined by 
Alice’s measurement output. Within this context, we consider the 
simplest case where all observable variables are binary: a situation 
where it is known that no Bell inequality can be violated (36). This 
implies that all the observed correlations in our experiment do 
have a classical explanation. However, by implementing interven-
tions in our setup and quantifying the causal influence of Alice’s 
outcome A on Bob’s output B, the quantum nature of our setup is 
revealed. Our interventional data violate a classical causal bound 
for the ACE of A over B, which constitutes a signature of nonclassi-
cality that only recently has been theoretically found (37).

Our photonic setup faithfully implements the temporal causal 
structure underlying the instrumental scenario. Furthermore, the use 
of a QRNG together with an optical switcher permits us to decide, 
on a run-to-run basis, whether to perform an observational or in-
terventional measurement. This is crucial to ensure that the obser-
vational data used to compute the classical and quantum lower 
bounds to ACE, as well as the interventional data used to directly 
compute ACE, do refer to the same experimental conditions. The 
versatility of the setup to generate quantum states with different de-
grees of entanglement and the ability to measure on different bases 
allow us to probe the quantification of quantum causality in differ-
ent regimes. For instance, focusing on the optimum quantum violation 
of causal bounds, we were able to experimentally show that a non-
maximally entangled state leads to maximum nonclassicality. In turn, 
by changing the measurement operators, we not only detected a 
nonclassical behavior but also experimentally proved that the quantum 
causal bounds derived in (37) provide a fairly good estimation of 
quantum causal influences.

A

B

C

D

Fig. 4. Experimental and modeled p(a, b∣x) statistics. The pair of columns of the colorplot refers to different amounts of entanglement more in detail, to different 
values of  (see Eq. 13), and the two columns report, respectively, the case of x = 0 and x = 1. The rows correspond to different (a, b) tuples. (A and B) The reported 
values correspond to the experimental realization of the case of MS1, depicted in Fig. 2A, and (C and D) to MS2, reported in Fig. 2B. In both cases, in the top part, we 
report the experimental frequencies, while, in the bottom one, we report the probabilities given by a model of our apparatus, taking into account several sources of noise 
and imperfections (see the Supplementary Materials).
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The main contribution of this work is to experimentally prove a 
previously unidentified kind of nonclassical behavior that do not 
hinge on the paradigm of a Bell inequality violation. It is worth no-
ticing that, similar to the Bell scenario, our conclusions are reached 
in a device independent setting (7). We are imposing the causal 
structures of Fig. 1 to the experiment and performing the inter-
vention on a classical variable (Alice’s outcome), so that the whole 
analysis only relies on the observed input/output correlations and 
does not need to assume anything on measurement and state pre
paration devices used by Alice and Bob. Our results open an al-
ternative venue on the foundations of quantum theory and, in 
particular, on the role of causality on quantum effects. In particular, 
notice that the instrumental causal structure underlies the remote 
state preparation (43) and teleportation (44) protocols, hinting at the 
possibility of revisiting paradigmatic quantum tasks from the causal 
perspective. On a more applied side, it is known that the instrumental 
scenario can also be used in cryptography protocols (21), but the 
role of causal effects and interventions on these protocols remains, 
to our knowledge, completely unexplored. We hope our finding 
might trigger future developments along these and other promising 
lines of research.

MATERIALS AND METHODS
Experimental details
Photon pairs are generated in a parametric down conversion source, 
composed by a 20-mm-thick periodically poled Potassium titanyl 
phosphate (KTP) crystal inside a Sagnac interferometer. The source 
uses a continuous-wave diode laser with wavelength of  = 404 nm. 
Photons generated are filtered in wavelength and spatial mode by 
using narrowband interference filters and single-mode fibers, respec-
tively. The crystal used to implement active feed-forward is a LiNbO3 
high-voltage micro PC made by Shangai Institute of Ceramics with 
~90-ns rise time and a fast electronic circuit transforming each Si- 
avalanche photodetection signal into a calibrated fast pulse in the 

kilovolt range needed to activate the PC. To achieve the active feed-
forward of information, the photon sent to Bob’s station needs to be 
delayed, thus allowing the measurement on the first qubit to be 
performed. The amount of delay was evaluated considering the 
response time of the detectors the velocity of the signal transmission 
through a single-mode fiber, whose refraction index ∼1.45, and the 
activation time of the PC. Therefore, we have used a fiber 25 m 
long, coupled at the end into a single-mode fiber that allows a delay 
of ∼120 ns of the second photon with respect to the first. The voltage 
applied to the PC, to insert a  shift between the two polarizations, 
was 1350 V. The QRNG that controls the optical switcher on Alice’s 
station is an IdQuantique product (model: Quantis-USB-4 M).

The curve in Fig. 2A corresponds to the measurement setting 
MS1, which requires 1 = −0, ​​​​ 0​​ =  arctg​( ​​ ​  sin (2 ) sin (​​ 0​​) ___________  cos (2 ) + 3cos (​​ 0​​)​​)​​​​, ​​​ 1​​ =  − ​ _ 2 ​​ and 
0 is chosen to maximize the difference between the classical 
predictions for the cACELB and the qACE [see (37) and Supplemen-
tary Materials note 2]. To switch from N(0) to N(1 = − 0), the PC 
and the HWPs H4 and H5 are in their optical axis and H3 is rotated 
of 1/4 (see Fig. 3 and see the Supplementary Materials “Optimiza-
tion and implementation of the operators” section for further details).

For the measurement setting MS2 (Fig. 2B), instead, the mea-
surement parameters are the following: ​​​​ 0​​  =  3​(​​ − ​ _ 8 ​​)​​​​, 1 = , 
​​​​ 0​​  =  2​(​​ − ​ _ 8 ​​)​​​​ and ​​​​ 1​​  =   − 3​(​​ − ​ _ 8 ​​)​​​​. To switch from N(1) to N(0), 
the PC is kept in its optical axis, while H4 and H5 are rotated of 
/2, depending on , while H3 is rotated of +1/4 (see Fig. 3 and 
Supplementary Materials note 2 for further details).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm1515
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