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Abstract. Remote ischemic pre-conditioning (RIPC) may have 
a protective effect on myocardial injury associated with cardiac 
bypass surgery (CPB). The objective of the present study was 
to investigate the effect of RIPC on ischemia/reperfusion (I/R) 
injury and to assess the underlying mechanisms. A total of 
241 patients who underwent valve replacement were randomly 
assigned to receive either RIPC (n=121) or control group 
(n=120). The primary endpoint was peri-operative myocardial 
injury (PMI), which was determined by serum Highly sensi-
tive cardiac troponin T (hsTnT). The secondary endpoint was 
the blood gas indexes, acute lung injury and length of intensive 
care unit stay, length of hospital stay and major adverse cardio-
vascular events. The results indicated that in comparison with 
control group, RIPC treatment reduced the levels of hsTnT at 
6 and 24 h post-CPB (P<0.001), as well as the alveolar-arterial 
oxygen pressure difference and respiratory index after CPB. 
Furthermore, RIPC reduced the incidence of acute lung injury 
by 15.3% (54.1% in the control group vs. 41.3% in the RIPC 
group, P=0.053). It was indicated that RIPC provided myocar-
dial and pulmonary protection during CPB. In addition, the 
length of the intensive care unit and hospital stay was reduced 
by RIPC. Mechanistic investigation revealed a reduced content 
of soluble intercellular adhesion molecule-1, endothelin-1 and 
malondialdehyde, as well as elevated levels of nitric oxide in 
the RIPC group compared with those in the control group. 
This indicated that RIPC protected against I/R injury associ-
ated with CPB through reducing the inflammatory response 
and oxidative damage, as well as improving pulmonary 
vascular tension. In conclusion, RIPC reduced myocardial and 

pulmonary injury associated with CPB. This protective effect 
may be associated with the inhibition of the inflammatory 
response and oxidative injury. The present study proved the 
efficiency of this approach in reducing ischemia/reperfusion 
injury associated with cardiac surgery. Clinical trial registry 
no. ChiCTR1800015393.

Introduction

Heart surgery with cardiopulmonary bypass (CPB) is a 
primary treatment strategy for patients with coronary artery 
disease. As blood circulation in the myocardium is avoided 
during heart surgery, ischaemia-reperfusion (I/R) injury may 
occur during cardioplegic arrest.

A prominent characteristic of ischaemic injury is a 
reduced vascular endothelium-dependent vasodilation. 
Nitric oxide (NO) (1) and endothelin-1 (ET-1) (2) are two 
critical endothelium-derived factors. NO has a fundamental 
biological role in protecting organs (such as the heart) against 
I/R injury (3-5). In particular, the protective role of NO in the 
heart (6) and kidney (7) have been proven. Furthermore, the 
generation of ET-1 is aggravated under ischaemic conditions (8). 
In addition, substantial evidence has indicated that I/R injury 
associated with CPB is in closely linked with the systemic 
inflammatory response (SIRS) (9,10). The important roles of 
inflammation have also been reported in the pathogenesis of 
brain ischemia (11-13). Various inflammatory factors, including 
soluble intercellular adhesion molecule-1 (sICAM-1) and 
ET-1 (14), participate in inflammatory processes. Furthermore, 
oxidative stress contributes to the pathogenesis of I/R injury (15).

It has been proved that the production of oxygen radicals is 
directly associated with major tissue and organ damage (16). 
Furthermore, toxic oxygen metabolites, including the lipid 
peroxidation product malondialdehyde (MDA) (17), exert 
damaging effects on multiple pathophysiological processes.

Peri-operative myocardial injury (PMI) is a type of injury 
that typically occurs in patients who received valve surgery (18). 
Furthermore, due to the effects of anesthetic drugs and mechan-
ical ventilation, pulmonary compliance of the patients gradually 
decreases with the time of ventilation progressing. During CPB, 
the pulmonary function is impaired by the continuous low perfu-
sion of the lungs and pre‑flush‑mediated blood dilution (19). 
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Such lung I/R injury may affect the functions of other organs in 
the patients after the operation.

Based on these investigations, it is necessary to develop 
effective therapeutic interventions so as to protect against 
tissue injury (20). Remote ischaemic pre-conditioning (RIPC) 
has been recognized as a low‑cost, non‑invasive intervention 
method by applying brief ischaemia and reperfusion on an arm 
or a leg. RIPC exerts protective effects on remote tissue or 
organs against lethal acute I/R injury (21-24). RIPC may be 
achieved by performing a standard blood-pressure cuff (25). 
While the effect is not obvious under certain conditions (25-27), 
application of RIPC has produced beneficial outcomes in 
patients who received open-heart surgery (27-30) or coronary 
intervention (31). In addition, the protective effect of RIPC on 
the kidney has been previously demonstrated (32). However, 
whether RIPC has the capacity to prevent myocardial and lung 
I/R injury has remained to be fully demonstrated.

The overall objective of the present study was to investi-
gate the protective effect of RIPC on myocardial and lung I/R 
injury. Furthermore, the present study aimed to elucidate the 
possible underlying mechanisms.

Materials and methods

Study design. The present randomized controlled trial was 
approved by the Ethics Committee of the First Affiliated 
Hospital of Wenzhou Medical University (Wenzhou, China). 
Written informed consent was received from each patient 
included in the study. Patients who received valve surgery at 
the First Affiliated Hospital of Wenzhou Medical University 
(Wenzhou, China) between July 2012 and July 2015 were 
recruited. The inclusion criteria were mitral valve disease, 
aortic valve disease or combined valvular disease and patients 
with stable hemodynamic blood. The exclusion criteria were, 
infection, chronic lung disease, medications that may interfere 
with RIPC, pregnancy, renal disease, cardiac arrest during 
hospital admission and peripheral arterial disease affecting 
the limbs, complicated coronary heart disease, complicated 
hypertension, congenital heart valve disease, preoperative 
stroke, simultaneous radiofrequency ablation of atrial fibril-
lation and reoperate. The recruited patients were randomly 
divided into two groups. In the grouping process, the informa-
tion regarding treatment allocation was delivered by a nurse 
who was not involved in the study. The investigators who 
analyzed the data were blinded to the treatment allocation.

Intervention. In the RIPC and control groups, surgery was 
initiated after anaesthesia and completed prior to sternotomy. 
An intense multi-limb method was performed consisting of 
two 5-min cycles of simultaneous upper arm and thigh cuff 
inflation and deflation (simultaneous inflation to 200 mmHg, 
left inflation for 5 min and then deflation to 0 mmHg and 
left deflated for 5 min) (32). In the control group, patients 
were not subjected to any preconditioning. The intervention 
was performed without any arterial line on the arm, and the 
blood-pressure cuffs on the arms were bound up.

Anesthesia and surgical protocol. Patients were intramus-
cularly injected with 0.3 mg/kg scopolamine and 0.2 mg/kg 
morphine at 0.5 h prior to the surgery. All patients were routinely 

monitored via electrocardiogram, non-invasive blood pressure, 
invasive radial arterial pressure, heart rate and respiration 
using a multifunctional monitor. Anaesthesia was induced 
with imidazole valium (0.1 mg/kg), sufentanyl (0.5 µg/kg), 
vucuronium bromide (0.15 mg/kg) and propofol (2.0 mg/kg). 
Mechanical ventilation was maintained by a Datex-Ohmeda 
Aestiva/5 anaesthesia machine (GE Healthcare, Little 
Chalfont, UK) with the tidal volume set at 8-10 ml/kg and 
the suction/call ratio set at 1:2. The normal-end tidal carbon 
dioxide pressure was maintained at 26-32 mmHg by setting 
the respiratory frequency at 11-13 breaths/min. Myocardium 
was protected by perfusion of cold blood cardioplegia. The 
concentration of K+ was 23-24 mmol/l. Surgery was performed 
with a median sternal incision. The distal ascending aorta 
was inserted into the arterial infusion tube. The superior and 
inferior venas cava were inserted into the vena cava drainage 
tube. The aortic valve was replaced with the atrial cavity tube, 
and the right superior pulmonary vein was placed in the left 
cardiac drainage to establish extracorporeal circulation. Mitral 
valve replacement was performed through the right atrial 
septal incision, with continuous or intermittent sutures. Aortic 
valve replacement was performed through the aortic root inci-
sion with intermittent suture. If the tricuspid valve has a lesion, 
it may be shaped or replaced at the same time. A standard 
CPB was performed using the Stöckert SIII perfusion system 
(Stöckert GmbH, Munich, Germany), which was followed by 
valve replacement. The surgery was completed and protamine 
was employed to achieve heparin reversal (protamine/heparin, 
1-1.2:1).

Primary and secondary endpoints. The primary endpoint of 
the present study was PMI. Highly sensitive cardiac troponin 
T (hsTnT) was detected as a marker for PMI. Furthermore, the 
present study had two secondary endpoints, one of which were 
the blood gas indexes, acute lung injury (ALI) and length of 
intensive care unit (ICU) stay, while the other one was length 
of hospital stay and major adverse cardiovascular events at 
90 days (death, myocardial infarction or stroke).

Detection of serum markers. Blood samples were collected 
pre-operatively (T1) and at 5 min (T2), 2 h (T3), 6 h (T4) and 
24 h (T5) after CPB. hsTnT was quantitated by one‑step enzyme 
immunoassay technology (Elecsys 2010; Roche Diagnostics, 
Basel, Switzerland) as described previously (33). hsTnT levels 
of ≥14 ng/l were considered to indicate severe myocardial 
injury. The content of sICAM‑1 was determined by ELISA 
(sICAM‑1; cat. no. 48T96T; Xitang Biotechnology, Shanghai, 
China) and the optical density value was recorded by a micro-
plate reader (Multiskan Spectrum; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). Furthermore, the level of ET‑1 was 
detected using an immunoassay (ET-1; cat. no. 990826; Beijing 
Institute of East Asian Institute of Immunology, Beijing, 
China) according to the manufacturer's protocol. The contents 
of MDA and NO were measured using spectrophotometrical 
assays (MDA, cat. no. A003-1; NO, cat. no. A013-2; Nanjin 
Jiancheng Bioengineering Institute, Jiangsu, China).

Blood gas analysis and ALI estimation. Alveolar-arterial 
oxygen pressure difference [P(A-aDO2)] and respiratory index 
(RI) were considered as blood gas indexes. The partial oxygen 
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pressure (PaO2), partial CO2 pressure (PaCO2) and fraction of 
inspired oxygen (FiO2) were recorded using an i‑STAT (Abbott, 
Princeton, NJ, USA) and used to calculate the P(A‑aDO2) and 
RI using the following formulas: P(A-aDO2)=(Patm-PH2O) 
x FiO2-PaCO2/R-PaO2 and RI=P(A-aDO2)/PaO2, where 
Patm is the atmospheric pressure of 760 mmHg and PH2O 
is the water vapor pressure of 47 mmHg. ALI was estimated 
according to the diagnostic criteria of American-European 
Consensus Conference on the acute respiratory distress 
syndrome/ALI (34): i) PaO2/FiO2 <300 mmHg; ii) no atelec-
tasis, no pleural effusion and no pneumothorax; and iii) no 
congestive heart failure.

Statistical analysis and sample size estimation. Values are 
expressed as the mean ± standard deviation. Comparison 
between groups was performed using Student's t‑test or 
Wilcoxon Mann Whitney test for continuous variables that were 
normally or distributed or not, respectively. The Chi-squared 
and Fisher's Exact test were used for discontinuous variables. 
Two-way analysis of variance followed by Bonferroni's 
post‑hoc test was used to analyze differences among groups for 
serum markers collected at different time-points. Assuming a 
statistical power of 90% and a type I error rate of 5%, this 
required a sample size of 120 subjects (which accommodated 
withdrawal or missing data‑points). SPSS 20.0 (IBM Corp., 
Armonk, NY, USA) and GrahPad Prism 5 (GraphPad Inc., La 
Jolla, CA, USA) were used to analyze the data. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Patients. A total of 280 patients were assessed for recruitment 
eligibility, and 241 patients were finally enrolled and assigned 
to the RIPC (n=121) or control (n=120) group (Fig. 1). With 
regard to the basic characteristics, no significant difference 
was identified between the two groups (Table I). Furthermore, 
no adverse events (death, myocardial infarction or stroke) 
associated with the RIPC protocol were observed.

Effect of RIPC on myocardial injury and lung injury. The 
baseline hsTnT levels in the two groups were similar and no 
significant difference was observed. It was identified that the 
levels of hsTnT in the RIPC group were reduced at 6 and 24 h 
post-CPB as compared with those in the control group (P<0.05, 
Fig. 2). P(A-aDO2) and RI are direct indicators of pulmonary 
ventilation and oxygenation function (35), and these two param-
eters exhibited an increasing trend at first, followed by a gradual 
decline gradual after CPB was performed in each of the two 
groups [the decline occurred: P(A-aDO2), T4; RI, RIPC, T5, 
Control, T4]. After CPB, the P(A-aDO2) was identified to be 
significantly lower in the RIPC group compared with that in 
the control group at the same time-points (Table II, Fig. 3A). 
The RI in the control group was significantly higher than that in 
the RIPC group at 2, 6 and 24 h after CPB (Table II, Fig. 3B). 
Furthermore, RIPC achieved a reduction in the incidence of 
ALI from 54.1 to 41.3% (P=0.053 vs. control group, Table II).

Effect of RIPC on other endpoints. The length of ICU stay 
was shortened by the RIPC treatment (P<0.05, Table II). The 
duration of the hospital stay in the RIPC group was also short, 

but not significant compared with that in the control group 
(P=0.24, Table II). In addition, no significant difference in the 
occurrence rate of death, myocardial infarction and stroke was 
identified between the RIPC and the control group (Table II).

Effect of RIPC on inflammatory factors and oxidative stress. 
The release of sICAM-1 and ET-1, as well as the content of 
MDA increased at first in the two groups at 5 min after CPB and 
was further enhanced at 2 h (except for ET-1 in RIPC group), 
and declined thereafter. However, the extent of the increase 
of these factors was lower in the RIPC group compared with 
that in the control group at each corresponding time-point 
(Fig. 3C-E). Furthermore, the NO levels were increased by the 
RIPC treatment compared with that in the control group at 
each corresponding time-point (Fig. 3F).

Discussion

In the present prospective study, it was demonstrated that 
RIPC decreased the PMI of patients receiving valve replace-
ment. Certain studies have proved that RIPC has beneficial 
effects in terms of reducing PMI (27,28,30), which has also 
been demonstrated in a recent meta-analysis (36). However, 
no significant cardioprotective effect of RIPC was indicated in 

Table I. Comparison of clinicopathological characteristics 
between the two groups.

  Control
Characteristic RIPC (n=121) group (n=120)

Age (years) 45.2±10.06 48.2±9.89
Male sex (%) 65 (53.7) 62 (55.0)
Weight (kg) 57.6±11.36 55.3±9.86
Single/double valve 72/49 80/40
Left ventricular ejection   
fraction (%)
  >55 93 (76.7) 91 (75.8)
  <55 29 (23.9) 29 (24.1)
NYHA class   
  I 27 (22.7) 25 (20.8)
  II 58 (47.9) 62 (51.7)
  III 31 (25.6) 33 (27.5)
  IV 2 (1.6) 2 (1.7)
AVR 22 (18.1) 25 (20.8)
DVR 47 (38.8) 47 (39.2)
MVR 53 (43.8) 48 (40.0)
Aortic clamp time (min) 77.87±28.09 80.53±26.32
CPB time (min) 114.07±31.04 112.80±33.87
Mechanical ventilation 8.8±3.64 9.2±5.7
time (h)

Values are expressed as the mean ± standard deviation or n (%). 
RIPC, remote ischaemic pre-conditioning; NYHA, New York Heart 
Association; AVR, aortic valve replacement; DVR, double valve 
replacement; MVR, mitral valve replacement; CPB, cardiac bypass 
surgery.
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certain other previous studies (25,37). Notably, RIPC may not 
reduce hsTnT levels, renal injury or ICU-support requirements 
in high-risk cardiac surgery in patients receiving generous 
doses of opioids as well as propofol and volatile anaesthesia, 
which differed from the effective trials. The intense tech-
nique used in the present study was more rapid (requires 
only 20 min) than the standard single-limb RIPC protocol 

(requires 40 min). Thus, it was possible to perform multi-limb 
RIPC prior to sternotomy. Furthermore, the different relative 
timing of RIPC and the concomitant therapy in patients under-
going cardiac surgery may contribute to the conflicting results 
among studies (25,26,32).

Another conclusion of the present study was that RIPC 
treatment elicited protective effects on the lung. Pulmonary 
artery blood flow was completely disrupted under CPB, 
and lung I/R injury was induced during this process. 
Post‑operative pulmonary dysfunction has been identified as 
one of the most important factors contributing to the cardiac 
surgery-associated mortality (38). Pulmonary oxygenation, an 
important indicator for evaluating lung function when lung 
injury occurs, may be directly reflected by the P(A‑aDO2) and 
RI (35). In the present study, RIPC was indicated to achieve a 
reduction of the P(A-aDO2) and RI after CPB compared with 
that in the control group, suggesting an improvement in the 
oxygenation of the patients in RIPC group. In addition, ALI 
may be triggered by valve replacement surgery (39). Although 
no significant difference was noted in comparison with the 
control group, the incidence of ALI was slightly reduced in 
the RIPC group. Furthermore, the length of ICU and hospital 
stays following cardiac surgery was shortened by RIPC. This 
result was in line with a previous study (32). In the present 
study, RIPC treatment also reduced kidney injury in patients 
after cardiac surgery (32,40). All of these results proved the 
protective effect of RIPC on various organs.

Figure 2. Serum hsTnT levels in RIPC and control groups. Time‑points: 
T1, prior to surgery; T2, 5 min post-surgery; T3, 2 h post-surgery; T4, 6 h 
post-surgery; T5, 24 h post-surgery. #P<0.01 vs. T1, *P<0.01 vs. Control 
group at corresponding time-point. hsTnT, high-sensitivity troponin-T; RIPC, 
remote ischaemic pre-conditioning.

Figure 1. Flow chart depicting the randomization and follow‑up of patients. Intention‑to‑treat analysis included 257 patients who underwent randomization. Of 
the 128 cases in the RIPC group, 7 did not receive the assigned intervention. In the control group, 9 out of 129 cases did not receive the assigned intervention. 
The remaining 241 cases for final analysis were included in the present study. RIPC, remote ischaemic pre‑conditioning.
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Although the mechanisms underlying the protective 
effect of RIPC remain to be fully elucidated, a mechanistic 
model for the interaction between the pre-conditioned limb 
and the remote organ has been proposed (22,41). Previous 
studies have demonstrated that ischemic pre-conditioning 
suppressed the inflammatory response and improved the 
anti-oxidant capacity of tissues (42,43). In addition, the lung 
is highly susceptible to oxidative stress due to its large surface 
area (44). The effect of RIPC on the inflammation status and 
oxidation was then investigated in the present study. The 
results indicated that the release of sICAM-1 and ET-1 was 
mitigated and the content of lipid peroxidation product MDA 
after CPB was decreased by RIPC. These results indicated 
that RIPC produced a protective effect through inhibiting 
SIRS and oxidative stress in lung tissues. Furthermore, the 
decreased ET-1 in the RIPC group also suggested that the 
strength of myocardial constriction was closely associated 
with blood vessels. NO is a vasoactive factor and has relax-
ation effects, which were contrary to ET-1 (45). Consistently, 

it increased production of NO in the RIPC group, pointing 
to the improvement of pulmonary vascular tension. Taken 
together, it was concluded that RIPC elicits a protective 
effect by reducing the inflammatory status and improving 
the anti-oxidant capacity.

A limitation of the present study was that the effect of 
RIPC was not assessed in children, as all subjects were adult 
patients. The small-scale cohort and single-center design 
of the present study were further limitations of this study. 
Undoubtedly, the effect of RIPC should be explored on a larger 
scale and subjects should be recruited from multiple medical 
centers.

In conclusion, the present study demonstrated that RIPC 
alleviated PMI and lung I/R injury and may improve clinical 
outcomes, including shortened ICU stay, decreased hsTnT 
level at 6 and 24 h post-surgery, decreased P(A-aDO2) level 
beginning from 5 min post-surgery and decreased RI level 
beginning from 2 h post-surgery, in adult patients undergoing 
valve replacement. The protective effect of RIPC may be 

Table II. Summary of study endpoints.

Endpoint Control group (n=120) RIPC group (n=121) Mean difference (95% CI) P-value

hsTnT (µg/l)    
  T1 0.014±0.016 0.016±0.018 -0.002 (-0.060 to 0.064) >0.999
  T2 0.020±0.011 0.022±0.013 -0.001 (-0.061 to 0.063) >0.999
  T3 0.143±0.061 0.122±0.059 -0.021 (-0.083 to 0.041) >0.999
  T4 0.783±0.412 0.614±0.336 -0.169 (-0.231 to -0.106) <0.001
  T5 0.536±0.314 0.423±0.254 -0.113 (-0.175 to -0.050) <0.001
P(A-aDO2) (mmHg)    
  T1 19.96±1.47 19.09±6.61 -0.8600 (-10.14 to 8.424) >0.999
  T2 152.16±23.80 89.98±28.70 -62.18 (-71.46 to -52.90) <0.001
  T3 182.70±47.74 142.3±33.17 -40.32 (-49.60 to -31.04) <0.001
  T4 137.94±31.15 121.6±31.54 -16.29 (-25.57 to -7.006) <0.001
  T5 82.83±26.60 56.02±18.89 -26.81 (-36.09 to -17.53) <0.001
RI    
  T1 0.255±0.14 0.258±0.08 0.003 (-0.079 to 0.085) >0.999
  T2 0.318±0.11 0.292±0.09 -0.026 (-0.108 to 0.056) >0.999
  T3 1.538±0.75 0.629±0.20 -0.909 (-0.991 to -0.826) <0.001
  T4 1.057±0.34 0.739±0.22 -0.318 (-0.400 to -0.235) <0.001
  T5 0.646±0.38 0.403±0.12 -0.243 (-0.325 to -0.160) <0.001
ALI 65 (54.1) 50 (41.3) NA 0.053a

ICU stay (h) 72.28±10.5 53.59±8.45 NA <0.001b

Hospital stay (days) 17.56±3.64 16.98±4.01 NA 0.241b

Clinical outcome at 90 days     
  Death 4 (3.3) 2 (1.65) NA 0.446c

  Myocardial infarction 2 (1.67) 1 (0.83) NA 0.662c

  Stroke 1 (0.83) 1 (0.83) NA 1.000c 

Mean differences, 95% CIs of the differences and P-values in different times of hsTnT, P(A-aDO2) and RI levels were analyzed by two‑way 
analysis of variance. aP-value determined by chi-square test. bP‑value determined by Student's t‑test. cP-value determined by Fisher's Exact 
test. Values are expressed as the mean ± standard deviation or n (%). Time-points: T1, prior to surgery; T2, 5 min post-surgery; T3, 2 h 
post-surgery; T4, 6 h post-surgery; T5, 24 h post-surgery. hsTnT, high-sensitive troponin-T; P(A-aDO2), alveolar-arterial oxygen pressure differ-
ence; RI, respiratory index; ICU, intensive care unit; RIPC, remote ischaemic pre-conditioning; NA, not applicable; ALI, acute lung injury; 
CI, confidence interval. 
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associated with the reduction of inflammation and oxidative 
stress. However, large‑scale and multi‑center randomized 
controlled trials should be performed in order to confirm the 
precise effects of RIPC.
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