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Abstract
The phylogenetic and population genetic structure of symbiotic microorganisms may 
correlate with important ecological traits that can be difficult to directly measure, 
such as host preferences or dispersal rates. This study develops and tests a low-cost 
double-digest restriction site-associated DNA sequencing (ddRADseq) protocol to 
reveal among- and within-species genetic structure for Lophodermium, a genus of 
fungal endophytes whose evolutionary analyses have been limited by the scarcity of 
informative markers. The protocol avoids expensive barcoded adapters and incorpo-
rates universal indexes for multiplexing. We tested for reproducibility and function-
ality by comparing shared loci from sample replicates and assessed the effects of 
numbers of ambiguous sites and clustering thresholds on coverage depths, number 
of shared loci among samples, and phylogenetic reconstruction. Errors between 
technical replicates were minimal. Relaxing the quality-filtering criteria increased the 
mean coverage depth per locus and the number of loci recovered within a sample, 
but had little effect on the number of shared loci across samples. Increasing cluster-
ing threshold decreased the mean coverage depth per cluster and increased the num-
ber of loci recovered within a sample but also decreased the number of shared loci 
across samples, especially among distantly related species. The combination of low 
similarity clustering (70%) and relaxed quality-filtering (allowing up to 30 ambiguous 
sites per read) performed the best in phylogenetic analyses at both recent and deep 
genetic divergences. Hence, this method generated sufficient number of shared ho-
mologous loci to investigate the evolutionary relationships among divergent fungal 
lineages with small haploid genomes. The greater genetic resolution also revealed 
new structure within species that correlated with ecological traits, providing valuable 
insights into their cryptic life histories.
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1  | INTRODUC TION

The genetic diversity and structure within species in combination 
with geographical and ecological metadata can uncover important 
biogeographical structuring, demographic history, and adaptive traits 
linked to ecological functions (Loveless, 1984; Manel, Schwartz, 
Luikart, & Taberlet, 2003; Neale & Savolainen, 2004; Slatkin, 1987). 
The genetic relationship among closely related species, or phyloge-
netic associations, can also uncover important life history, such as 
ecological events or traits that influence diversification and specia-
tion (Huyse, Poulin, & Théron, 2005). Microbial species, whose life 
histories and species delimitations are particularly challenging to 
observe or measure, would especially benefit from genetic sequenc-
ing methods that can uncover both micro- and macroevolutionary 
diversity. In this study, we test a low-cost double-digest restriction 
site-associated DNA sequencing (ddRADseq) protocol that is com-
monly applied for population-level SNP discoveries but also increas-
ingly applied for phylogenetic analyses, on a fungal genus whose 
life cycle is understudied. Lophodermium (Chevall.) is a paraphy-
letic genus with over 100 named species that associate with dead 
or living plants worldwide (Lantz, Johnston, Park, & Minter, 2011). 
Those species associated with pine needles consist of a smaller (ca. 
30 putative species) and closely related group (Ortiz-García et al., 
2003) that often dominate over other endophytic species (Ganley, 
Brunsfeld, & Newcombe, 2004; Oono, Lefèvre, Simha, & Lutzoni, 
2015). Their ecological significance with pines is unknown beyond 
their “endophyte” status, although a few are considered pathogenic 
(Hanso & Drenkhan, 2011) and some are explicitly studied as sapro-
phytes (Osono & Hirose, 2011). Lophodermium species also appear to 
have large within-species genetic variation (Deckert, Hsiang, & Larry 
Peterson, 2002; Salas-Lizana, Santini, Adán, & Piñero, 2012) with the 
occurrence of many cryptic species (Oono et al., 2014; Reignoux, 
Green, & Ennos, 2014). While a handful of genetic markers may suc-
cessfully delimit populations or species to reveal dispersal rates or 
demographic histories, the population structure of some widespread 
species has yet to be identified with traditional multilocus sequence-
typing approaches (Oono et al., 2014; Salas-Lizana et al., 2012).

High-throughput sequencing allows the rapid generation of ge-
nomic data for hundreds of individuals to address diverse ecolog-
ical and evolutionary questions. As a genotyping technique that 
can sequence more individuals for fewer loci, RADseq has become 

the most widely used, cost-effective method, particularly for non-
model species without reference genomes (reviewed in Andrews, 
Good, Miller, Luikart, & Hohenlohe, 2016; Davey et al., 2011). The 
double-digest RADseq (ddRADseq; Peterson, Weber, Kay, Fisher, 
& Hoekstra, 2012), a variation of the original method (Baird et al., 
2008), improves on depth of coverage per locus by optimizing se-
quencing effort and reducing missing genotypes. The protocol is 
flexible, allowing for easy optimization for different organisms, ge-
nome sizes, genetic diversity, and scientific questions (Mastretta-
Yanes et al., 2015; Nieto-Montes de Oca et al., 2017; Recknagel, 
Elmer, & Meyer, 2013; Zhou et al., 2014). Consequently, numerous 
modifications or improvements of ddRADseq are being continually 
proposed (Franchini, Parera, Kautt, & Meyer, 2017; Heffelfinger 
et al., 2014; Recknagel, Jacobs, Herzyk, & Elmer, 2015). In this study, 
we evaluate an underutilized version of the popular ddRADseq pro-
tocol that accommodates the less-expensive and standard indexed 
primers for multiplexing (Kess, Gross, Harper, & Boulding, 2016).

Double-digest RADseq consists of digestion of the genomic 
DNA with two different restriction enzymes (typically one with 
high-frequency site and one with low-frequency site), ligation of 
digested fragments to adapters, a PCR step for the enrichment of 
ligated fragments and attachment of indexes, size selection, pool-
ing of samples, and finally, sequencing of pooled fragments using a 
high-throughput sequencing platform. Multiplexing for ddRADseq is 
typically achieved by ligating adapters with unique in-line barcodes 
to digested genomic DNA and then adding unique indexes during 
PCR enrichment (Figure 1 & 2; Parchman et al., 2012; Peterson 
et al., 2012; Mastretta-Yanes et al., 2015). Barcoded ligation adapt-
ers need to be synthesized in pairs and can be pricey (e.g., $140 per 
pair), are specific to a restriction enzyme, and can therefore only be 
applied with ddRADseq. For example, preparing a 96-sample ddRAD 
library with eight barcoded adapters and twelve indexes requires an 
investment of over $1,000 in adapters alone ([eight forward + one 
reverse] × 2 complementary annealing oligos × $70 = $1,260) that 
cannot be used for non-ddRAD sequencing projects (unlike stan-
dard indexes). Consequently, the cost of barcoded adapters may im-
pede the start of new projects for smaller laboratories. In this study, 
we modified protocol that was previously used for SNP discovery 
in a single species by Kess et al. (2016) that lowers the upfront 
costs from barcoded adapters and allows the use of commonly ap-
plied combinatorial dual-indexed barcodes using standard adapters 

F IGURE  1 Design comparison between barcoded adapters (a) and the adapters in this study compatible with standard dual indexes (b). 
Arrows indicate sequencing primer regions. Sequencing primers for the target region are custom designed in (b) to overlap with enzyme 
cutting sites. P1 and P2 are adapters ligated to target fragments that may (a) or may not (b) have barcodes. P5 and P7 are flow cell-binding 
regions for Illumina platforms and are always incorporated using PCR to the ligation adapters. See Appendix S2 for sequences of adapters 
and primers and cost comparison analyses
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compatible with cohesive restriction enzyme sites, and sequencing 
using low-cost custom primers that include the restriction site. See 
Appendix S2 for detailed cost comparisons to original ddRAD proto-
col. We explored the reproducibility and genetic diversity revealed 
by the low-cost ddRADseq protocol on multiple species of the genus 
Lophodermium.

At present, Illumina HiSeq is the most commonly used plat-
form for genome resequencing albeit the short read lengths per 
loci (e.g., <100 bps; but MiSeq is used by Davik et al. (2015), Kess 
et al. (2016) and Vivian and Rn (2017)). This platform has the ability 
to produce sufficient coverage depth per locus, given an appropri-
ate multiplexing density, to overcome potential sequencing errors 
and false SNP calls as well as produce high numbers of shared loci 
among samples. The deep coverage can be particularly crucial for 
identifying heterozygosity in nonhaploid organisms. We tested the 
protocol on the MiSeq platform instead because we believed fewer 
sequence reads would still produce sufficient numbers of shared loci 
among samples for population genomic and phylogenetic analyses, 
given the relatively small haploid genomes of these species (est. 
40–80 Mbps). We were also interested in understanding how se-
quencing depth affected the ability to identify shared loci or recover 

loci repeatedly across samples with the longer reads (e.g., >100 bps). 
We assessed the recoverable number of shared loci among technical 
replicate samples by determining the relationship between the num-
ber of shared loci between replicates and their sequencing depths. 
Furthermore, because the coverage per locus would be comparably 
lower than in HiSeq, potentially introducing misidentified variants 
into the final dataset from errors during sequencing, PCR, or other 
technical modifications in the preparation of the library, we also 
compared the error rates between shared loci in technical replicate 
samples run either within or between Illumina lanes.

The purpose of this study was twofold: (i) constructing a ro-
bust phylogeny of a genetically diverse group of understudied 
fungi using a rapid and low-cost ddRADseq protocol with standard 
indexes and (ii) assessing the relationship among clustering and fil-
tering parameters, error rates, and numbers of homologous loci for 
micro- and macroevolutionary analyses. We also evaluated the re-
coverable number of shared loci with increasing genetic divergence 
within Lophodermium and how these loci might improve species 
circumscription compared to the widely used internal transcribed 
spacer (ITS) rDNA locus. We demonstrate its utility on 50 fungal 
isolates representing populations of six putative species based on 

F IGURE  2 A comparison of four 
ddRADseq protocols. Optional steps are 
excluded. Detailed protocol for this study 
can be found in Appendix S2
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ITS phylogenetics. We show that this low-cost ddRADseq protocol 
applied on the MiSeq can be effectively implemented for circum-
scribing more putative fungal species and finer population struc-
tures than ITS alone. We demonstrate its potential to significantly 
improve phylogenetic resolution for nonmodel organisms and reveal 
population structure within widespread species, but clustering and 
filtering are still key bioinformatic stages that need to be tested for 
different groups of organisms.

2  | MATERIAL S AND METHODS

2.1 | Sampling, culturing, and DNA extraction

Multiple Lophodermium species and individuals were collected from 
both ascocarps on senescent needles and mycelial cultures from 
healthy green needles of Pinus spp. (see Table S1A for geographic 
origins, host species, and isolation methods). Monosporic cultures 
were obtained from ascocarps as described in Salas-Lizana et al. 
(2012) using 2% malt extract (ME) agar. The Lophodermium isolates 
from green needles used in this study come from an ongoing sur-
vey of endophytes of pine trees. Green needles were washed and 
surface-sterilized as described in Oono et al. (2015). Green needles 
were cut with a sterile razor blade into 2-mm-long sections. Sections 
were placed in 2% ME agar slants in 1.5 ml microcentrifuge tubes 
in sterile conditions. A subset of emerging cultures was genotyped 
by sequencing the internal transcribed spacer (ITS) and partial large 
subunit (LSU) rDNA region (hereafter ITS-LSU) for positive identifi-
cation of a Lophodermium spp. Several samples come from the fungal 
collection at New Zealand Crown Research Institute (Scion). With 
the exception of three species (L. australe, L. conigenum, and L. pinas-
tri), the remaining specimens were identified using a combination 
of ascocarp morphology (data not shown) and ITS-LSU sequences. 
The ITS-LSU sequences of L. australe and L. conigenum were similar 
enough (>97% sequence similarity) to be considered a single putative 
species in this study, which is also suggested by others (Minter, 1981; 
Ortiz-García et al., 2003). Cultures were grown for 2–3 weeks in 
50 ml of 2% ME media and dried on filter paper under sterile condi-
tions. Between 40 and 100 mg of dried mycelium was used for DNA 
extraction following a modified CTAB method, see Appendix S1 for 
details. DNA quality was assessed by visualizing on 1.5% agarose 
gels, confirming the absence of RNA/DNA smears. DNA quantifi-
cation was performed on a Qubit 2.0 fluorometer using the Qubit 
dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, US).

2.2 | ITS-LSU sequencing and phylogenetic analyses

We amplified the ITS-LSU rDNA region (ITS1, 5.8S, ITS2, and partial 
28S) using primers ITS1F (Gardes & Bruns, 1993) and LR3 (Hopple 
& Vilgalys, 1994). PCR protocol consisted of an initial denaturation 
step at 95°C for 4 min, followed by 35 cycles of 30 s at 95°C, 30 s 
at 50°C, and 90 s at 72°C, and a final extension at 72°C for 10 min. 
PCR products were cleaned with ExoSAP-IT (USB-Affymetrix, Santa 
Clara, CA) and sequenced using Sanger technology at UC Berkeley 

DNA Sequencing Facility. The ITS-LSU sequences were aligned 
using MAFFT v7 (Katoh & Standley, 2013) with default parameters 
for the 50 sampled Lophodermium individuals alone as well as with 
55 additional reference ITS-LSU sequences from public databases 
(see Table S1B for ITS accessions). We compared the topologies of 
unrooted trees constructed by ITS-LSU alone and all ddRAD loci. 
In all cases, trees were obtained using RAxML v8.0.26 (Stamatakis, 
2014) with 1000 bootstrap replicates under the GTRGAMMA model 
(Tavaré, 1986).

2.3 | ddRADseq library preparations

Three to nine hundred nanograms of DNA per sample (6 μl total; 50–
150 ng/μl) was double-digested using the rare-cutting EcoRI-HF and 
the frequent-cutting MseI enzymes (New England BioLabs, Ipswich, 
MA). In cases where starting DNA concentrations were low, dupli-
cate samples underwent digestion and ligation steps and then were 
pooled (see detailed workbench protocol for additional tips and 
similarities with Kess et al. (2016) in Appendices S1–S2). All samples 
were placed randomly in PCR plates during library preparation. The 
DNA was digested for four hours at 37°C, and the enzymes were 
heat-killed at 65°C for 10 min. Digested DNA fragments were ligated 
to the EcoRI-specific P1 adapter and the MseI-specific P2 adapter 
(Figure 1b, Appendix S2), which are not barcoded as in the original 
ddRADseq protocol (Peterson et al., 2012), with the T4 ligase enzyme 
(New England BioLabs, Ipswich, MA). The ligation reaction consisted 
of incubating overnight (>12 hs) at room temperature (approx. 21°C) 
and heat killing the enzyme at 65°C for 10 min. In order to elimi-
nate unincorporated adapters and small (<300 bps) DNA fragments, 
ligation reactions were purified using Agencourt AMPure XP SPRI 
magnetic beads (Beckman Coulter, Brea, CA) at 0.8:1 (beads:sample) 
volume ratio and resuspended in 35 μl of 10 mmol/L Tris buffer. 
A unique combination of the Illumina Nextera v2.0® dual-indexed 
barcodes (P5 and P7; Illumina, Inc. San Diego, CA) was attached to 
purified fragments with 14 cycles of PCR for two replicates of each 
sample. Indexed PCR products were normalized and pooled in equi-
molar proportions. Fragment sizes between 300 and 700 bps were 
selected using Pippin Prep (Sage Science Inc., Beverly, MA) 2% aga-
rose cassettes. The final libraries were analyzed using a TapeStation 
Instrument (Agilent Technologies, Santa Clara, CA) to confirm the 
recovery of fragments on the selected range (see Appendix S2 for 
fragment size profiles). The library concentrations were quantified as 
previously described and sequenced using Illumina MiSeq platform 
under a 251-cycle paired-end read protocol at the IGM Genomics 
Center, UC San Diego. In total, four libraries, which included samples 
from other studies, were sequenced. See Table S1C for library de-
scription and barcoded samples.

We tested reproducibility of the ddRAD data by sequencing 
technical replicates of six Lophodermium strains within and among 
libraries. Replicates are samples from the same genomic DNA that 
were processed independently (i.e., separate enzyme digestion) 
and tagged with different combinations of P5 and P7 indexes (see 
Table S1C for details).
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With traditional Illumina sequencing primers, the sequencer 
detects zero sequence diversity at the beginning of these libraries 
because they all have identical restriction site patterns. This initial 
low-diversity impairs the MiSeq system to “maintain focus, reg-
ister images to the cluster map, and make proper base calls to de-
liver high-quality data (Pub. No. 770-2013-013, Illumina technical 
support note).” Hence, custom sequencing primers were used that 
include the restriction site bases (Figure 1b; Appendix S2), which al-
lows the sequencer to detect high sequence diversity from the be-
ginning. These primers also allow the user to maximize sequencing 
the variable loci and to avoid sequencing the barcodes or restriction 
sites (Figure 1; Kess et al., 2016).

2.4 | Bioinformatics—filtering and 
clustering ddRADseq

Paired-end reads were demultiplexed by the sequencing facility and 
merged using PEAR (Zhang, Kobert, Flouri, & Stamatakis, 2014) with 
default parameters: a minimum overlap of 10 bps, a minimum assem-
bled sequence length of 50 bps, and a maximum p-value of .01 for 
the observed-expected alignment score, which tests statistical sig-
nificance of merged reads. We excluded unassembled pairs since, on 
average, <1.58% of reads were unmerged (Table S1F, G), suggesting 
that analyzing merged reads with lower sequencing errors was more 
valuable to us than retaining longer reads with lower likelihood of 
identifiable shared homology across samples.

Merged reads were processed using pyRAD v3.0.66 pipeline 
(Eaton, 2014) to filter for quality and potential paralogs (more de-
tail below). Nucleotide bases with Phred Q-scores <20 (i.e., accu-
racy of the base call is <99%) were changed to an “N” character 
and reads were excluded (i.e., quality-filtered) based on the al-
lowable number of Ns per read. We tested a range of allowable 
number of Ns per read from 5 to 30 (Table S1E), which represents 
approximately 1.8%–10.7% of nucleotides per read given an av-
erage assembled sequence length of 281 bps (Table S1F). The 
default of 4 Ns (appropriate for short HiSeq reads) would have 
been too stringent for the longer MiSeq reads. The quality-filtered 
reads were then clustered within samples using 70% or 85% se-
quencing similarity thresholds. We analyzed the effect of the 
number of allowed Ns during the filtering step on the number of 
clusters per sample.

Filtered reads were clustered within samples using VSEARCH 
v1.11.1 (Rognes, Flouri, Nichols, Quince, & Mahé, 2016). We tested 
a range of clustering thresholds between 70 and 95% sequence sim-
ilarity at 5% increments for samples that were filtered for reads with 
a maximum of 15 Ns (hereafter described as “15N”). We then ana-
lyzed the effect of clustering thresholds on the average coverage 
depth (i.e., number of reads per cluster) per sample. We also ana-
lyzed reads filtered with a maximum criteria of 30 Ns (i.e., “30N”), 
rather than 15N, and clustered these reads just at 70% sequence 
similarity (hereafter described as “70/30N”) to include in our com-
parative analysis. Putative loci or clusters represented by only one 
read (i.e., singletons) were discarded.

A consensus sequence is called for each putative locus or clus-
ter using either the estimated error rate or the majority rule. When 
a cluster is represented by more than three reads, consensus base 
calls are made using only A/T/G/C or N based on a sequencing error 
rate that is estimated by maximum likelihood across all clusters (i.e., 
putative loci) within a sample, assuming zero heterozygosity because 
fungal DNA was haploid. Any ambiguous base site that occurs more 
often than the expected rate based on the estimated error rate is 
called “N.” On the other hand, when a cluster is represented by only 
two reads, consensus base calls are made using the majority rule, 
which chooses the lower alphabetical base to call ambiguous bases 
(i.e., A/T = A; A/G = A; A/C = A; and G/C = C). The majority rule base 
call introduces bias in the data (e.g., more likely to share As at the 
same site than Ts), but allows retention of low coverage loci. Loci 
with consensus sequences with more than five Ns are discarded, 
which helps to remove potential paralogs. Decreasing clustering 
similarity (i.e., from 85% to 70%) increases coverage per cluster, but 
can also increase potential paralogs within clusters as well as SNP 
error rates.

These loci were then clustered among samples using VSEARCH 
again and aligned using MUSCLE v3.5 (Edgar, 2004). Aligned loci 
were kept in the final dataset if there were fewer than 100 SNPs 
and 99 insertions/deletions (indels) across samples (default val-
ues). These criteria discard longer reads (>330 bps) whose cluster-
ing threshold (e.g., 70%) produce highly variable loci. Because our 
data were already demultiplexed and paired reads were merged, 
the PyRAD pipeline was started in step two, where we set the 
datatype to ddrad, instead of pairddrad. Summary information 
for 85/15N and 70/30N pyRAD pipeline runs can be found in 
Tables S1F, G.

2.5 | Phylogenetic analyses with ddRAD loci

To explore the usefulness of the longer ddRAD reads for inferences 
at a deep time scale (i.e., phylogenetics), we compared the genetic 
distance, measured using ITS-LSU rDNA region, to the number of 
shared loci between pairs of 50 individuals from six putative species 
of Lophodermium (L. australe-L. conigenum complex, L. baculiferum, 
L. molitoris, L. nitens, L. pinastri, and L. sp. nov.). Clustering thresholds 
between 55 and 70% sequence similarity are considered to recon-
struct the most accurate phylogenetic topologies for recent species 
divergences (e.g., <60 million years) but is highly recommended to 
be tested at various clustering values (Rubin, Ree, & Moreau, 2012). 
As our reads are longer than typical ddRAD reads sequenced on the 
HiSeq, we tested clustering at 85% threshold (DaCosta & Sorenson, 
2014; Heffelfinger et al., 2014) allowing 15 Ns as well as at a lower 
70% threshold allowing 30 Ns. Hereafter, the final datasets using 
these two criteria are referred to as 85/15N and 70/30N matrices, 
respectively. Loci found in more than 10 samples were kept in the 
final dataset for phylogenetic reconstruction. We chose 10 as the 
minimum sample number per locus because the maximum sam-
ple size within a putative species was eight (with the exception 
of L. nitens and L. sp. nov., which are likely species complexes with 
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multiple cryptic species). Therefore, a minimum sample of 10 would 
most likely result in the inclusion of more than one species for each 
locus in the final alignment. We compared the phylogenetic reso-
lution between the 70/30N and 85/15N matrices. All phylogenetic 
analyses were performed using RaxML v8.0.26 (Stamatakis, 2014) 
as described above. We also evaluated the number of shared loci 
within species using the two criteria for species represented by at 
least eight individuals.

Pairwise genetic distances between samples and putative spe-
cies were estimated using Kimura 2-parameter model (Kimura, 1980) 
considering variable rates among sites (α = 0.5) in the ITS-LSU locus 
after testing several evolution models using a maximum-likelihood 
criterion (lnL) in MEGA v7 (Kumar, Stecher, & Tamura, 2016). The 
effect of genetic distances on the number of shared loci among pairs 
was analyzed by best-fit models with minimum number of parame-
ters in TableCurve 2D v3 (Systat Software Inc.).

2.6 | Reproducibility analyses

We tested the reproducibility of our molecular bench protocol by 
estimating variation in base calls between nine technical replicate 
pairs (using six individual samples) within or between sequencing 
runs (Table S1D). We filtered the replicate pairs using both 70/30N 
and 85/15N criteria and calculated the proportion of variable sites 
between shared loci (i.e., number of SNPs divided by the total 
length of concatenated shared loci). The variable sites between 
shared loci of replicate pairs should represent the error rates in-
troduced during PCR, sequencing, filtering, and clustering. We also 
tested how sequencing depths (i.e., total number of reads per sam-
ple) related to the total number of shared loci between replicate 
pairs after filtration. We were interested in understanding whether 
increasing sequencing depth has significant effects on the number 
of shared loci between replicate pairs or on the error rates.

3  | RESULTS

3.1 | ddRADseq data summary

A total of 11,901,179 sequence reads were analyzed for this study 
(including replicate samples) which were produced in four sepa-
rate libraries consisting of 44, 48, 64, and 68 samples (Table S1C). 
Demultiplexed, raw sequence reads are available in the NCBI SRA 
under BioProject accession PRJNA35677. On average, 98.42% (SD 
0.89) of all reads were merged with a minimum of 94.41% and a 
maximum of 99.41% per sample (Table S1F). The average number of 
merged reads per sample was 201,715 with an average length of 
281 bps. The mean quality (Q) score of merged reads ranged from 
35.70 to 39.60 for the first 251 nucleotide positions, 33.60 to 31 
up to position 485, and then from 30.90 to 28.70 at final position 
492. The drop in Q-score is typical for reverse reads (Schirmer et al., 
2015). The mean percentage of reads that passed quality-filtering 
was 90.22% and 84.47% for 30N and 15N criteria, respectively. 
Within-sample clustering recovered an average of 48,659 and 

52,658 clusters per sample (nloci) for the 70/30N and 85/15N crite-
ria, respectively. The mean depths per cluster, excluding singletons, 
were 8.16 (SD 11.30) for 70/30N and 7.71 (SD 11.20) for 85/15N, 
and correlated highly with sequencing depth per sample (Figure S1). 
The average percentages of nloci (i.e., represented by the consen-
sus sequence of a given cluster) remaining after excluding singletons 
and those with more than five Ns in the consensus sequence (i.e., 
f1loci) were 28.26% and 30.03% for 70/30N and 85/15N criteria, re-
spectively. The average percentages of loci remaining after exclud-
ing potential paralogs (f2loci/nloci) to compare across samples were 
28.00% for 70/30N criteria and 26.71% for 85/15N. The average 
numbers of these remaining loci (i.e., f2loci) shared by a minimum of 
ten samples for phylogenetic analyses were 566 (3.87% of f2loci) for 
70/30 criteria and 569 (4.04% of f2loci) for 85/15N. See Tables S1F, 
G for further details.

3.2 | Allowable Ns at filtering stage and clustering 
similarity thresholds

Increasing the allowed number of Ns per read from 0 to 30 Ns stead-
ily increased the proportion of filter-passed reads (Figure 3). On av-
erage, 43.2%, 15.5%, and 9.8% of reads had at least one, 15, and 30 
Ns per sample, respectively. The marginal increase in filter-passed 
reads decreased with each additional allowed number of Ns. See 
Table S1E for additional summary.

F IGURE  3 Percent filter-passed reads vs. No. of allowed Ns 
per read. Each point represents a different sample filtered with 
different numbers of Ns. Nucleotide bases with Phred Q-scores 
<20 were changed to an “N” character, and reads were excluded 
based on the allowable number of Ns per read. For example, 
excluding reads with more than five Ns is equivalent to excluding 
reads with more than 1.8% nucleotides per read on average with 
a Phred Q-score less than 20, assuming an average read length 
of 281 bps. Excluding reads with more than 30 Ns is equivalent 
to excluding reads with more than 10.7% nucleotides per read on 
average with a Phred Q-score less than 20, assuming an average 
read length of 281 bps
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The number of clusters per sample increased on average with 
number of allowed Ns, regardless of clustering thresholds (Table S1E). 
When reads were clustered at 70% similarity, allowing zero, 15, and 
30 Ns per read , these parameter combinations produced, on the 
average, 32,954, 45,999, and 48,659 clusters per sample, respec-
tively. When reads were clustered at 85% similarity, allowing zero, 
15, and 30 Ns per read, these parameter combinations produced, on 
the average, 37,124, 52,658, and 56 124 clusters per sample, respec-
tively (see Table S1E, F, and G for summary). Increasing the number 
of allowed Ns also increased the average coverage depth per locus 
(Figure 4a), although the increase was minimal (i.e., <1) between 15 
and 30 Ns. The final number of loci per sample to be compared across 
samples (i.e., f2loci) increased with increasing number of allowed Ns 
(Figure 4c). However, this increase was minimal from 15 to 30 Ns (e.g., 
1.4% increase for 70% clustering and 1.6% increase for 85% cluster-
ing; Figure 4c). The quality-filtering parameter had little effect on the 
average number of loci per sample used in the phylogenetic analyses 
when loci shared by fewer than 10 samples were excluded (Figure 4d).

Clustering at lower similarity thresholds decreases the total 
number of loci per sample (Figure 4c, Figure 5, Table S1E, F and G) 
and increases coverage depth per cluster (Figure 5), but the increase 
in coverage depth per cluster was minimal from 85% to 70% (i.e., <1 
read per cluster). Clustering threshold values can, however, signifi-
cantly affect the number of shared loci among lineages (Table S1H).

The relationship between sequencing depth and the number of 
loci recovered from each sample depended on the Lophodermium 
lineage (Figure 6). For example, whereas the loci accumulation 
curve for Lophodermium sp. nov. appeared to be reaching a plateau 
with greater sequencing depths, other species appeared to have 
a higher diversity of reads per sample. To test how sequencing 
depth differently affected the accumulation of new loci for differ-
ent Lophodermium lineages, we merged shared loci per lineage and 
analyzed the loci accumulation curve using random sampling of loci 
with replacement. L. nitens and the L. australe–L. conigenum complex 
had significantly greater diversity of loci than L. sp. nov. or L. molitoris 
(Figure 6c, d). See Table S1F, G for details.

The average sequence length per locus decreased (i.e., from 262 
to 249 bps) as singletons, potential paralogs, and loci with high rates 
of ambiguous nucleotides were excluded through the bioinformatic 
pipeline. The average sequence length of loci incorporated in the 
phylogenetic analyses (i.e., being shared with at least ten samples), 

however, did not significantly decrease (i.e., from 249 to 236 bps for 
70/30N and from 246 to 242 for 85/15N).

3.3 | Phylogenetic analyses

The supported phylogenetic relationships, as revealed by ITS-LSU 
alone, of the six putative species used in this study (Figure 7) were 
identical to those obtained with 55 additional reference Lophodermium 
sequences from public databases (Figure S2). The deeper branches 
had lower support (bootstrap values <75%) based on the 85/15N 
alignment compared to either the ITS-LSU or 70/30N alignments 
(Figure 7). The 70/30N phylogeny had the highest bootstrap sup-
port in almost all branches (i.e., 100% bootstrap support), including 
branches supporting putative species. The tree topology recovered 
by the 70/30N matrix was also highly similar to the original ITS-LSU 
tree. The main difference between the two topologies was that the 
70/30N tree was better resolved in the terminal branches. The better-
supported branches within putative species often revealed interest-
ing correlations between genetic structure and endophyte ecology. 
The new Lophodermium species and L. nitens both clearly consisted of 
two lineages, which mostly correlated with geography (i.e., north vs. 
south for L. sp. nov. and east vs. west for L. nitens; see Table S1A for 
details on geographic origins of samples). L. molitoris also consisted of 
two lineages, which correlated to different Pinus host subgenera (i.e., 
Strobus vs. Pinus). The two lineages of L. australe–conigenum complex 
could also be clearly delineated with the 70/30N dataset, but did not 
correlate with any known ecological differences.

The summary of final alignment matrices for 85/15N and 70/30N 
ddRAD loci is found in Table 1. The 85/15N matrix was not an inclusive 
subset of the 70/30N matrix, but contained 36 loci that were not found 
in the 70/30N matrix. We found that these 36 loci were discarded from 
the 70/30N matrix during the alignment stage because they either 
contained more than 100 SNPs across samples (11/36 loci) or more 
than 99 indels across samples (15/36 loci). The remaining loci (10/36) 
were excluded as potential paralogs because multiple haplotypes were 
found within a cluster. However, even when these 36 loci were ex-
cluded from the 85/15N matrix such that the 70/30N matrix was in-
clusive of all loci in the 85/15N matrix, the bootstrap support values 
did not significantly improve for the 85/15N matrix (data not shown).

The number of loci shared within-species was greater in the 
70/30N criteria than in the 85/15N criteria (15.71% more loci, on 

TABLE  1 Summary of the three alignments used for phylogenetic analyses

Alignment No. of Loci
Sum length of 
all loci Polymorphic positionsa

Ambiguous/Gap 
sitesb (%)

Missing 
locic (%)

Mean polymorphic 
positions per locus

ITS-LSU 1 1,143 303 24.68 0.00 303

85/15N 2,068 529,469 54,335 77.78 76.99 26

70/30N 2,388 607,736 84,747 77.59 76.35 35

aPolymorphic positions only include nucleotide variants.
bAmbiguous/gap sites are either “N”s or “-”s in the alignment matrix.
cMissing loci was calculated as the proportion of absent loci over the total number of potential loci (i.e., the number of samples multiplied by the total 
number of loci in a dataset).
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average; Table S1F, G). The number of shared loci between sample 
pairs and species pairs decreases as genetic distances based on ITS-
LSU sequences increase (Figure 8). The decay rate of the number of 
shared loci with genetic distance is greater for the 85/15N matrix 
than for the 70/30N matrix. This pattern does not change when the 
number of shared loci is divided by the average number of total loci 
for pairwise comparisons (Figure S3).

3.4 | Reproducibility

The number of shared loci between technical replicate pairs varied 
between 1,254 and 12,340, most likely correlated to their ranges 
in sequencing depths (Figure 9a; Figure S4). The variation in base 
calls between shared loci of technical replicate pairs (observed 
error rates) ranged from 0.006% to 0.43% for the 70/30N dataset 
and 0.004% to 0.33% for the 85/15N dataset (Figure 9b, Figure 
S4, Table S1D). The observed error rates between replicates were 
significantly greater for 70/30N than for 85/15N analyses (paired 
t test, p < .0001), albeit a minor difference (0.0012 vs. 0.0007). 
The average estimated error rates were 0.22% and 0.24% for 
70/30N and 85/15N datasets (Table S1F, G), respectively, based 
on the maximum-likelihood equation of Lynch (2008). The aver-
age observed error rate was lower than the estimated error rate 
for both datasets (p < .05 for 70/30N and p < .01 for 85/15N). The 
estimated error rates did not significantly correlate with sequenc-
ing depths for the 59 samples (data not shown), but may have 
differed among Lophodermium lineages (Figure 6). Replicate pairs 
of the L. sp. nov. had lower error rates overall with an average of 
0.01% (n = 6 pairs, 2 replicates) whereas pairs of L. nitens had an 
average of 0.24% error rate (n = 5 pairs, 3 replicates), but there 

were not enough replicate pairs for each lineage to test this sta-
tistically. The error rates between same and different sequencing 
libraries for three replicate samples were compared with a paired 
one-way t test and were not statistically significant (p = .11) al-
though there was a tendency for error rates to be higher between 
libraries than within (Table S1D).

4  | DISCUSSION

The low-cost ddRADseq, which had been previously applied for 
SNP variant discovery in a single species (Kess et al., 2016), gener-
ated a sufficient number of homologous loci to construct a strongly 
resolved phylogeny for multiple putative species of the widespread 
Lophodermium genus. We also found that genetic structure within 
putative species can often be correlated with geography or differ-
ent host species, but it can also be observed within the same hosts 
and locations, suggesting that ecological traits other than dispersal 
limitation or host specificity can act as barriers to genetic introgres-
sion. The phylogenetic resolution was improved over ITS alone, but 
depended on filtering and clustering parameters. The clustering pa-
rameter was markedly more important than the filtering parameter.

4.1 | Filtering and clustering criteria

Increasing the allowed number of Ns from 0 to 30 increased the pro-
portion of filter-passed reads, with the greatest increase between 
0 and 5 Ns (Figure 3). The number of Ns was also positively corre-
lated with number of clusters (including singletons), coverage depth 
(Figure 4a), and number of loci (excluding singletons; Figure 4c), but 

F IGURE  4 Effects of the number 
of allowed Ns in a filter-passed read on 
the (a) coverage depth of clustered loci 
with more than one read, (b) percent loci 
(f2loci) out of total clustered loci (nloci) 
after filtering singletons and potential 
paralogs, (c) number of total loci (f2loci) 
per sample for two clustering threshold 
values (70% and 85%), and (d) number of 
loci shared (f2loci) by at least ten samples 
for 70% clustering threshold values for 
the 59 samples (light gray lines). Dotted 
and solid lines indicate average for loci 
clustered with 70% and 85% similarity, 
respectively. Gray areas represent 
standard error (n = 59). See also Table S1E 
for details
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the increases in the latter two were modest after 5 Ns. Applying 
a less-stringent filtering criteria only led to removal of greater pro-
portions of clusters later in the pipeline (Figure 4b) because more 
clusters either were singletons, had consensus sequences with 
greater than five Ns, or were potential paralogs (i.e., had more am-
biguous nucleotide positions within clusters). Overall, the number of 

allowed Ns had little effect on the number of shared loci among our 
Lophodermium species that were used in the phylogenetic analyses 
(Figure 4d). This suggests that allowing a reasonable number of Ns 
does not bias the final result of this study but may marginally in-
crease the average coverage depths for more accurate consensus 
sequences and fewer potential paralogs to be excluded due to am-
biguous sites in reads.

Increasing clustering thresholds from 70% to 85% or 95% in-
creases number of loci per sample (Figure 6) but decreases the num-
ber of shared loci among different Lophodermium lineages (Figure 8, 
Table S1H). Interestingly, although we typically consider deeper cov-
erage to be associated with decreased error rates, lower clustering 
thresholds had greater error rates (Table S1D) despite, albeit mar-
ginally, deeper coverage (Figure 5). The error rates were, however, 
both minor. Therefore, we suggest various clustering thresholds to 
be tested that minimizes error rates (i.e., compare replicates) and 
maximizes shared loci at the genetic scale and breadth of each study.

4.2 | Phylogenetic topologies with ddRAD loci

The phylogenetic reconstruction based on the 70/30N matrix was 
significantly better resolved in the deeper branches than by the 
85/15N matrix and also in the terminal branches than by the ITS-
LSU matrix (Figure 7). The well-resolved terminal branches of the 
70/30N tree corresponded to previously identified (e.g., L. australe 
major vs. cryptic; Oono et al., 2014) or potential cryptic species 

F IGURE  5 Effect of clustering thresholds on the mean depth 
per cluster and number of loci (f2loci), excluding singletons, per 
sample. Solid line indicates mean coverage depth (left axis) and 
dotted line indicates number of loci (right axis). In all cases, a 
maximum of 15 Ns was allowed in the quality-filtering step. Shaded 
areas represent standard error (n = 59). Mean depth and number of 
loci for 70/30N are provided as a single point with standard error 
bars for comparison. See Table S1E for data

F IGURE  6 Reads vs. number of loci at 
70% clustering (a & c) or 85% clustering 
(b & d). (a & b) Effect of sequencing depth 
(number of merged reads) per sample on 
the number of loci (f2loci) per sample. 
Fitted logarithmic curves are displayed 
for each putative species to represent 
accumulation curves. Gray regions 
indicate 95% confidence intervals of 
fitted curves. (c & d) The accumulation 
of new loci per species (unique f2loci 
within putative species) with increasing 
sequences. There were no enough 
samples or reads for L. baculiferum or 
L. pinastri for comparison
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(within L. nitens and L. sp. nov.). For instance, the two well-supported 
clades within L. sp. nov. (Figure 7, Figure S2) correspond to sam-
ples recovered from two distinct geographical regions, Northern 
California and Oregon/Washington, which may correspond to two 

species or a single highly structured species. The 70% threshold 
allowed the inclusion of highly variable loci, which increased the 
number of phylogenetically informative positions and shared loci be-
tween more distantly related species (Table 1, Figure 8, Table S1H). 

F IGURE  7 Unrooted maximum-likelihood trees for nrDNA ITS-LSU region and ddRAD loci obtained with two different combinations of 
similarity thresholds and number of allowed Ns in a read (see text for details). Bars next to the trees map isolates that belong to the same 
putative species or species complex. L. australe and L. conigenum are labeled after their original identifiers although they likely represent a single 
species and are referred as the L. australe–L. conigenum complex throughout this manuscript. L. australe isolates are labeled with M (major),  
C (cryptic), or H (hybrid) based on a population structure analysis by Oono et al. (2014). Putative L. molitoris isolates are labeled with P (Pinus) 
or shaded bars labeled Strobus based on host species. Putative L. nitens isolates are labeled E (East) or W (West) based on geographic origins. 
Putative L. sp. nov. isolates are labeled N (North) or S (South) based on geographic origins. Numbers above branches represent bootstrap values, 
not all bootstrap values are shown for a clearer view. See Figure S2 for ITS-LSU phylogeny with additional reference sequences

F IGURE  8 Number of loci clustered at 70% or 85% similarity with at least ten samples per locus that were shared between pairs of 
samples as a function of genetic distance, based on nrDNA ITS-LSU sequences. The shaded area represents within-species variation (>97% 
similarity). Inset: same data but merged to compare between pairs of putative species using a minimum of 2 species per locus. The two 
regressions represent fitted curves for each dataset, 70/30N (black) and 85/15N (gray). The equation for the fitted curves is y = a + b/x2, 
where a = 37.842, b = 0.404, and r2 = .404 for 70/30N matrix and a = 3.949, b = 0.234, and r2 = .675 for 85/15N matrix
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Although clustering reads or loci by similarity is an imperfect solu-
tion to identifying homologous loci, our results agree with conclu-
sions from Rubin et al. (2012), showing that clusters that may include 
a mixture of orthologous and paralogous loci still contain substantial 
phylogenetic signal that can produce correct topologies with moder-
ate to high accuracy.

The phylogenetic reconstruction based on the 85/15N matrix still 
improved over that of the ITS-LSU matrix for within-species struc-
ture (i.e., recent divergence) despite lower bootstrap values at deeper 
branches. A higher clustering threshold of 85% significantly dimin-
ished the number of shared loci across species compared to 70%. 
For instance, while L. nitens and the L. australe–L. conigenum complex 
(the two most distantly related species in our sample) had only ten 
shared loci in the 85/15N matrix, there were 73 in the 70/30N matrix 
(Table S1H). This sevenfold difference contrasts with the closely re-
lated species L. baculiferum and L. molitoris, whose number of shared 
loci in 85/15N and 70/30N was different by twofold (30 and 63 loci, 
respectively). This result is consistent with the observation that the 
number of shared loci decreases abruptly with genetic distance for 
both thresholds but is more pronounced for 85/15N (Figure 8). As 
a result of using a different number of allowed Ns and clustering 
thresholds, the 85/15N matrix included 36 loci that were not found in 
the 70/30N matrix. These loci, however, were not solely responsible 
for the lower support of deeper branches by the 85/15N matrix. As 
explained before, it is more likely that this matrix performed worse 
because of fewer shared loci across distantly related species.

The number of homologous loci in distantly related lineages can 
likely be improved with greater sequencing depths or narrower se-
lection of sequence lengths. In this study, as the genetic distance 
between species increased, the number of shared loci decreased, 
although not at a linear rate. Hence, this ddRADseq method is es-
pecially effective in revealing within-species fungal (<97% ITS sim-
ilarity) diversity, but is also cost-effective for among-species (e.g., 
97–70% ITS similarity) diversity. However, restriction site polymor-
phism will likely limit the efficacy of ddRADseq for phylogenetic 
reconstruction beyond the genus and family levels (DaCosta & 
Sorenson, 2016). Furthermore, the mutation risk hypothesis sug-
gests that fewer homologous or shared loci will be recovered for 
loci with greater risk of mutations. Hence, longer MiSeq ddRAD 
reads, which have greater likelihood of mutations that create novel 

restriction sites within reads, may have been less likely to be shared 
among species than within species (Arnold, Corbett-Detig, Hartl, & 
Bomblies, 2013; Gautier et al., 2013). Simple mutations in restriction 
sites may also increase the read length variation for longer MiSeq 
reads compared to shorter HiSeq reads, but we saw some sequences 
with restriction sites incorporated in the middle of the sequence, 
suggesting that length variation can also be caused by inefficient 
enzyme digestions. Length variation caused by inefficient enzyme 
digestions or mutations at restriction sites may cause lower rates of 
clustering, but should not bias phylogenetic analyses because gaps 
are treated as missing data. Trimming reads to shorter lengths or tar-
geting shorter reads will likely minimize loss of clusters or loci due 
to length variation among and within samples of different species. 
However, using longer reads produces more informative sites that 
may compensate for having a reduced number of shared loci and 
can potentially resolve deeper divergences (e.g., >300 million years) 
better than shorter reads (Rubin et al., 2012). Longer reads can also 
be more helpful for downstream population genetic analyses, such 
as genome mapping, haplotype reconstruction, and linkage to adap-
tive loci. Our case study shows that small portions of the genome 
sequenced with the MiSeq platform can be sufficient to produce 
comparative homologous loci within highly diverse taxa with small 
haploid genomes (Figures 6 and 7, Table S1H). Other ddRADseq 
datasets that are not based on strict nucleotide polymorphisms, 
such as indel or presence–absence polymorphisms, may further 
help the resolution of more distantly related lineages (DaCosta & 
Sorenson, 2016).

4.3 | Reproducibility analysis

The observed error rates between replicate samples that were run 
within or between libraries were low, averaging about one error 
every 1000 base pairs (e.g., 0.0012 for 70/30N criteria, Table S1D) 
and lower than expected error rates. The observed error rates were 
also not significantly different when samples were run in the same 
or different libraries, but the error rates tended to be higher be-
tween libraries than within (Table S1D). Replicate samples in differ-
ent libraries represent different periods of laboratory preparation 
(i.e., PCR group, enzyme efficiency) which may present variation 
and increasing error rates than between replicate samples in the 

F IGURE  9 Effect of sequencing 
depth (total number of merged reads 
per sample) on (a) recovery of same 
(shared) loci (f2loci) and (b) nucleotide 
variation (observed error rate) between 
replicate pair samples filtered with the 
70/30N criteria. Replicate samples run on 
same sequencing library are circles and 
different libraries are triangles. Markers 
are transparent, showing some apparent 
overlap in data values where they appear 
darker

0

5.0 × 103

1.0 × 104

1.5 × 104

2.0 × 104

0 5.0 × 103 1.0 × 104 1.5 × 104 2.0 × 104

No. of loci in replicate 1

N
o.

 o
f l

oc
i i

n 
re

pl
ic

at
e 

2

Shared # of loci
2000
4000
8000
12000

0

5.0 × 103

1.0 × 104

1.5 × 104

2.0 × 104

0 5.0 × 103 1.0 × 104 1.5 × 104 2.0 × 104

No. of loci in replicate 1

N
o.

 o
f l

oc
i i

n 
re

pl
ic

at
e 

2

% nucleotide
variation between
replicates

0.01
0.10
0.20
0.40

(a) (b)



     |  6649SALAS-LIZANA and OONO

same library. Furthermore, the marginal increase in coverage depth 
and decrease in error rate with increasing sequencing depth may 
have depended on the Lophodermium species if they had different 
genome sizes.

Increasing sequencing depth per sample is likely the best 
method to improve reproducibility. Sequencing depths correlate 
with coverage depth per cluster (Figure S1), which affects the 
estimation of nucleotide identity when there are discrepancies 
among reads within a cluster. Hence, increasing sequencing depth 
increases reproducibility among samples and between librar-
ies by more accurately distinguishing PCR or sequencing errors 
from polymorphisms with greater coverage (Figure 9). Sequencing 
depth also has a strong positive correlation with number of loci 
per sample (Figure 6) and therefore increases the probability of se-
quencing shared loci among samples. Narrowing the range of read 
lengths to be sequenced during preparation of the pooled library 
would also help improve coverage. However, as we saw, deeper 
sequencing or greater coverage per locus (i.e., lower error rates 
within locus) was not necessarily needed for improving phyloge-
netic assessments within this genus. Clustering at a lower thresh-
old had the greatest effect on improving phylogenetic resolution 
by identifying more shared loci across distantly related species. A 
fine-scale analysis for population structure and diversity may re-
quire better resolution of nucleotide variation within clusters with 
greater coverage depths. For the identification of heterozygosity 
in nonhaploid organisms or homologous loci of larger genomes 
(e.g., >100 Mbps), deeper sequencing depths will be necessary 
with additional modifications, such as adapters that include ran-
dom degenerate sites for identifying PCR duplicates (Hoffberg 
et al., 2016), a narrower selection of read lengths, multiplexing 
fewer samples per library, or applying this protocol on the HiSeq. 
This study suggests that for haploid fungi that have relatively small 
genome sizes (30-50 Mbps; Tavares et al., 2014; Gregory et al., 
2007), increasing sequencing depths beyond 200k per sample will 
sufficiently decrease the error rates per locus and will be robust 
for fine-scale genetic analyses.

5  | CONCLUSIONS

The low-cost ddRADseq protocol using standard indexes (Kess et al., 
2016) produced sufficient numbers of loci to resolve the phyloge-
netic relationships of a diverse genus of fungal endophytes at lower 
costs (see Appendix S2 for cost comparison analysis) than the original 
ddRAD protocols. Special attention is needed, however, to identify 
appropriate filtering and clustering parameters. Although clustering 
thresholds significantly affected the phylogenetic resolution, quality-
filtering had little impact. Reproducibility and coverage depths were 
linked to sequencing depths, but high coverage depths (e.g., >10 
typically found in HiSeq data analyses) were not essential for strong 
phylogenetic support in this taxonomic group with a relatively small 
haploid genome. The use of longer reads may have reduced the 

number of shared loci, but the marginal increase in phylogenetically 
informative sites per read may compensate for this disadvantage.
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