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Abstract

Mussels of the genus Bathymodiolus are among the most widespread colonizers of hydrother-

mal vent and cold seep environments, sustained by endosymbiosis with chemosynthetic bacte-

ria. Presumed species of Bathymodiolus are abundant at newly discovered cold seeps on the

Mid-Atlantic continental slope, however morphological taxonomy is challenging, and their phylo-

genetic affinities remain unestablished. Here we used mitochondrial sequence to classify spe-

cies found at three seep sites (Baltimore Canyon seep (BCS; ~400m); Norfolk Canyon seep

(NCS; ~1520m); and Chincoteague Island seep (CTS; ~1000m)). Mitochondrial COI (N = 162)

and ND4 (N = 39) data suggest that Bathymodiolus childressi predominates at these sites,

although single B. mauritanicus and B. heckerae individuals were detected. As previous work

had suggested that methanotrophic and thiotrophic interactions can both occur at a site, and

within an individual mussel, we investigated the symbiont communities in gill tissues of a subset

of mussels from BCS and NCS. We constructed metabarcode libraries with four different primer

sets spanning the 16S gene. A methanotrophic phylotype dominated all gill microbial samples

from BCS, but sulfur-oxidizing Campylobacterota were represented by a notable minority of

sequences from NCS. The methanotroph phylotype shared a clade with globally distributed

Bathymodiolus spp. symbionts from methane seeps and hydrothermal vents. Two distinct

Campylobacterota phylotypes were prevalent in NCS samples, one of which shares a clade

with Campylobacterota associated with B. childressi from the Gulf of Mexico and the other with

Campylobacterota associated with other deep-sea fauna. Variation in chemosynthetic symbiont

communities among sites and individuals has important ecological and geochemical implica-

tions and suggests shifting reliance on methanotrophy. Continued characterization of symbi-

onts from cold seeps will provide a greater understanding of the ecology of these unique

environments as well and their geochemical footprint in elemental cycling and energy flux.
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Introduction

Distribution and ecology of Atlantic bathymodiolins

Benthic communities dependent on bacterial chemosynthesis are known to arise around a

variety of geochemical and biological sources, including hydrothermal vents [1], hydrocarbon

seeps [2], hypoxic sediments [3], wood [4], and whale falls [5]. Dominant fauna in these com-

munities engage in symbioses with chemoautotrophic microbes. Deep-sea chemosynthetic

communities separated by tens to hundreds of kilometers may share conspecifics and conge-

nerics, but the fauna that rely on chemoautotrophic microbes for nutrition have yet to be dis-

covered outside of reducing habitats. These oases provide a natural laboratory for investigating

how the dynamics of symbiosis affect megafaunal community assembly. Bathymodiolin mus-

sels, a sub-family within Mytilidae and endemic to chemosynthetic habitats, are of special

interest, in part because they colonize and can dominate both hydrothermal vents and hydro-

carbon seeps due to varied symbiont utilization by the hosts.

Prior to 2012, only one hydrocarbon seep on the Atlantic margin of North America was

known to support a chemosynthetic biological community, though many occur in the GOM

[6]. Blake Ridge Diapir (BRD, 2155m) is a site off the coast of South Carolina containing a bio-

logical chemosynthetic community first discovered in 1995 [7] and later determined to be

dominated by the bathymodiolin species, Bathymodiolus heckerae [8, 9]. In 2012, venting and

associated chemosynthetic communities were found at Cape Fear Diapir, dominated by vesi-

comyid clams and bacterial mats [10] and lacking bathymodiolin mussels altogether. More

recent surveys of hydrocarbon seepage along the Atlantic margin of North America [10, 11]

have documented hundreds of potential seeps, and remotely operated vehicle (ROV) sampling

expeditions have confirmed and sampled chemosynthetic fauna at several of these newly dis-

covered sites. A seep community near Baltimore Canyon (BCS), first detected by towed cam-

era in 1982 [12], was verified in 2012 at ~400m depth. A second, deeper seep community near

Norfolk Canyon (NCS) was discovered in 2013 at ~1520m depth [13, 14]. Most recently, a

seep near Chincoteague Island (CTS) was discovered at approximately ~1000 m depth [15]

(Fig 1). Three additional seep communities have been discovered and explored in the north-

eastern U.S. (NEUS) near Nygren and Veatch canyons off the coast of New England [16]. Like

chemosynthetic communities in the Gulf of Mexico (GOM) [17], the Barbados Accretionary

Prism (BAP) [18, 19], and the three Mid-Atlantic seep sites (MAS: BCS, NCS, CTS), the che-

mosynthetic communities observed from the NEUS were dominated by bathymodiolin mus-

sels. Vestimentiferan tubeworms and vesicomyid clams were conspicuously absent from

NEUS and MAS sites, though present at similar depths within many other Atlantic and GOM

seep communities [9, 10, 20, 21].

Given the wide geographic and bathymetric distributions of Atlantic bathymodiolins [22]

there are several species that could inhabit the MAS sites. Bathymodiolus heckerae at the BRD

is the closest in geographic proximity, though its known depth range is deeper than the MAS

sites. In fact, BCS is the shallowest of all the Atlantic seep chemosynthetic communities so far

reported. Both NCS and CTS are within the depth range of all Atlantic bathymodiolins. Bathy-
modiolus childressi has the greatest depth range of the Atlantic species (525–2284m) [23]. The

closest B. childressi assemblages to the MAS occur in the Caribbean off Trinidad and Tobago

[19] and throughout the GOM [2, 22, 24]. Furthermore, B. childressi larvae have been recov-

ered from surface water plankton tows in the GOM [25], and Lagrangian transport models

predict that GOM larvae can disperse to Mid-Atlantic waters [26]. Some mussels from the

BAP share genetic affinity with B.mauritanicus [22, 27–29], a species found in the Gulf of

Cadiz [27] and West Africa [6, 30], but their morphological characteristics are B. childressi-
like, B.mauritanicus-like, or intermediate [22]. Other mussels nearby are B. boomerang [22,
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31]. If other bathymodiolin species have similar larval durations and spawning behaviors as B.

childressi, then the MAS mussels could potentially be any of the known GOM, BRD, or Carib-

bean species, or possibly a new species altogether.

Bathymodiolin species prove difficult to identify solely based on morphology, as evidenced

by a study where 12–33% of initial morphological field identifications of GOM mussels were

incorrect when verified with molecular markers [24]. Molecular data have also indicated the

presence of species complexes in which separate species may be conspecifics [9, 29, 32, 33].

Therefore, augmenting morphological analyses of complex and plastic bathymodiolin taxon-

omy to perform species identifications at newly-discovered chemosynthetic communities, like

the MAS sites, necessitate molecular methods.

Bathymodiolin symbiont diversity

Initial studies of mussels from chemosynthetic environments concluded that each species har-

bored a single methanotrophic endosymbiont (e.g. [2, 34, 35]), a single thiotrophic endosym-

biont (e.g [36]), or both (e.g. [37]) contained in bacteriocytes within gill tissue [2, 34]. These

functionally divergent symbionts typically fell into two distinct clades of Gammaproteobac-

teria [38]. However, more recent studies have demonstrated that the symbiotic and nutritional

profiles of bathymodiolin mussels are more varied and complex [39–41]. For example, fila-

mentous, thiotrophic, “Epsilonproteobacterial” (since re-classified as Phylum Epsilonbacter-

aeota, then amended to Campylobacterota [42, 43]) epibionts were isolated from gill tissue of

Bathymodiolus childressi in addition to its known methanotrophic Gammaproteobacteria

endosymbiont. Furthermore, these Campylobacterota appear to be associated broadly with

Fig 1. Map of sampling locations of Bathymodiolus spp. in this study.

https://doi.org/10.1371/journal.pone.0211616.g001
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bathymodiolins, as metagenomic signatures of the epibionts were found in nucleotide

sequences from four out of eight bathymodiolin species surveyed [44]. The discovery of thio-

trophic Campylobacterota epibionts associated with B. childressi, a species presumed to rely

strictly on methanotrophic Gammaproteobacterial endosymbionts for nutritional input, and

the fact that not all species of Bathymodiolus contain Campylobacterota epibionts [44], illus-

trates the potential plasticity and adaptability of the hosts to a chemically dynamic environ-

ment, and that there is still much to discover with regard to host-symbiont relationships in

bathymodiolins.

Sulfur isotope signatures (δ34S) from gill tissue of the recently-discovered MAS mussels

suggested their dominant nutritional source is methane, but with a reliance of 16% (NCS) and

14% (BCS) on hydrogen sulfide (H2S) as an energy source [13], indicating the MAS mussels

demonstrate thiotrophic and methanotrophic nutritional modes, much like most other Atlan-

tic bathymodiolins. However, the microbial source of the chemical signatures remains

unknown. Therefore, to more fully understand the ecology of the MAS mussels and their role

in geochemical cycling, characterizing the symbiont pool within the gill tissue in MAS hosts

found at different seep sites is essential.

In this study, we present the first genetic analysis of bathymodiolin mussels from BCS,

NCS, and CTS and their gill symbionts from BCS and NCS. We sequenced two mitochondrial

genes (Cytochrome Oxidase I (COI) and NADH dehydrogenase subunit 4 (ND4)) to verify

the identities of MAS mussels. Second, we used the mitochondrial sequence data to examine

biodiversity and to reconstruct phylogeographic relationships among these and other Atlantic

bathymodiolin species. Additionally, we characterized the bacterial community found in the

gill tissue from NCS and BCS mussels via high-throughput 16S metabarcoding and four over-

lapping primer sets to cover the majority of the 16S gene. Lastly, we verified dominant micro-

bial phylotypes with Sanger sequencing. The metagenomic sequencing approach of the mussel

gill microbiome has the potential to detect rarer bacterial phylotypes than traditional Sanger

sequencing and cloning. Results were interpreted with respect to key issues in taxonomy, dis-

tributions, and ecology of Bathymodiolus.

Methods

Sample collection

In 2012, 2013, and 2017, bathymodiolin mussels were collected from methane seeps found

near Baltimore Canyon (N = 48, sampled at depths between 353–507 m), Norfolk Canyon

(N = 92, 1487–1612 m) and a site near Chincoteague Island (N = 35, 925-1037m), using

the ROVs Kraken (University of Connecticut) in 2012, the Jason II (Woods Hole Oceano-

graphic Institute) in 2013, and the Global Explorer (National Oceanographic and Atmo-

spheric Administration) in 2017 (Table 1; S1 Table). Adductor or mantle tissue was taken

from the mussels for host characterization to avoid co-extraction of symbiotic bacterial

DNA and gill tissue for microbiome characterization. All tissue was preserved in 95%

molecular grade ethanol. Because the CTS samples were obtained more recently, none

were included in the 16S symbiont metabarcoding study. Permissions were obtained to

collect specimens in the study regions from the NOAA National Marine Fisheries Service

as scientific research in accordance with the definitions and guidance at 50 CFR Sections

600.10 and 600.745(a). The proposed activities were not subject to fishing regulations at

50 CFR 622 or other regulations developed in accordance with the Manguson-Stevens

Fishery Conservation and Management Act and did not involve endangered or protected

species.
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Bathymodiolin molecular methods

Genomic DNA was extracted and purified via the Puregene Tissue Protocol (Qiagen), dou-

bling the volume of all reagents. The DNA was eluted in 100 μl of molecular grade water. For

most samples, a portion of the mitochondrial COI was amplified via PCR using the primers

HCO2198 and LCO1490 [46] or BathCOIF and BathCOIR [22]. The primers ArgBL (L-10421

in [47] and NAD2H (NAD2 in [48] were used to amplify a portion of tRNA methionine,

tRNA valine, and the 5’ portion of the ND4 gene [49] (see S2A and S2B Table for PCR condi-

tions). PCR purification, cycle sequencing reactions, clean-up, and Sanger sequencing was per-

formed as in [50].

Bathymodiolin mussel data analyses

DNA sequences were edited using Sequencher 5.2.2 (Genecodes) and aligned in MEGA 7.0.26

[51] using the ClustalW algorithm [52] and translated into amino acids (excluding tRNA-Met

and tRNA-Val from the ND4 sequences) using the invertebrate mtDNA translation table to

ensure no stop codons were present. Then, sequences were divided into three partitions corre-

sponding to the 1st, 2nd, and 3rd codon positions for phylogenetic tree generation (Open Sci-

ence Framework, DOI 10.17605/OSF.IO/GCWT2, File 1).

Bayesian phylogenetic analyses were performed for the concatenated mtDNA data set (S3

Table) and symbiont data sets (below) with MrBayes v3.2.6 x64 [53] on XSEDE using the

CIPRES Science Gateway V. 3.3 (https://www.phylo.org/; [54]). Four independent runs of six

chains of Markov Chain Monte Carlo sampling were run for a total of 207−507 generations

with settings to match the most appropriate model of sequence evolution for the dataset esti-

mated in MEGA. The “sumt” command was used to generate a consensus tree file, which was

visualized using FigTreev1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). All runs were ana-

lyzed in Tracerv1.6 [55] to assess convergence (Open Science Framework, DOI 10.17605/OSF.

IO/GCWT2, File 1).

Genetic diversity indices were estimated from the mitochondrial data using DnaSP 5.10

[56]. Both datasets contained MAS sequences, B. childressi from several GOM sites, Bathymo-
diolus cf mauritanicus from WAF seeps and B. sp B BAP (COI only), and B.mauritanicus from

Table 1. Sampling information of Mid-Atlantic bathymodiolin mussels from three seep sites.

Site Dive/Station # Date Depth (m) Lat (N) Lon (W) Sample Size

BCS B08 8/27/2012 412–454 38˚03’04 73˚49’19 15

B14 9/7/2012 407–507 38˚02’57 73˚49’20 9

B689 5/16/2013 353–441 38˚02’53 73˚49’19 20

GEX06-075 5/11/2017 393 38˚02’50 73˚49’22 4

CTS GEX04-032 5/9/2017 1037 37˚32’33 74˚06’06 9

GEX04-035 5/9/2017 1024 37˚32’29 74˚06’07 10

GEX05-053 5/10/2017 925 37˚32’29 74˚09’16 10

GEX05-069 5/10/2017 938 37˚31’13 74˚09’09 6

NCS N01 5/8/2013 1519–1612 36˚52’05 74˚29’14 37

J2683 5/9/2013 1421–1564 36˚52’11 74˚29’18 28

GEX03-009 5/8/2017 1482 36˚52’17 74˚28’34 7

GEX03-011 5/8/2017 1491 36˚52’17 74˚28’35 7

GEX03-023 5/8/2017 1494 36˚52’20 74˚49’28 11

BCS = Baltimore Canyon Seep, NCS = Norfolk Canyon Seep, CTS = Chincoteague Seep. Latitudes (lat (N)), longitudes (lon (W)), and depth ranges from years 2012–

2013 are from [45].

https://doi.org/10.1371/journal.pone.0211616.t001
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GOC (S4 Table). Hierarchical genetic structuring between different groupings within the data

was estimated using Analysis of Molecular Variance (AMOVA) as implemented in the poppr

and ade4 packages of R. Groups were defined hierarchically as species (B. childressi and B.

mauritanicus), then regions, then sites within B. childressi (S4 Table). The ten sites from the

GOM were defined as in [24]. For the Region/Site AMOVA, only sites that contained ten or

more individuals were included. A “quasieuclid” correction method was applied to the dis-

tance matrix calculated from the raw pairwise distances (ade4 package, https://cran.r-project.

org/web/packages/ade4/ade4.pdf). The strictest “farthest neighbor” algorithm was used to

merge clusters based on maximum distance between points in either cluster. If five percent or

more of nucleotides were missing at any given site, that position was excluded from the analy-

sis. Significance testing was performed via 10000 random permutations of the data. Median

joining haplotype networks [57] were created for COI and ND4 using PopART (Population

Analysis with Reticulate Trees [58]), with ε = 0. If more than five percent of the sites across all

sequences contained missing data, they were masked.

Gill microbiome molecular methods

16S metabarcode libraries. Ten mussels, three from a single NCS dive site and seven

from three BCS dive sites, were selected for 16S metabarcoding of their gill microbiomes (S1

Table, ‘16S’). Mussel samples from CTS were obtained late in the study, so were not included

in the microbial community analysis. DNA was extracted from gill tissue using the same pro-

tocol described above for mussels. To ensure that symbionts would be recovered from

sequencing efforts, four overlapping primer sets that each amplify approximately 460–500 bp

were used to capture the majority of the 16S gene (~1242 bp; S5 Table). Primer set 1 was equiv-

alent to the universal primers used in the Illumina protocol (www.illumina.com, 16S Metage-

nomic Sequencing Library Preparation, Part# 15044223, revA). Three additional primer sets

were designed along the 16S gene from 124 symbionts sequences from several Bathymodiolus
species (S6 Table). The sequences were aligned via the SSU-ALIGN alignment pipeline (55)

which utilizes the CRW database (http://www.rna.ccbb.utexas.edu; [59]). All 40 libraries, (10

mussel samples × 4 primer sets) were pooled to a 4nM concentration and five percent PhiX

was added as a control. The final library was diluted to 12pM and run on an Illumina MiSeq at

the USGS–Leetown Science Center.

Generation of 16S sequences from overlapping amplicons. We built full length consen-

sus sequence models that spanned all four primer sets by stringently mapping reads from all

primer sets to selected full-length 16S references to generate novel consensus sequences.

Appropriate references were identified by aligning 50 randomly selected reads from ps1 and

ps2 from a single sample (MASM22) to the GenBank nucleotide database (nt) with BLAST (S7

Table). This was done with two primer sets to compare the consistency of phylogenetic place-

ments between gene fragments. Both primer sets had a large portion of reads that had best

BLAST matches to a consistent set of closely related Gammaproteobacteria methanotrophs

isolated from species of Bathymodiolus. One of these, Genbank accession AM236329, was cho-

sen as a mapping reference. Reads from all four primer sets were mapped to this accession

with Bowtie2 [60] v. 2.2.8. Reads mapping at less than 97% identity or with more than two

indels were filtered from the resulting alignment file. The majority-rule consensus sequence

(i.e. without ambiguity characters) was then generated with SAMtools v.1.3 [61].

In a subset of our samples, a notable portion of the reads matched to GenBank accessions

from Campylobacterota, though the best BLAST matches were more variable across primer

sets, making a suitable template for consensus generation difficult to choose. We therefore

used an explicitly phylogenetic assessment rather than choosing a high-scoring match, by
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constructing de novo consensus sequences of the Campylobacterota reads from MASM22.

These were mapped to known Campylobacterota sequences and the majority-rule consensus

sequence for each group of different Campylobacterota found in our data was generated as

described above. A neighbor-joining phylogeny was constructed in MEGA 7 [62] using the

consensus sequences of the 50 most abundant Campylobacterota groups (based on read

count) and a broad set of reference 16S sequences representing known bathymodiolin symbi-

onts (S1 Fig). Trees for ps1 and ps2 amplicons were consistent, showing two clusters of con-

sensus groups surrounding Genbank accessions KU573880, an uncultured Campylobacterota

bacterium clone from Bathymodiolus sp. collected from off the coast of Pakistan [44] and

FM994669, an uncultured Campylobacterota bacterium from the gills of Pectinodonta sp., a

limpet host found on sunken wood [63]. These two accessions were therefore selected as refer-

ences for mapping reads from all four primer sets, after culling the reads used to generate the

methanotroph consensus. Alignments less than 97% identity or with more than two indels

were again filtered and consensus sequences generated as above.

A final mapping of all reads simultaneously to the three consensus-sequence phylotypes

was performed to assess their relative abundance by primer set. Reads that failed to map strin-

gently (�97% identity, no more than two indel positions, and at least 400-bp in length) were

considered unclassified. The final Bowtie2 alignment was loaded in the alignment viewer Tab-

let [64] to calculate mismatch frequencies by position and confirm that no high-frequency

alternative alleles were present that were discordant with the inferred consensus.

The accuracy of these consensus sequences was further confirmed by Sanger sequencing of

targeted amplicons. These were generated with specific forward primers and a common

reverse primer (BathySymR: 5’-AAGGGCCATGATGACTTGAC-3’). Primer BathyMethF

(TCAATTGGGAGGAAAACAGG) targeted the Gammaproteobacteria methanotroph (“Phylo-

type M” hereafter), primer BathyCampKUF (TATACCAAGATTATGACGGTAG) targeted the

Campylobacterota similar to KU573880 (“Phylotype C1”) and primer BathyCampFMF

(TGTTAGAAGATAATGACGGTAT) targeted the Campylobacterota similar to FM994669

(“Phylotype C2”). The primers were tested in a subset of mussels: MASM5, MASM22,

MASM30, MAS538, MAS562, and MASM34. The PCRs recipe and conditions used for ampli-

fications are listed in S2A and S2B Table. PCR purification, Sanger sequencing, sequence edit-

ing and alignment were performed as above.

Phylogenetic analysis of symbiont 16S sequences. Both Bayesian and maximum likeli-

hood (ML) phylogenetic analyses of the dominant symbionts were performed. A phylogeny of

endosymbiont Gammaproteobacteria was constructed with 36 16S sequences from methano-

trophic endosymbionts from bathymodiolins and Phylotype M. The Bayesian phylogenetic

analyses were run as above, specifying the best model of sequence evolution (K2+G+I) deter-

mined in MEGA 6.06. The significance of each clade in the ML trees was determined with 500

bootstrap replications. A second phylogenetic analysis was performed for Campylobacterota,

including phylotypes C1 and C2 as well as 69 sequences used in the phylogenetic analysis in

[44] (see S8 Table for NCBI accession numbers). Trees were estimated with the best-fit model

of sequence evolution (K2 + G) as well as the general time reversible (GTR) + G + I (nst = 6,

rates = invgamma), for comparison with the analysis in [44]. Batch input files for both phylog-

enies can be found at Open Science Framework, DOI 10.17605/OSF.IO/GCWT2, File 2. Fur-

ther details regarding metadata can be found at [65].

OTU generation and taxonomy per primer set. Reads from each primer set were run

independently through the Mothur 1.39.5 pipeline [66, 67], mostly following the Mothur

MiSeq SOP (https://www.mothur.org/wiki/MiSeq_SOP; accessed December 2016 –August

2018; [66]). Fastq files from both reads per primer set were merged and sequences trimmed,

processed, aligned in Mothur version 1.39.5, and clustered into operational taxonomic units
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(OTUs; cut-off of 0.03), and classified in Mothur version 1.38.1.1. VSEARCH [68], was used to

detect chimeric sequences in two ways. First, using the consensus sequences for phylotypes M,

C1, and C2 as references, then in a de novo fashion. After the two chimeric removals, reads

identified as putative chimeras were removed from downstream analyses. Taxonomic classifi-

cation within the Mothur pipeline used the SILVA database (https://www.arb-silva.de; [69]),

version 132 (released December 2017) as the reference database. We followed the reference

curation protocol (http://blog.mothur.org/2018/01/10/SILVA-v132-reference-files/) to gener-

ate a reference database specific to each primer set region. Mothur input and output files can

be found in Open Science Framework, DOI 10.17605/OSF.IO/GCWT2, File 3.

Mothur-generated OTU counts and taxonomy were imported into the Phyloseq package

(v. 1.19) in R (v. 3.3.2) for diversity analysis. For each primer set, singleton OTUs were

removed and counts were rarefied to the minimum sample size. Taxonomic proportions at

each sampling site were also visualized hierarchically with Krona [70].

Results

Phylogenetic analysis of Bathymodiolus samples

The COI sequence alignment was 676 bp in length and included 162 MAS mussels (Genbank

accession numbers MG519868-MG519983; MH723711-MH723755, S1 Table). The COI data-

set contained 83 variable sites (with two sequences omitted due to missing data), three of

which were predicted to result in amino acid changes. The ND4 sequence alignment was 626

bp, included 39 individuals (Genbank accession numbers MG519984-MG520022, S1 Table)

and contained 146 variable sites, including 39 nonsynonymous variants. No nonsense or

frameshift mutations (indicators of nuclear pseudogenes) were observed. The HRS035 ND4

sequence had three nucleotide insertions in the tRNA portion of the sequence compared to the

remaining samples. The concatenated mtDNA dataset consisted of six partitions: the 1st, 2nd,

and 3rd nucleotide positions of codons in both genes, excluding sequence from tRNA-Val and

tRNA-MetPhylogenetic analysis included 21 MAS samples with data from both loci and 35

samples with data retrieved from Genbank (S3 Table).

The COI + ND4 phylogeny recovered Bathymodiolus childressi and B. mauritanicus as

closely-related sister taxa with high statistical support. Most MAS individuals grouped with

B. childressi accessions, except for MASM34 which grouped with B. mauritanicus (Fig 2;

posterior probability = 1.0). There was also strong support for the “childressi” complex,

including B. platifrons, B. japonicus, B. securiformis, B. spp. from the West Pacific, plus sev-

eral Gigantidas species. Our phylogeny was mostly concordant with the results from [32] in

which B. platifrons was the outgroup to the B. childressi + B. mauritanicus clades. Slight dif-

ferences in placement of the two B. tangaroa accessions within the “childressi” complex

were noted. The closest species outside of the “childressi” complex was Adipicola crypta,

collected from the west Pacific, which was not included in the previous study. As above,

HRS035 grouped with B. heckerae with high support (posterior probability = 1.0). Deeper

branches in our phylogeny had low statistical support. Outside of the “childressi” complex,

the B. heckerae, B. brevior, and B. thermophilus groups were similar between the two trees as

well as their relationships to each other. A notable exception was the relationships between

major clades within the B. brooksi group. In the former study, the B. heckerae group’s sister

clade was the B. brevior group. In our phylogeny, the B. brooksi group is sister to the B. heck-
erae group (posterior probability = 0.94). The most basal group of the B. boomerang/B. ther-
mophilus complex in [31] was the B. brooksi group, but our phylogeny puts B. thermophilus
in the basal position (posterior probability = 0.98).
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Mitochondrial DNA genetic diversity

Summary statistics of nucleotide and haplotype diversity revealed similar levels of diversity at

the BCS, NCS, and CTS (COI only) sites (Table 2). Haplotype diversity (Hd), which accounts

for different sample sizes, was similar among each site yet was slightly higher for ND4 (CTS

excluded). For COI, the B.mauritanicus sequences included representatives from both sides of

the Atlantic Ocean. Though η, S, and h were smaller than those from the B. childressi popula-

tions,Hd and k were comparable.

Fig 2. Bayesian phylogeny constructed from mitochondrial COI+ND4 including 21 mussels collected from Mid-

Atlantic seep sites (MAS). Posterior probabilities above 0.90 = �; above 0.95 = ��. S3 Table contains Genbank

accession numbers of individuals not collected in this study.

https://doi.org/10.1371/journal.pone.0211616.g002
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Due to their close genetic relationship, sequences from B.mauritanicus and B. childressi
were included in a minimum spanning COI haplotype network analysis (N = 297; Fig 3A, see

S1 and S4 Tables). The network contained 56 unique haplotypes. Two main haplotype groups

were separated by six mutational steps. The larger group contained all the B. childressi plus

most of the MAS mussels, with three common haplotypes accounting for 64.6% of the

sequences in the network. These common haplotypes were shared among the GOM, CTS,

BCS, and NCS samples. Another grouping of haplotypes was separated from the main B. child-
ressi haplotype groups by at least ten mutational steps. This smaller group was comprised of

sequences from B. cf mauritanicus, B.mauritanicus, B. sp B BAP and MAS34 from BCS, and

contained nine unique haplotypes. The MASM34 was a single mutational step away from a B.

sp B BAP haplotype and was at least ten mutational steps from the nearest MAS haplotype.

An ND4 haplotype network incorporating 119 sequences (51 unique haplotypes) from B.

mauritanicus and B. childressi was broadly concordant with the COI network (Fig 3B; see S1

and S4 Tables). The MASM34 sample grouped with B.mauritanicus individuals that were sep-

arated by at least 16 mutational steps from the larger B. childressi haplotype group containing

the remaining MAS mussel haplotypes. Each of the six haplotypes within the B.mauritanicus
group was found in a single individual. At least 21 mutational steps separated MASM34 from

the next closest MAS haplotype. In the B. childressi group, the four most common haplotypes

accounted for 52.9% of the ND4 sequences and were shared between the GOM and at least

one of the MAS sites.

An AMOVA analysis was performed on the COI and ND4 data from MAS mussels and

Bathymodiolus childressi and B.mauritanicus individuals from other studies (S4 Table). When

considering only species level differentiation, the results were significant for both COI and

ND4, with 83.4–85.5% of the variation within the data ascribed to between-species partitioning

(Table 3). For the site by region AMOVAs, the COI analysis included five GOM sites and two

MAS sites, based on a sample size of ten or greater (S1 and S4 Tables). For the ND4 AMOVA,

four GOM and two MAS sites were included. These tests were not significant at the p = 0.05

level for either gene between regions and between sites within regions (Table 3). In both cases,

96–99% of the variation observed was attributed to within-site variation.

Table 2. Genetic diversity within different populations of B. childressi and B. mauritanicus at COI and ND4 mitochondrial genes.

Gene Group N nt η S h Hd σ Hd k σk π Δaa
COI � BCS 46 344 16 14 17 0.84 0.0015 1.95 1.27 0.005 1

NCS 79 446 22 20 26 0.83 0.0009 1.97 1.27 0.004 0
CTS 35 355 13 12 14 0.85 0.0410 1.65 0.99 0.005 0
B. chi (GOM) 106 331 31 29 35 0.83 0.0010 1.64 0.95 0.005 0
B. mau (w/MASM34) 31 366 13 13 11 0.82 0.0025 1.81 1.15 0.005 0

ND4 � BCS 13 597 14 14 11 0.96 0.0025 3.56 3.75 0.006 4
NCS 21 596 12 12 14 0.93 0.0016 2.55 2.04 0.004 2

� B. chi (GOM) 76 623 49 47 38 0.95 0.0002 3.11 2.67 0.005 5
B. mau (w/ MASM34) 6 456 7 7 6 1.00 0.0093 2.53 2.49 0.006 2

BCS = Baltimore Canyon Seep, NCS = Norfolk Canyon Seep, CTS = Chincoteague Seep, GOM = Gulf of Mexico, MAS = Mid-Atlantic Seeps, B. chi = Bathymodiolus
childressi, B. mau = Bathymodiolus mauritanicus
�These populations do not include MASM34.

nt = number of nucleotides used in the analyses, η = number of mutations S = number of segregating sites, h = number of haplotypes,Hd = haplotype diversity, σHd =

variance of Hd, k = number of pairwise differences σk = stochastic and sampling variance of k, assuming no recombination, π = nucleotide diversity, Δaa = number of

nucleotide changes that result in an amino acid change

https://doi.org/10.1371/journal.pone.0211616.t002
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Fig 3. Minimum spanning networks created from A) COI and B) ND4 sequences generated from Mid-Atlantic seep mussels. Each circle represents a

unique haplotype. Size is proportional to the number of mussels sharing the haplotype. Sample sizes� 10 are reported inside the circles. Hash marks are

mutational steps between haplotypes. GOM = B. childressi from several Gulf of Mexico sample sites, BCS = Baltimore Canyon Seep, NCS = Norfolk Canyon

Seep, CTS = Chincoteague Seep, GOC = B.mauritanicus from Gulf of Cadiz, WAF = B. cf.mauritanicus from West Africa, BAP = B. sp B from the

Barbados Accretionary Prism. See Table 1, S1, and S4 Tables for sample information.

https://doi.org/10.1371/journal.pone.0211616.g003

Table 3. Analysis of Molecular Variation (AMOVA) between Bathymodiolus childressi and B. mauritanicus species and within and between regions for B. childressi.

COI df F σ % p-val
Between Species 1 0.834 4.626 82.973 1.0E-04

w/n Species 242 0.949 17.028

Total 243 5.575 100

Between Regions 1 0.010 0.016 1.609 0.053

w/n Region, btwn Sites 6 -0.0014 -0.003 -0.328 0.586

w/n Site 231 0.0084 0.972 98.719 0.260

Total 238 0.9849 100

ND4 df F σ % p-val
Between Species 1 0.855 6.959 85.484 1.0E-04

w/n Species 117 1.182 14.516

Total 118 8.141 100

Between Regions 1 0.035 0.043 3.526 0.069

w/n Region, btwn Sites 4 0.004 0.004 0.339 0.375

w/n Site 80 0.039 1.169 96.135 0.119

Total 85 1.216 100

Analyses were executed in poppr and ade4 packages of R. See S4 Table for definition of Regions and Sites and [23] for explanation of GOM sites. df = degrees of

freedom, F = degree of differentiation analogous to F-statistics (68), σ = variance for each hierarchical level, % = percent of total variance partitioned to each level, p-

val = p-value estimated from 10,000 permutations

https://doi.org/10.1371/journal.pone.0211616.t003
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Gill microbiome

Sequencing QC. The total number of reads that passed filter and were successfully demul-

tiplexed was 17,408,059. The overall per-base error rate estimated from the PhiX control spike

was 2.45%. The average distribution of reads per sample was 2.21%, which is close to the tar-

geted value of 2.5%. Libraries for primer set 3 performed poorly, with three samples falling

below 1% of total reads. One sample from ps2 fell below one percent. The smallest libraries,

MAS538_2 (ps2) and M36_3 (ps3), were excluded from downstream analyses. MAS538_4 and

MAS562_4, both from ps4, resulted in much higher numbers of reads than the expected 2.5%.

MAS538_4 accounted for 14.7% of passed read pairs (S2 Fig). Fastq sequences were deposited

into the sequence read archive (SRA) in Genbank under BioProject PRJNA401268 with the

following BioSample accessions: SAMN07601752–61.

Phylogenetic analysis of the consensus phylotypes. Full length 16S consensus sequences,

phylotypes “M”, “C1”, and “C2”, were generated by stringently mapping reads to accessions

AM236329, KU573880, and FM994669, respectively, which were identified as closely related

by BLAST searches and phylogenetic analysis (see Methods for details). This approach assumes

that each consensus sequence represents a single bacterial species and that full-length acces-

sions can be identified that are similar enough to allow stringent read mapping. The accuracy

of the reconstructed, consensus sequences was confirmed by targeted PCR and Sanger

sequencing. Phylotype M was successfully sequenced in seven of the eight mussels screened,

with 100% sequence identity (Genbank accession numbers MH984855-59; 719 bp). The sam-

ple MASM5 failed to amplify for all three primer sets and a subsequent PCR with universal

primers, suggesting sample degradation in storage. Phylotypes C1 and C2 were successfully

sequenced in MASM22, MASM30, and MAS538 (Genbank accession numbers MH938809-11;

MH939150-52). Neither C1 nor C2 amplified in the remaining individuals, MASM34,

MASM45, MAS100, and MAS562, which is concordant with our metabarcoding results (see

below). All Campylobacterota-positive samples amplified both Campylobacterota phylotypes.

The Sanger sequence of C1 had 99% sequence identity with the consensus model (713 aligned

nucleotides; 81% coverage). The Sanger sequence of C2 also had 99% sequence identity with

the consensus model (710 nucleotides; 58% query coverage). The two Campylobacterota con-

sensus models shared 94% identity with each other.

The Bayesian and ML phylogenies (Figs 4 and 5; S8 Table) containing our full length recon-

structed phylotypes were mostly concordant. Phylotype M falls within a well-supported clade

containing endosymbionts from Bathymodiolus childressi, two undescribed species from the

southern MAR (B. sp 5 South and B. sp 9 South), and two species of Bathymodiolus from off

the coast of Japan. In both trees, endosymbionts isolated from B.mauritanicus are the immedi-

ate outgroups of this clade. Across both phylogenies, shallower relationships tended to exhibit

higher statistical support than deeper nodes. Discrepancies between the trees occurred with

the placement of the clade containing Idas sp. and B. brooksi symbionts, a clade containing an

aberrant B. azoricus sequence (AM083967), B. sp. Siss1, and B. platifrons.
Bayesian and ML trees agreed about the placement of C1 and C2. Phylotype C1 fell into a

clade of 50 Campylobacterota accessions isolated from several species of Bathymodiolus,
including B. childressi, (KU573846-80; KU644646-60: [44]). Phylotype C2 had a sister relation-

ship to a symbiont from a deep-sea gastropod (Pectinodonta sp.). Related taxa included symbi-

onts from a cold seep clam (Thyasira sp.), and two coral species (Acropora cervicornis and

Muricea elongata). Among the more basal clades, discrepancies occurred between our trees

and the Campylobacterota phylogeny in [44], regarding the placement and relationships of the

most basal taxa. However, only one accession per genus was reported, such that we were not

able to completely recreate their phylogenetic analysis with our added sequences. Adopting the
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same evolutionary model (GTR+G+I) used by [44] did not alter the structure of either of our

phylogenies.

OTU generation and taxonomy assessed per primer set. The reads from each primer set

per sample were taken through the Mothur pipeline to access the performance of each primer

set and examine the abundances of taxa per sample and site. The quality control, chimera

removal, and singleton trimming resulted in a 30.7–72.5% reduction of reads depending on

the primer set (S9 Table). In concordance with our findings above, the majority of the resultant

OTUs from each primer set were assigned to Phylum Proteobacteria, with a notable minority

assigned to Phylum Campylobacterota (Silva v132 assigned as Epsilonproteobacteraeota, since

renamed as Campylobacterota [43]; Fig 6). Within Proteobacteria, the most abundant Class

was Gammaproteobacteria (Fig 7; S10 Table). Those OTUs were assigned the Family Methylo-

monaceae within the Order Methylococcales. This taxonomic assignment accounted for 78.5–

99.7% of the total reads across all samples and primer sets (S10 Table). Helicobacteraceae

(Campylobacterota: Camplyobacteria; Campylobacterales) was the second most abundant

Family and accounted for 13.20–21.4% of the reads for primer sets ps1,2, and 4, but were

observed in all the NCS samples and one BCS sample. Although BCS samples all had at least

trace amounts of Campylobacterota from the ps1, ps2, and ps4 primers, MAS538 (Fig 6, num-

ber 9) was the only BCS sample with substantial proportions, whereas comparable profiles

Fig 4. 16S Bayesian phylogram based upon 16S sequences from known endosymbionts from bathymodiolins and other

deep-sea hosts. The nodes are labeled with the ML probabilities based on 500 bootstrap replicates before the slash and

Bayesian posterior probabilities after the slash. If the node placement did not agree between the two trees, a “-” is indicated

before the slash. The branch tips are labeled with the name of the host species. If more than one sequence from that host is

represented in that clade, the sample size is in parentheses after the name. A Gammaproteobacteria thiotroph from a

hydrocarbon seep tubeworm, Escarpia sp. (JF969172), was used as an outgroup. Our consensus sequence, M, is in bold. S8

Table contains Genbank accession numbers of all individuals in the tree.

https://doi.org/10.1371/journal.pone.0211616.g004
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were found in all NCS samples. The distribution of the two most abundant families were dif-

ferent between the two sampling sites, with 98% of the OTUs assigned to the genusMethylo-
profundus (Family Methylomonaceae) in the BCS ps1 samples, but only 54% assigning to

Methyloprofundus in NCS samples (Fig 7). Forty-five percent of OTUs from NCS ps1 were

assigned to Helicobacteraceae.

The OTU diversity measured with Mothur and Phyloseq was similar to the proportion of

reads mapping to the three consensus phylotypes from each sample and supported the consis-

tency of the reconstructed full-length phylotypes with the Mothur analysis (S3 Fig; S11 Table).

The known bathymodiolin endosymbiotic thiotrophs (e.g. Gammaproteobacteria from B.

mauritanicus [41, 71] or B. heckerae [72, 73], belong to the Thioglobaceae Family (Order Thio-

microspirales). Reads from all four primer sets were assigned to Thiomicrospirales, but at low

relative abundances (<0.0001–0.0014%; S10 Table). We observed only trace amounts of Thio-

microspirales in sample MASM34, which clustered with B.mauritanicus/B. sp B in phyloge-

netic analyses. While B.mauritanicus from GOC has been shown to harbor both

methanotrophic and thiotrophic Gammaproteobacteria endosymbionts, the symbiotic profile

of B. sp B BAP is not known.

The communities identified with each primer set were broadly similar but with some nota-

ble differences. Primer set 4 yielded higher Campylobacterota abundances in BCS samples

than those recovered by other primer sets (S10 Table; Fig 6), whereas primer set 3 largely failed

Fig 5. 16S Bayesian phylogram based upon 16S sequences for Campylobacterota. The nodes are labeled with

maximum likelihood bootstrap probabilities based on 500 bootstrap replicates before the slash and Bayesian posterior

probabilities after the slash. If the node placement did not agree between the two trees, a “-” is indicated before the

slash. The branch tips are labeled with the name of the host species. If more than one sequence from that host is

represented, the samples size is in parentheses after the name. In cases where the host is not a marine organism, the

host and symbiont are both listed, separated by a semi-colon. Sulfurovum lithotrophicum, Arcobacter marinus, and

Sulfurospirillum deleyianum were collected from sediment. S8 Table contains Genbank accession numbers of

individuals in the trees. Phylotypes C1 and C2 are in bold. �The clade including C1 also includes symbionts isolated

from Bathymodiolus azoricus, B. childressi, B.manuensis, B.mauritanicus, B. sp. 9 South, and B. sp. Pakistan.

https://doi.org/10.1371/journal.pone.0211616.g005
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to recover this taxon. Only a single Campylobacterota bathymodiolin symbiont (AB259697; S6

Table) was included in an alignment of potential symbionts from which the novel primers in

this study were generated. A review of this alignment revealed six mismatches in the ps3 for-

ward primer and a single mismatch in the reverse primer for that accession. Thus, the ps3

primers probably failed to appreciably capture Campylobacterota due to poor primer design.

Differences in the phylogenetic signal of each amplicon might also contribute to variability in

taxonomic assignments.

Discussion

Presence of three Bathymodiolus species at MAS sites

Based on molecular evidence from two mitochondrial genes, most mussels sampled at the

MAS were Bathymodiolus childressi. This finding expands both the geographic range of the

species (known previously from the GOM and off the coast of Trinidad and Tobago [19]), and

its upper margin of depth, to 362 m (BCS). Molecular data also revealed single individual likely

conspecific with B.mauritanicus/B. sp B BAP at BCS and a single B. heckerae at NCS among

our MAS samples. This is the first report of B.mauritanicus/sp B BAP above 1000m and north

of the Caribbean in the northwestern Atlantic Ocean. Finding B. heckerae at 1494m at NCS

expands its previous known depth range (2155m–3300m; [6, 9]). Though sympatry of bathy-

modiolins is common at GOM seep sites [24], this is the first reported co-occurrence of B.

childressi with its sister species B.mauritanicus/sp. B BAP, or with B. heckerae. Considering the

rarity of the latter two species in our sampling, co-occurrence may generally be more common

than currently known, but easily overlooked when frequencies are skewed. Additional exam-

ples of sympatry among these species may be discovered with more intensive sampling at

Atlantic seep sites. Local dominance of B. childressi has been reported elsewhere, even when

other species occur in the vicinity. For example, a recent study reported extensive assemblages

of B. childressi at four sites off the coast of Trinidad and Tobago [19], though B. sp B BAP has

Fig 6. Phylum-level diversity per sample recovered by four primer sets. Phyla abundances as assigned with Mothur

and the SILVA v132 reference database. Each panel represents a different primer set (ps1-ps4). The y-axis represents

number of OTUs x1000. 1 = MAS100, 2 = MAS109, 3 = MASM22, 4 = MASM30, 5 = MASM34, 6 = MASM36,

7 = MASM45, 8 = MASM5, 9 = MAS538, 10 = MAS562. NCS samples are shown in bold on the x axis.

https://doi.org/10.1371/journal.pone.0211616.g006
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been reported at nearby seeps [22]. Competitive exclusion [74] and ecological limits (see refs

8–10 in [24]) remain potential ecological drivers of resource monopolization, and co-occur-

rence may be a transient rather than stable state.

The single individual of B. heckerae sampled at NCS may be a recruit from BRD (closest

known occurrence) or from an undiscovered site closer to Norfolk Canyon. The bottom-water

temperature at BRD, where B. heckerae was reported as the dominant seep community species,

was 3.2˚C [9], which is comparable to the temperature at NCS (3.9–4.1˚C) and several degrees

cooler than BCS (6.1–9.4˚C) [13], perhaps making it intolerable for B. heckerae settlement

and/or survival. On the other hand, B. childressi, whose previously documented depth ranged

from 525m – 2284m, may tolerate a wider range of temperatures, explaining its abundance at

BCS. The NCS site lies within the depth range of a turnover zone of seep fauna, identified

between 1300-1700m in the GOM, where the dominant members of seep communities above

1300m are different from those found below 1700m [6]. Further exploration of deeper seep

communities on the Atlantic margin is necessary to determine whether the pattern of species

turnover at depth holds for seep communities outside the GOM.

Mitochondrial haplotype networks of the MAS mussels showed high genetic diversity and

little geographic structuring of haplotypes including between MAS and GOM, similar to

observations of B. childressi populations in the GOM throughout their depth and geographic

Fig 7. Hierarchical distribution of bacterial diversity at each site. The top circle represents Baltimore Canyon site

(BCS) and the bottom circle represents Norfolk Canyon site (NCS). The taxonomic hierarchy proceeds outward.

Primer set 1 (ps1) is shown. The results from ps2 and ps4 were similar, but ps3 lacked Campylobacterota due to

substantial primer mismatches.

https://doi.org/10.1371/journal.pone.0211616.g007
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range [24, 75]. The lack of genetic structuring over thousands of kilometers may reflect high

dispersal ability. B. childressi larvae from the GOM have been projected to reach the Mid-

Atlantic based upon ocean circulation and Lagrangian larval transport models [26]. Addition-

ally, B. childressi larvae have been recovered in plankton tows and their larvae can survive up

to a year in the water column [25]. Genetic connectivity across disjunct chemosynthetic eco-

systems of the deep Atlantic Equatorial Belt has been demonstrated in other seep species as

well, such as alvinocarid shrimp and vesicomyid clams from vents on the MAR (vent sites

Lucky Strike to Clueless), and seeps from WAF, BAP, Mid-Cayman Ridge, BRD, and the

GOM [76].

Evidence of thiotrophy within MAS Bathymodiolus childressi
Since the discovery and characterization of the endosymbiont within the gills of Bathymodiolus
childressi, the assumption has been that this species derives its nutrition solely from methano-

trophy via a single Gammaproteobacteria methanotrophic phylotype [34, 73, 77] even though

other sympatric and neighboring species of bathymodiolins harbor both methanotrophs and

thiotrophs (i.e. B. brooksi, and B. heckerae). In accordance with these previous studies, we

found a dominant Gammaproteobacteria methanotroph present in all ten MAS mussels (nine

B. childressi, one B cf.mauritanicus) we analyzed. However, we also found two phylotypes of

Campylobacterota present in four of the ten mussels, with both phylotypes co-occurring

within mussels. Phylotype C1 belonged to the same phylogenetic clade as the Campylobacter-

ota recovered from GOM B. childressi [44], but Phylotype C2 belonged to a clade shared by

sulfur-oxidizing Campylobacterota (identified as Epsilonproteobacteria) recovered from a

deep-sea, wood-feeding gastropod [78]. The fact that the MAS mussel Campylobacterota are

closely related to other known sulfur-oxidizers from marine habitats lends compelling but

indirect evidence (i.e. estimation of ecological roles based on phylogenetic relationships, [79])

that MAS and GOM B. childressimight be benefiting from thiotrophy to some degree via

Campylobacterota epibionts living in dual symbiosis [44].

Given the commonality of specimens, results from this study can be directly compared with

those presented in [13] whereby gill stable isotope values were used to evaluate the relative

importance of methane and sulfur as energy sources. Based on their sulfur isotope (δ34S)

results suggesting utilization of H2S as a potential energy source, we expected to see thiotrophs

in larger abundance in BCS than in NCS. Instead, the mussels analyzed from NCS had abun-

dances of Campylobacterota roughly equal to the Gammaproteobacteria methanotroph in

their gills whereas most BCS mussels had only trace amounts of Campylobacterota, with one

exception. Furthermore, the highest δ34S values from [13] came from mussels containing

Campylobacterota. However, higher δ34S values do not preclude the presence of thiotrophs, as

observed in Bathymodiolus mauritanicus from the GOC [41, 71]. In general, isotopic values for

mytilids tend to be variable and dependent upon many factors such as nutrition, tissue turn-

over time, type of symbiont and relative abundance, ontogeny, and local environmental condi-

tions [41]. For example, the almost complete lack of Campylobacterota in BCS mussels despite

the isotopic evidence of a sulfide source could indicate bacterial turnover within the gill. Bathy-
modiolus childressi ingests its methanotrophic Gammaproteobacteria endosymbiont, con-

tained in bacteriocytes within the gill, to acquire nutrition [17, 80]. If mussels digest symbionts

and recapture new ones throughout their lifetime, or utilize resources from transient epibionts,

then tissue isotope values may represent a time-integrated diet, which reflects assimilated sul-

fur-derived nutrients only when thiotrophs are present. Furthermore, Campylobacterota epi-

bionts that are closely related to, if not synonymous with, our Campylobacterota Phylotype C2

(Fig 5), switch from autotrophy to mixotrophy and/or heterotrophy throughout their life cycle
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in their host, Rimicaris exoculata [81]. Given both the gill and periostracum of MAS mussels

had variable δ34S values [13], mixotrophy including thiotrophy may be characteristic of B.

childressi at MAS sites.

Plasticity of epibionts

The fact that we recovered Campylobacterota from one of four sampling events from BCS and

the single dive from NCS suggests a patchy distribution of the epibionts on a relatively small

geographic scale. In contrast, all Bathymodiolus childressi from five GOM sampling locations

contained Campylobacterota and all three B. sp B BAP (referred to as B.mauritanicus in the

study) contained Campylobacterota [44]. We did not observe Campylobacterota nor a Gam-

maproteobacteria thiotroph in our single B. cf.mauritanicus sample from BCS.

Symbiont abundance plays a key role in adaptation to fluctuating environmental conditions

[82]. Absolute and relative abundances of Gammaproteobacteria endosymbiotic methano-

trophs and thiotrophs in bathymodiolin hosts have been shown to vary between sampling sites

and within conspecific hosts from different locations [41]. In some species known to harbor

both methanotrophs and thiotrophs, the symbiont phylogenetic patterns suggest that metha-

notrophic endosymbionts may be host-specific and thusly coevolving with their hosts whereas

thiotrophic symbionts can be found in a wider range of hosts [83]. In aquaria, pulses of sulfur

led to changes in abundance of sulfur oxidizers and densities of symbionts varied over time

[84, 85], proving that this differential is due to direct, real-time responses of sulfur-oxidizers to

changing environmental conditions. In fact, the variation in symbiont communities within

host individuals may be a mechanism of adaptation to different microhabitats [72] or sub-

strates [83] or a response to stress or nutritional shifts in the host, as seen in corals and insects

[86, 87]. Plasticity extends to life history as well, with some Gammaproteobacteria thiotrophs,

closely related to bathymodiolin endosymbionts, found to be extracellular [88, 89] and/or het-

erotrophic [88]. Regarding symbiont evolution, epibiotic life stages of microbes may be an

intermediate between free-living and complete dependency [29, 90]. Perhaps the Campylobac-

terota found in the MAS mussels and others found globally are in the intermediate stages lead-

ing to a symbiotic lifestyle. Uncovering how symbionts are acquired, selected, or replaced

during evolution may address questions of specificity and host/symbiont co-speciation over

short time spans [41]. Furthermore, future comparisons between Campylobacterota found on

hosts versus those isolated from surrounding seawater may provide insight into the life history

adaptability of these microbes. Free-living Campylobacterota have been recognized as an eco-

logically significant group of bacteria in deep-sea hydrothermal environments [91] and cold

seeps [92]. These recent findings that suggest close coupling between Campylobacterota and

host fauna from chemosynthetic environments further demonstrate the ecological significance

of these microbes.

Differences in benthic macrofauna abundances between the two sites were observed as well.

Video surveys of NCS and BCS macrofaunal communities showed that only two macroinver-

tebrate species, one being Bathymodiolus childressi, were shared between sites and the distribu-

tion and cover of live mussels, considered to be a biological indicator of seepage activity, was

patchy at BCS [13]. Similarly, NCS mussel beds were different from other habitats within NCS

and all BCS habitats regarding macro-infaunal abundances [14]. In this case, habitat differ-

ences in quality and source of organic matter were posited as the drivers of the infaunal assem-

blage differences. These observed differences in species assemblages between BCS and NCS at

macrofaunal and microbial trophic levels are intriguing. However, whether the mechanisms

linking the differences among the trophic levels are temporally stable and/or more broadly

geographically applicable remains to be seen.
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Use of metabarcoding to evaluate symbiont diversity

Microbial community profiling promises to better reveal the bacterial types present in host

gills and may provide semi-quantitative estimates of their relative abundance. This approach

could help researchers understand the permissiveness of hosts to different symbionts, intra-

host dynamics, and the impact of nutrient availability on these interactions. Here we showed

that short 16S amplicons can differentiate major clades of symbionts and were broadly consis-

tent in the relative amounts of Campylobacterota identified in each mussel sample (excluding

primer set 3, which was shown to be poorly designed for amplification of Campylobacterota,

Fig 6). All primer pairs consistently amplified the predominant methanotroph clade within

Gammaproteobacteria, and our workflow consistently identified this taxon as Methylomona-

ceae regardless of the fragment of the 16S gene that was examined. While this consistency

across amplicons alleviated some concern about how amplification biases impact quantitative

interpretations, sequencing of control mixtures should be used in future work to better detect

potential biases.

Amplicon libraries are known to have higher rates of error than shotgun libraries on Illu-

mina platforms, particularly the second read of read pairs [66]. Reads mapped to the Phylotype

M reconstructed consensus sequence showed high mismatch rates at their 3’ ends (S4 Fig; S12

Table), sometimes exceeding 10%, as is typical of Illumina sequencing [93–95]. This high real-

ized error rate suggests a higher PhiX control spike would be beneficial. Second, a curated ref-

erence database of known symbionts would likely achieve better resolution than a highly

inclusive database like SILVA, and both databases could be used sequentially to limit false pos-

itives. The presence of putative chimeric reads was suggested by patterns of reads that failed to

map to symbiont phylotypes: the number of reads in each sample that failed to map stringently

was correlated with the haplotype diversity present in the samples (S5 Fig; S11 Table). This

result suggested that samples with multiple symbionts at moderate frequency generated signifi-

cant numbers of chimeras during PCR.

The longer 16S sequence models we hypothesized by consensus generation and verified

with Sanger sequencing were essential for understanding the phylogenetic placement of MAS

symbionts. Our ability to extract these 16S sequences hinged on the significant body of 16S

sequences available and the expected low complexity of the symbiont community. For low-

complexity communities, direct assembly of amplicons by overlapping may be feasible, as in

this study, resulting in candidate 16S phylotypes than can be verified by traditional means. On

the other hand, long 16S sequences were not needed to detect interpretable sample- and site-

level variation among MAS symbionts.

Conclusion

This study characterizes the foundational species from the first seep communities discovered

on the U.S. Atlantic seaboard north of BRD. Three bathymodiolin species were present at the

three seeps, with Bathymodiolus childressi being by far the most abundant. The presence of sin-

gle individuals of other species (B.mauritanicus at BCS and B. heckerae at NCS) raises interest-

ing questions regarding dispersal and drivers of distribution within the bathymodiolins. This

study coupled with results from [13] provide indirect but compelling evidence that B. childressi
utilizes sulfur for metabolism through thiotrophic Campylobacterota epibionts, though there

is a contrasting pattern between abundance of the Campylobacterota and isotope signatures

between sites. These results draw a complex picture of associations between mussels and sym-

biotic bacteria in the Northeast Atlantic, which may vary depending on local characteristics of

the habitats and microbial interactions. Perhaps the mussels’ ability to take advantage of thio-

trophic bacteria is transient, considering the observed variation in the periostracum δ13C as
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well as small changes in the δ34S [13], which is the best analog for changes over the mussels’

lifespan. Whether the variability observed in the thiotrophy signal between gill samples at this

site is due to micro-spatial differential chemical signatures between sampled mussels, or tem-

poral variability of the chemical signatures, remains to be seen. Future studies that couple envi-

ronmental measurements of chemical species, samples of ambient water, and gill microbiomes

in tandem will further elucidate the role that the Campylobacterota epibionts play in host

nutrition as well as in oceanic carbon and sulfur cycling.
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94. Marçais G, Yorke JA, Zimin A. QuorUM: An error corrector for Illumina reads. PLoS ONE. 2015; 10(6).

https://doi.org/10.1371/journal.pone.0130821 WOS:000356567400161

95. Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles: resolving fine-scale variation

in metagenomic sequencing data. BMC Bioinformatics. 2016; 17(1):125. https://doi.org/10.1186/

s12859-016-0976-y

Identification of deep sea mussels and their symbionts

PLOS ONE | https://doi.org/10.1371/journal.pone.0211616 March 14, 2019 28 / 28

https://doi.org/10.1128/AEM.71.11.7310-7320.2005
https://doi.org/10.1128/AEM.71.11.7310-7320.2005
http://www.ncbi.nlm.nih.gov/pubmed/16269773
https://doi.org/10.1186/1471-2105-12-451
https://doi.org/10.1186/1471-2105-12-451
https://doi.org/10.1371/journal.pone.0130821
https://doi.org/10.1186/s12859-016-0976-y
https://doi.org/10.1186/s12859-016-0976-y
https://doi.org/10.1371/journal.pone.0211616

