
Molecular Medicine rePorTS  25:  147,  2022

Abstract. Mitochondria are key organelles of cellular energy 
metabolism; both mitochondrial function and metabolism 
determine the physiological function of cells and serve an 
essential role in immune responses. Key damage‑associated 
molecular patterns (daMPs), such as mitochondrial dna and 
n‑formyl peptides, released following severe trauma‑induced 
mitochondrial damage may affect the respiratory chain, 
enhance oxidative stress and activate systemic inflammatory 
responses via a variety of inflammation‑associated signaling 
pathways. Severe trauma can lead to sepsis, multiple organ 
dysfunction syndrome and death. The present review aimed 
to summarize the pathophysiological mechanisms underlying 
the effects of human mitochondrial injury‑released daMPs on 
triggering systemic inflammatory responses and to determine 
their potential future clinical applications in preventing and 
treating sepsis.
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1. Introduction

Although systemic inflammatory response syndrome (SIRS) 
is commonly associated with pathogenic infection, certain 
patients with SirS do not suffer from such infection, thus 
reflecting poor understanding of its pathophysiology (1). 
Therefore, other factors may also serve a key role in the occur‑
rence and development of SirS.

Stimulating adaptive immune response pattern recogni‑
tion receptors (Prrs) is associated with development of 
SirS. Prrs are derived from pathogen‑associated molecular 
patterns (PaMPs) and damage‑associated molecular patterns 
(daMPs) of exogenous and endogenous invaders, respec‑
tively (2). among known daMPs, mitochondrial daMPs 
(mtdaMPs), including mitochondrial dna (mtdna), 
n‑formyl peptides (nFPs), mitochondrial transcription factor 
(TFaM), cardiolipin and aTP (3), have attracted increasing 
attention from researchers. The aforementioned molecules are 
considered to be danger signals released in response to tissue 
injury, thus triggering an immune response similar to that 
induced by pathogens (2). Previous studies have shown that 
plasma levels of mtdaMPs may be associated with clinical 
outcome of septic shock, major surgery or severe trauma (4‑6). 
in addition, it has been suggested that mtdna may be a more 
efficient biomarker than lactate concentration/sequential 
organ failure assessment score in predicting mortality rate 
in patients with sepsis following emergency admission (7). 
However, mtdna has not been widely used in clinical practice 
to optimize clinical treatment. Therefore, further research is 
urgently required.
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The present review aimed to summarize the effects and 
mechanisms of mtdaMPs on activation of inflammatory 
responses and development of SirS. although multiple 
types of mitochondrial component and metabolites, such as 
mtdna, nFPs, TFaM, transcription factor a, aTP, cardio‑
lipin, cytopigment c, succinate and mitochondrial rna 
serve as daMPs (8), the present review focused on widely 
studied mitochondria‑derived daMPs, such as mtdna, nFPs 
and TFaM. additionally, the present review focused on the 
mechanisms underlying the effects of the aforementioned 
daMPs on inducing sepsis‑like responses and their potential 
clinical value.

2. Structure and function of mitochondria

Mitochondria, the ‘cellular energy factories’, are organelles 
in eukaryotic cells, which comprise ~25% of the total cyto‑
plasm volume. Mitochondria are complex organelles due to 
their unique evolutionary history and components, as well 
as their genome (9). additionally, mitochondria are involved 
in a range of cell fate decisions, including energy metabo‑
lism, reactive oxygen species (roS) formation, calcium 
homeostasis, cell proliferation and apoptosis (10). When 
mitochondrial homeostasis is disrupted and the apoptosis 
pathway is activated under severe stress conditions, including 
cytoskeleton alteration, extensive dna damage, endoplasmic 
reticulum (er) and replication stress, sustained roS burst, 
calcium overload and mitotic defect, mitochondrial outer 
membrane permeabilization is targeted by the aforemen‑
tioned stressors (11). The activation of the pro‑apoptotic 
pathway regulates the structure of pro‑apoptotic proteins 
BaX and Bcl2 homologous antagonist/killer (12). in addi‑
tion, it permeabilizes the outer membrane of mitochondria 
to allow transport of pro‑apoptotic molecules from the inner 
membrane into the cytosol to initiate a caspase cascade, 
resulting in rapid cell death (13). it has also been reported 
that the mitochondrial intermembrane space proteins, such 
as cytochrome c, which are released into the cytoplasm 
following increased membrane permeability, also mediate 
activation of apoptotic proteases (14). displaced mtdaMPs 
have been identified following cell death or mitochondrial 
dyshomeostasis in patients with trauma, intestinal isch‑
emia/reperfusion and lung injury (1,15‑19). Therefore, it has 
been hypothesized by clinicians that mitochondria serve a 
vital role in catalyzing the pathophysiology of sterile inflam‑
mation following trauma (1).

3. mtDAMPs

Mitochondria produce aTP via oxidative phosphorylation; 
roS are byproducts of this process (1). Therefore, mitochon‑
dria are the primary source of roS; aTP and roS are also 
considered to be daMPs. damage‑induced mitochondrial 
secretion of aTP increases local levels of aTP, thereby 
promoting macrophage‑mediated death of sepsis‑causing 
bacteria via P2X7 and P2X4 receptors (20,21). emerging 
evidence has suggested that under physiological conditions, 
cells produce mitochondrial components that are not actively 
secreted into the cytoplasm; however, these components are 
released via cellular disruption (18,22‑24).

4. mtDNA

Human mtdna is a 16,569‑bp long superhelical closed‑loop 
double‑stranded dna molecule that encodes essential protein 
subunits of the oxidative phosphorylation system, including 
the electron transport chain (complex i‑iV) and aTP synthase 
(complex V), which drive oxidative phosphorylation and aTP 
production. apart from the nucleus, mitochondria are the only 
source of dna in cells (9,25). unlike nuclear dna, mtdna is 
more prone to injury and lacks repair systems (26). it has been 
suggested that mitochondria originated from gram‑negative 
(G‑) bacteria. Following phagocytosis of G‑bacteria by eukary‑
otes, the bacteria may have formed a symbiotic association 
with the host and gradually evolved into mitochondria (25). 
due to this evolutionary homology, mitochondria are 
similar to bacteria; both exhibit conserved hypomethylated 
5'‑cytosine‑phosphoguanine (cpG) gene sequences and 
pro‑inflammatory effects (9,27). Following cell injury, these 
endogenous mitochondrial ‘enemies’ are recognized by clas‑
sical Prrs to induce immune responses, thereby acting as a 
bridge between trauma, inflammation and SIRS (9).

in critical patients with multiple organ dysfunction 
syndrome (ModS) and sepsis, mitochondrial dysfunction 
may lead to energetic and metabolic failure in white blood 
cells, thus altering their function and attenuating the ability 
of the host to fight infection (28). mtDNA is more susceptible 
to damage compared with nuclear dna since it lacks introns 
and histones (29).

mtdna damage affects the respiratory chain, enhances 
oxidative stress and inflammatory responses, and induce 
apoptosis, leading to cell dysfunction and tissue damage, 
which further aggravate mitochondrial dysfunction in cells, 
thus forming a feedback loop (30). Therefore, mtdna is 
considered to be a trigger that stimulates the innate immune 
response (15). in 2013, nakahira et al (31) published the first 
clinical trial in this area, including 200 patients from medical 
intensive care units. The aforementioned study showed that 
circulating mtDNA was significantly increased in patients who 
died within 28 days of admission compared with those who 
survived. in addition, mtdna was positively associated with 
mortality in patients who were hospitalized for up to 28 days. 
Further studies confirmed these results (32‑35). Additionally, 
other studies have suggested that mtdna serves a key role 
in the pathogenesis of severe trauma, major abdominal 
surgery, acute lung injury (ali)/acute respiratory distress 
syndrome (ARDS), ischemia/reperfusion (I/R) injury, inflam‑
matory bowel disease, rheumatoid arthritis, systemic lupus 
erythematosus (Sle), myocarditis and myocardial infarc‑
tion (1,15,19,36‑38).

5. Effect of mtDNA on the occurrence and development of 
SIRS

during mitochondrial stress, mitochondrial membrane 
potential is decreased, leading to impaired membrane integ‑
rity (39,40). These changes facilitate leakage of mtdna into 
the cytosol. mtdna exhibits immunological potential and 
is a key daMP. Stimulators of interferon genes (STinG) 
is produced following activation of toll‑like receptor 9 
(Tlr9), nucleotide‑binding oligomerization domain‑like 



Molecular Medicine rePorTS  25:  147,  2022 3

receptor family pyrin domain‑containing 3 (nlrP3), cyclic 
GMP‑aMP synthase (cGaS) and other signaling pathways, 
thereby promoting the occurrence and development of SirS 
by regulating the innate immune response and contribute to 
inflammation initiation (25,41). The potential pathophysi‑
ological mechanisms are illustrated in Fig. 1.

mtDNA‑binding TLR9 activates the downstream pathway of 
inflammation. The discovery of membrane‑bound Tlr family 
members indicated that a number of PaMPs, including lipid, 
lipoprotein, protein, glycan and nucleic acid, initiate innate 
immune responses. Tlr9 is the most common recognition 
receptor of mtdna. Tlr9 is primarily expressed in macro‑
phages, dendritic cells and B lymphocytes, and recognizes the 
dna cpG motif in bacteria and viruses (42). Similar to bacte‑
rial dna, mtdna is hypomethylated on the cpG motif (43), 
making it a potent activator of Tlr9. in infection‑mediated 
mitochondrial injury, the body clears damaged mitochondria 
and mtdna via mitophagy, the underlying mechanisms of 
which have been summarized in a previous review article (44). 
However, when mitophagy is inhibited, released mtdna can 
be recognised by nucleic acid recognition receptors in the 
cytoplasm (45). For example, TLR9 identifies mtDNA via the 
cpG motif. However, cpG‑independent Tlr9 activation may 
also occur. activation of Tlr9 leads to activation of nF‑κB 
via the myeloid differentiation factor 88 (Myd88)‑dependent 

(classical) pathway, which induces expression of downstream 
pro‑inflammatory genes, especially those of early cytokines, 
such as TnF‑α and il‑6 (45).

lin et al (46) showed that cyclic stretch (cS) of lungs 
promotes mitochondrial injury in a mechanical ventilation rat 
model, resulting in release of mtdna. mtdna, as a daMP, 
is recognized by Tlr9 to activate the Tlr9/Myd88/nF‑κB 
signaling pathway, exacerbating inflammation and lung 
injury (46). Jing et al (47) studied ventilator‑induced lung 
injury also using a cS cell culture model and suggested 
that PTen‑induced putative kinase 1 (PinK1)‑dependent 
mitophagy and associated Tlr9 activation is a key factor 
in stretch‑induced cell injury. Knockdown of PinK1, which 
is involved in regulating mitophagy, has also been shown to 
promote mitochondrial dysfunction, defective mitophagy and 
more severe lung injury (48). By contrast, PinK1 overexpres‑
sion may mitigate stretching‑induced inflammation and injury. 
Similar effects have been observed following Tlr9 overex‑
pression to induce expression of Myd88 and nF‑κB/p65. 
Furthermore, Myd88 silencing protects lung epithelial cells 
from traction injury and downregulates nF‑κB/p65. These 
findings suggested that PINK1‑dependent autophagy and TLR9 
activation are key factors in stretching‑induced cell damage. 
release of mtdna could activate Tlr9, which induces the 
Myd88/nF‑κB pathway, leading to lung injury (47). inhibiting 
the release of mtdna and activation of Tlr9 may be a 

Figure 1. Overview of pro‑inflammatory signaling pathways triggered by mitochondrial damage‑associated molecular patterns. Mitochondrial components 
released via cellular disruption trigger systemic inflammatory response syndrome. mtDNA triggers pro‑inflammatory signaling pathways via endosomal local‑
ized TLR9, cytosolic cGAS‑STING or NLRP3 inflammasome. TLR9 binds mtDNA in the endosome, inducing NF‑κB‑dependent pro‑inflammatory signaling. 
mtDNA‑dependent inflammasome activity leads to caspase‑1‑dependent maturation or activation of IL‑1 and IL‑8. cGAS recognizes mtDNA in the cytosol 
and activates endoplasmic reticulum‑localized STinG to trigger an iFn response. nFPs are released into the blood circulation to activate the chemokine 
FPR, which recruits immune cells and promotes inflammatory responses. TFAM serves as a pro‑inflammatory cell signaling molecule and is recognized by 
monocytes, leading to enhanced secretion of pro‑inflammatory factors, such as IL‑1β, ‑6 and ‑8. mtdna, mitochondrial dna; FPr, formyl peptide receptor; 
TFaM, mitochondrial transcription factor; nFP, n‑formyl peptide; Tlr9, toll‑like receptor; nlrP3, nod‑like receptor 3; cGaS, cyclic GMP‑aMP synthase; 
cGaMP, cyclic GMP‑aMP; STinG, stimulator of interferon genes; irF, interferon regulatory factor; iFn, interferon. 
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therapeutic approach for preventing lung inflammation and 
injury.

Activation of mtDNA and NLRP3 inflammasome. The 
NLRP3 inflammasome, a member of the NLR family, is a 
macromolecular complex composed of nlrP3, caspase‑1 
and apoptosis‑associated speck‑like protein (40). oxidative 
mtDNA binds to and activates NLRP3 inflammasomes, thereby 
leading to secretion of caspase‑1‑dependent pro‑inflammatory 
cytokines, such as il‑1β and il‑18, resulting in enhanced 
inflammatory cell death (pyroptosis) (9,49). During pyroptosis, 
the cell bursts and releases its contents, such as dna frag‑
ments, into the intercellular stroma (49).

emerging evidence has suggested that mtdna serves 
a key role in activating the nlrP3 inf lammasome. 
Sok et al (50) revealed that inhibiting release of oxidative 
mtdna decreased generation of mitochondrial roS and 
inhibited activation of NLRP3 inflammasomes. Severe fever 
with thrombocytopenia syndrome caused by viral infection 
can also cause the release of oxidative mtdna and activate 
the nlrP3 inflammasome, leading to intensive inflam‑
mation (51). a previous study demonstrated that inhibiting 
synthesis and production of oxidized mtdna could alleviate 
the severity of ardS (52). Wu et al (53) performed burn 
and delayed resuscitation experiments in rats and showed 
that delayed resuscitation could cause liver injury and 
oxidative stress. roS can cause liver injury via destroying 
mitochondrial integrity and activating the mtdna/nlrP3 
axis. However, pre‑intervention of mitochondria‑targeted 
antioxidants could protect the structure and function of 
mitochondria and inhibit the release of mtdna. These 
findings indicated that mtDNA may serve a key role in occur‑
rence and development of systemic inflammation and organ 
dysfunction via activating the NLRP3 inflammasome (53). 
Therefore, protecting mitochondrial function and inhibiting 
mtdna release to the cytosol may improve clinical symp‑
toms of patients with SirS/ModS).

Activation of the cGAS/STING signaling pathway by 
mtDNA. STING was initially identified as a key immune 
molecule that detects nuclear or cytoplasmic dna fragments 
from pathogen‑infected cells and triggers defensive immune 
responses (54). cGaS and STinG are expressed in different 
types of cell, including cancer, immune and non‑immune 
cells (55). However, increasing evidence has suggested that 
activation of the STinG pathway can lead to both tissue 
inflammation and damage (55,56). mtDNA can promote the 
onset of inflammatory signaling responses via activating 
the cGaS/STinG/interferon regulatory factor 3 (irF3) 
pathway (57,58). The cGaS/STinG complex activated by 
mtdna may provide novel insights on the mechanisms of 
sepsis and may further emphasize the key role of mtdna in 
sepsis (57). The specific signaling pathway is illustrated in 
Fig. 1. cyclic GMP‑aMP (cGaMP) is generated following 
cGaS binding to dna. Secondary messenger cGaMP binds 
to STinG in the endoplasmic reticulum (er) membrane. 
after binding, STinG changes its conformation and is acti‑
vated. activated STinG is transferred from the er to the 
er/Golgi intermediate organ and Golgi apparatus. during 
this process, the carboxyl terminus of STinG recruits and 

activates TanK binding kinase 1 via phosphorylating tran‑
scription factor irF3. Phosphorylated irF3 forms a dimer 
and translocates into the nucleus, where it initiates the type i 
interferon response (57). The type i interferon response 
activates innate and adaptive immunity in a pleiotropic 
manner (59).

In vivo experiments using a burn‑induced ali model 
revealed that plasma levels of mtdna were increased, 
and cGaS and STinG were both upregulated in lung 
tissue and neutrophil infiltration was enhanced following 
burn injury (60). These results indicated that increased 
plasma mtdna‑mediated activation of the cGaS‑STinG 
pathway may induce ali and neutrophil infiltration in 
rats. Hu et al (58) showed that inhibition of mtdna release 
attenuated sepsis‑induced inflammatory responses and 
intestinal injury; therefore, it was hypothesized that inhibi‑
tion of the mtdna/cGaS/STinG signaling pathway could 
protect against sepsis‑induced organ damage and intestinal 
barrier dysfunction. liu et al (61) revealed that levels of 
cyclic mtdna and STinG activation were enhanced in 
patients with severe ali. in addition, STinG activation 
may serve a key role in mtdna‑mediated lung injury, which 
promotes inflammatory storm and is involved in autophagy 
via decreasing lysosomal acidification in an IFN‑dependent 
manner (61). STinG overactivation has also been reported 
to be associated with the pathogenesis of Sle, neurological 
degeneration and sepsis (27). consistent with a previous 
study (48), Sliter et al (62) demonstrated that PinK1, a 
key gene in mitophagy that remove damaged mitochondria 
from cells, could inhibit STinG‑mediated inflammatory 
responses, thus providing a potential novel model for studing 
mitophagy, and attenuating the inflammatory response.

6. NFPs

nFP is a potent chemotactic polypeptide synthesized in 
mitochondria (23). in the absence of cellular damage, 
bacteria‑like nFPs are isolated within the mitochondria; 
however, during severe trauma and cell death, nFPs are 
released into the blood circulation to activate the chemokine 
formyl peptide receptor (FPr), which recruits immune cells 
and promotes inflammatory responses (63). FPR comprises 
conserved G‑protein‑coupled receptors that serve a key role 
in host defense and inflammatory responses (64). FPr1, 
FPr2/lipoxygenase a4 receptor and FPr3 have been 
identified in humans (1). These receptors are expressed in 
multiple types of cell, with the highest expression levels of 
FPr1 and FPr2 observed in neutrophils, and those of FPr3 
in monocytes/macrophages (64). a number of structurally 
and chemically different ligands (such as microbial origins 
peptides, endogenous peptides and synthetic small molecules) 
activate FPrs (64), while nFP is the only common ligand for 
all three receptors in humans (65).

Wenceslau et al (66) showed that mitochondrial FPs 
(mtFPs) caused inflammation and vascular dysfunction via 
FPrs, and accelerated the development of sepsis. another 
study revealed that mtFPs could cause sepsis‑like syndrome, 
heart failure, heatstroke, vascular leakage, thrombosis 
and lung injury in a rat model, suggesting that nFPs may 
be a bridge between trauma, SirS and cardiovascular 
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failure (67). another clinical study on traumatic hemorrhagic 
shock‑induced lung injury demonstrated that trauma‑induced 
release of NFPs could promote infiltration of neutrophils 
into the lung, and aggravate SirS and sepsis (16). This 
may be because mtFPs‑induced FPr activation could cause 
sepsis‑like symptoms, leading to ali. dorward et al (68) 
found increased bronchoalveolar lavage fluid and serum levels 
of mtFPs in patients with ardS. FPr1 has been reported to 
be involved in neutrophil recruitment and alveolar leakage 
following sterile injury. Previous in vivo and in vitro studies 
revealed that FPr1 could also be activated in a neutrophil 
activation‑dependent manner, suggesting that pluripotency of 
FPr1‑induced by mtFPs may be the mechanism underlying 
their inflammatory effect (24,36). Therefore FPR1 may be a 
potential therapeutic target for treating aseptic ali.

7. TFAM

TFaM is an abundant mitochondrial protein; each mtdna 
molecule binds to ~1,000 TFaM molecules. The tight 
binding of TFaM with mtdna stabilizes the structure of 
mtdna and protects mt function (29,69). When mitochon‑
dria are damaged, mtdna and TFaM are both released into 
the cytoplasm (17,19). TFAM serves as a pro‑inflammatory 
cell signaling molecule and is recognized by monocytes, 
leading to enhanced secretion of pro‑inflammatory factors 
such as il‑1β, il‑6 and il‑8 (70). Hepokoski et al (17) 
showed that pulmonary i/r‑mediated lung injury was associ‑
ated with accumulation of extracellular mtdna and TFaM, 
whereas circulating TFAM promoted infiltration of neutro‑
phils in the lung. in addition, West et al (71) indicated that 
TFaM may serve a key role in maintaining the stability of 
mtdna; therefore, when TFaM levels are low, the stability 
of mtDNA is decreased. This was also confirmed by van 
der Slikke et al (30); this previous study demonstrated 
that in sepsis‑induced acute kidney damage, the degree of 
mitochondrial damage was inversely proportional to the 
expression of TFaM. in conclusion, TFaM may serve a 
key dual role in the activation of inflammation‑associated 
signaling pathways. Firstly, TFaM could stabilize the struc‑
ture and function of mtdna (70), and secondly, as a daMP, 
TFAM could also enhance inflammatory responses, similar 
to other daMPs, and cause injury to vital organs, such as 
the lung and kidney (17,70). However, the synergistic effect 
of TFAM and mtDNA on inflammatory responses requires 
further investigation.

8. mtDAMPs and intestinal barrier dysfunction

intestinal mucosal epithelial cells exhibit a strong metabolism 
and rapidly proliferate, renewing every 4‑5 days (72); there‑
fore, the rate of mitochondrial energy metabolism and the 
number of mitochondria are increased in these cells compared 
with other cells (73). additionally, intestinal epithelium has 
been reported to be prone to hypoxia; therefore, intestinal i/r 
can promote both intestinal mucosal epithelial cell and mito‑
chondrial injury, resulting in increased circulating mtdna 
levels (74). a previous study showed that oxidized mtdna 
could trigger a powerful inflammatory response (15). The 
aforementioned findings suggested that mtDNA may not only 

serve as a marker of intestinal i/r injury, but could also be 
involved in inflammation and cell death.

Just as mtdna is thought to trigger the innate immune 
response, the gut is also considered to promote SirS and 
multiple organ dysfunction (75). consistent with previous 
studies on intestinal i/r injury (15,76), Hu et al (15) demon‑
strated that mtdna was associated with increased secretion of 
inflammatory cytokines and intestinal barrier injury. However, 
intervention with mitochondrial‑targeted antioxidant MitoQ 
could protect the intestinal barrier during i/r (15,76). it has 
been reported that several inflammatory cytokines, such as 
TnF‑α, iFn‑γ and il, are involved in regulation of intestinal 
tight junction integrity (77). TnF‑α is a key factor in elevating 
gut permeability via occludin (ocln); ocln overexpres‑
sion has been shown to mitigate cytokine‑mediated increased 
gut permeability (78). Furthermore, anti‑TnF therapy 
could improve epithelial barrier function (79). Based on the 
aforementioned studies, it was hypothesized that mtdaMPs 
and mtdaMP‑mediated inflammatory responses could be 
associated with intestinal barrier function. When the intes‑
tinal barrier is damaged, bacterial translocation occurs and 
products of microorganisms, such as alimentary antigens, may 
enter the bloodstream, thus intensifying SirS and promoting 
the formation of a feedback loop that facilitates development 
of fatal sepsis (75,80).

9. Conclusion

injury‑released mtdaMPs serve a key role in the occurrence 
and development of systemic inflammatory response (1). 
The inflammatory response exerts a protective effect on the 
body; however, excessive inflammatory response damages 
organ function, leading to the occurrence and development of 
sepsis, ModS and death (81). in addition, mtdaMP‑mediated 
activation of inflammatory signaling pathways can aggra‑
vates mitochondrial damage, resulting in release of more 
mtdaMPs and intestinal barrier dysfunction. The afore‑
mentioned processes contribute to the development of SirS 
when accompanied by displaced intestinal flora and release of 
harmful metabolites (15,58). Further studies on mtdaMPs are 
required to determine whether mtdna serves as a biomarker 
for predicting disease severity or mortality, and to determine 
the mechanism underlying daMP‑induced SirS pathogenesis 
and development during mitochondrial injury. additionally, 
the effect of drugs on protecting mitochondrial function or 
antagonizing mtdaMP‑associated receptors to interrupt this 
pathophysiological process should be investigated to support 
the potential role of mtdaMPs as a significant target for 
preventing and treating sepsis.
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