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Abstract

The study objective is to estimate the epidemiological and economic impact of vaccine inter-

ventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities.

Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies

are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We

simulated influenza pandemics in Chicago using agent-based transmission dynamic model-

ing. Population was distributed among high-risk and non-high risk among 0–19, 20–64 and

65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong

(21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine

intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity

analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted.

Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on

investment. The risk of death is the highest among the high-risk 65+ years subpopulation in

the catastrophic influenza pandemic, and highest among the high-risk 0–19 years subpopula-

tion in the strong and moderate influenza pandemics. The proportion of total deaths and net

benefits are the highest among the high-risk 20–64 years subpopulation in the catastrophic,

strong and moderate influenza pandemics. The return on investment is the highest in the

high-risk 0–19 years subpopulation in the catastrophic, strong and moderate influenza pan-

demics. Based on risk of death and return on investment, high-risk groups of the three age

group subpopulations can be prioritized for vaccination, and the vaccine interventions are

cost saving for all age and risk groups. The attack rates among the children are higher than

among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic

scenarios, due to their larger social contact network and homophilous interactions in school.

Based on return on investment and higher attack rates among children, we recommend pri-

oritizing children (0–19 years) and seniors (65+ years) after high-risk groups for influenza

vaccination during times of limited vaccine supplies. Based on risk of death, we recommend

prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of

limited vaccine supplies.
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Author summary

The study objective is to estimate the epidemiological and economic impact of vaccine

interventions during an influenza pandemic in Chicago, to assist in vaccine intervention

priorities. Population dynamics play an important role in influenza pandemic planning

and response. To optimally allocate limited vaccine resources, it is important to inform

decision makers and public health officials about both the direct benefit among vaccinated

population and the indirect benefit among non-vaccinated population. This study adds to

the evidence of prior studies by using a detailed agent-based model for estimating the

direct and indirect benefits of epidemiological and economic impact of vaccine-based

interventions. This study can be extended to analyze for a range of vaccine compliance

and efficacy values at different attack rates of influenza pandemics in different rural and

urban areas of the United States and at the country level, to infer objective prioritization

criteria for influenza vaccine interventions among different risk and age groups.

Introduction

The Advisory Committee on Immunization Practices (ACIP) recommends seasonal influenza

vaccination annually for individuals aged 6 months and older without contraindications to

prevent and control seasonal and pandemic influenza [1]. They update information on the

dosage for children, antigenic composition and influenza vaccine products. While the ACIP

recommendations for 2015–2016 influenza season partially account for risk of transmission,

such as influenza immunized individuals caring for immunosuppressed persons are recom-

mended to avoid contact with such persons for 7 days after vaccination, they do not address

prioritization of influenza vaccination among subpopulations [2]. For the 2009–2010 influenza

pandemic season, the ACIP recommended seasonal influenza vaccination for children above 6

months, adolescents and adults with a focus on individuals at higher risk of influenza compli-

cations, or are close contacts of persons at higher risk [3]. In February 2010, ACIP expanded

the recommendation of annual influenza vaccination to any person aged above 6 months who

does not have contraindications to vaccination, taking effect from the 2010–2011 influenza

season. It took months to develop and distribute the 2009 H1N1 influenza vaccine. Similar sce-

narios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are

not unlikely in future influenza pandemics. Understanding and analysis of these challenging

scenarios through computational modeling and simulation to improve influenza prevention

and control programs is the primary motivation of this study.

Prioritization of influenza vaccine intervention

Evidence on the epidemiological and economic impact of vaccination for all age and risk

groups from the societal standpoint assists in prioritization of influenza vaccine intervention,

especially when vaccine supplies are limited, and minimize the direct cost of clinical care for

influenza related health outcomes and indirect cost of productivity loss due to workplace

absenteeism. While some studies have analyzed the direct epidemiological and economic

impact of vaccine intervention strategies on controlling influenza pandemics [4–13], other

studies have analyzed both the direct and indirect epidemiological and economic impact of

influenza vaccination [14–16]. There are also prior studies that focused on the prioritization of

vaccination and other interventions among people in different age groups [17–19]. This study

adds to the evidence of prior studies by using a detailed agent-based model for estimating the
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direct and indirect effects of epidemiological and economic impact of vaccine-based interven-

tions. The objective of the vaccine interventions is to minimize deaths, hospitalizations, outpa-

tient visits, and the number of ill people who do not seek medical care.

Direct epidemiological and economic effects

Direct effect is due to the immune protection gained by effectively vaccinated individuals, and

indirect effect is due to blocking of the influenza transmission by vaccinated individuals to sus-

ceptible individuals in their social network. Cost effectiveness of influenza vaccination for 65

+ years [5], healthy working adults [6,7], and children [9,20] with a focus on direct effects have

been studied. Prosser et al. evaluate the economic impact of 2009 pandemic influenza vaccine

intervention for all age and risk groups [8]. They infer that vaccination of the subpopulation

with a high risk of developing influenza related complications in each age group is cost saving,

and vaccination of the healthy subpopulation in each age group is cost effective. Other studies

have inferred that vaccine administration during previous and potential pandemics produces

health benefits in terms of number of averted influenza cases and related health outcomes [10–

12]. These studies included the direct cost of hospitalizations, outpatient visits, and deaths, and

included the related costs of vaccine production and administration, and lost productivity.

Depending on the risk and age group of the subpopulations, geographic region, and analytic

methodology, the vaccine interventions may or may not be cost effective [21,22].

Indirect epidemiological and economic effects

Indirect effects account for the indirect protection due to vaccine intervention. Effectively

vaccinated individuals who develop protective immune response to the prevalent influenza

strains, cut off transmission pathways to secondary and subsequent individuals. The indirect

effect of vaccinating school children has been found to be significant, due to their high connec-

tivity in the social network and significance of their transmission pathways to their households

and community [23–27]. While Medlock et al. recommend influenza vaccine prioritization of

school children and adults aged 30 to 39 years [15], Lee et al. recommend prioritization of vac-

cinating at-risk individuals first rather than children first by analyzing the 2009 H1N1 influ-

enza pandemic, matching the 2009 ACIP recommendations [14].

The epidemiological benefits and economic costs estimated by taking into account only the

direct effect is relatively conservative, in comparison to taking into account both the direct and

indirect effects. We improve the fidelity and robustness of the cost-benefit estimates to facili-

tate optimal prioritization of our vaccine interventions among different age and risk groups.

Fig 1 illustrates the evaluation of the epidemiological and economic impact of influenza vac-

cine intervention using the static model (direct effects only) and dynamic model (direct + indi-

rect effects).

Study objective

Meltzer et al. estimate the potential net value of different vaccination strategies, and identify

vaccination priorities for different age and risk groups during an influenza pandemic [4]. A

Monte Carlo based static model is used to estimate the costs and benefits due to the direct

effect of vaccine interventions in the United States. We focus our study on similar influenza

related health outcomes, risk levels and age groups as Meltzer’s study. We use an agent-based

dynamic model to estimate the direct and indirect epidemiological and economic impact of

vaccine interventions during an influenza pandemic in Chicago, and assist in the assessment

of vaccine intervention priorities.

Priorities for influenza vaccine interventions
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Public health significance

Population dynamics play an important role in influenza pandemic planning and response.

Influenza vaccination not only protects effectively vaccinated individuals who develop a pro-

tective immune response from contracting influenza, but also prevents the spread of influenza

in the social contact network of people by breaking the transmission chain. To optimally allo-

cate limited resources, it is important to inform decision makers and public health officials

about both the direct and indirect effects of influenza vaccine interventions.

Methods

Ethics statement

The Institutional Review Board at Virginia Tech has given ethics approval (IRB exempt) for

the research conducted in this study.

Dynamic agent-based modeling of Chicago synthetic population

The Chicago metropolitan area is a major urban area in the United States, and had high in-

fluenza incidence during the 2009 H1N1 influenza pandemic [28]. We analyzed the impact

of vaccine-based interventions on pandemic influenza in Chicago, using the population dis-

tribution of 9,047,574 people from the census data [29]. The disease diffusion occurs on a

Fig 1. Epidemiological and economic impact of influenza vaccine intervention. The epidemiological and economic impact of influenza

vaccine intervention includes the direct and indirect effects. The static model simulated only the direct effects, while the dynamic model simulates

both the direct and indirect effects. Direct effect is due to the direct protection of the influenza vaccine among vaccinated individuals who generate

protective immune response to influenza infection. Indirect effect is due to indirect protection among non-vaccinated individuals who are protected

from influenza acquisition from effectively vaccinated individuals, (i.e.) in the absence of vaccination, influenza transmission will have occurred

between these individuals.

https://doi.org/10.1371/journal.pcbi.1005521.g001
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collocation based synthetic social contact network for Chicago, based on dynamic agent-based

modeling [30–32]. We generated the synthetic population and estimated the social contact net-

work in Chicago through population synthesis, activity assignment, location choice and con-

tact estimation, as illustrated in Table 1 [30,33]. The social contact network simulated the

movement of individuals throughout the city and estimated the contact times between individ-

uals based on their simultaneous presence at a location.

Influenza transmission dynamics

The transmission dynamics of an influenza-like-illness in the population is simulated using

the susceptible-exposed-infectious-recovered (SEIR) epidemiological model on this synthetic

social contact network of Chicago. Each person in the model is in one of the following four

health states at any time: susceptible, exposed, infectious, and removed. A person is in the sus-

ceptible state until he becomes exposed. If a person becomes exposed, he remains exposed for

the duration of the latent period, during which he is not infectious. At the end of the latent

period, an exposed person becomes infectious and remains infectious for the duration of the

infectious period. A person in the infectious state will probabilistically transmit the disease,

based on the transmission rate, to any of his contacts who are in the susceptible state. A propor-

tion of infectious individuals are asymptomatic, and there is a reduction in probability of trans-

mission by an asymptomatic infectious person in comparison to a symptomatic infectious

person to a susceptible individual. After the infectious period, the infectious person becomes

recovered (or removed). Transmissibility is the probability of transmission per minute of contact

with a symptomatic infectious person and is set to 0.00008, 0.00009, and 0.0001 to calibrate the

simulation for the moderate, strong and catastrophic influenza pandemic scenarios respectively,

with attack rates of 11.73%, 21.96% and 30.15% respectively. The simulation parameters for the

social contact network and influenza dynamics are illustrated in Table 2. We estimate the direct

and indirect effects of vaccine interventions on influenza pandemics of moderate, strong and

catastrophic severities, in comparison to the base case scenario of no vaccine intervention.

Influenza related health outcomes, risk levels and age groups

Influenza related health outcomes for the infected individuals are death, hospitalization, outpa-
tient visits, and ill but not seeking medical care. The risk levels are high and non-high, and the

age groups are 0–19 years, 20–64 years and 65+ years. Based on pre-existing medical condi-

tions, influenza infected individuals may be at a high or non-high risk of experiencing influ-

enza related health outcomes. The distribution of the four influenza related health outcomes

among the high and non-high risk cases in the three different age groups is based on the study

by Meltzer et al. [4].

Table 1. Synthetic social network of Chicago. Synthetic population of Chicago is generated and a social

contact network is estimated through the following four steps.

Process Description

Population

synthesis

Synthetic representation of each household in Chicago metropolitan area is created

that is statistically identical to US census data when aggregated to a block group level.

Activity

assignment

Each synthetic person in a household is assigned a set of activities to perform during

the day, along with the times when the activities begin and end, as given by activity or

time-use survey data.

Location choice An appropriate real location is chosen for each activity for every synthetic person

based on data such as land use data or Dunn and Bradstreet location data.

Contact

estimation

Each synthetic person is deemed to have made contact with a subset of other

synthetic people simultaneously present at the same location. This gives rise to the

synthetic social contact network

https://doi.org/10.1371/journal.pcbi.1005521.t001
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Base case scenario of no vaccine intervention

For the base-case scenario of no vaccine intervention, three different severities of an influenza

pandemic were simulated using the dynamic model: moderate influenza with 11.73% attack

rate, strong influenza with 21.96% attack rate, and catastrophic influenza with 30.15% attack

rate. We use the dynamic model to simulate the epidemic curves for these 3 attack rates for the

Table 2. Simulation parameters. The parameter values of the influenza pandemic simulations and their sources.

Parameter Value Source

Population of Chicago metropolitan area 9,047,574 [28]

Age groups 0–19 yrs, 20–64 yrs, 65+ yrs [4]

Influenza pandemic severities Catastrophic, strong, moderate Simulation calibration

Attack rates of influenza pandemics 30.15% (catastrophic)

21.96% (strong)

11.73% (moderate)

Transmissibility:

Probability of transmission per minute of contact with an

symptomatic infectious person

0.0001 (catastrophic)

0.00009 (strong)

0.00008 (moderate)

Probability of transmission per minute of contact with an

asymptomatic infectious person in comparison to a

symptomatic infectious person

33% [50–52]

Proportion of symptomatic infection in influenza infected

individuals

67% Assumed (Proportion of symptomatic infection in

influenza infected individuals among healthy participants

in studies is 66.9% [53])

Influenza related health outcomes Death, hospitalization,

outpatient visits, ill but not

seeking care

[4]

Latent period 1 day [sd: 0.63] [54,55]

Infectious period 2 days [sd: 1.06] [54,55]

Serial interval 2.8 days [56]; Estimated from simulation

Infected individuals at epidemic start (day 0) 100 Assumed

Risk levels among the different age groups 0–19 yrs: 93.6% (non-high),

6.4% (high)

[4]

20–64 yrs: 85.6% (non-high),

14.4% (high)

65+ yrs: 60% (non-high), 40%

(high)

Distribution of influenza related health outcomes among the

different age groups and risk levels

See Fig 3 [4]

Cost of influenza vaccine $28.62 [38]

Medical costs and productivity losses of influenza-related

health outcomes among the different age groups

See Table 5 [39]

Efficacy of influenza vaccine 40%

Sensitivity analysis: (10%, 20%,

30%, 40%, 50%, 60%)

Assumed (Effectiveness of influenza vaccines varies

between 10% to 60% [37])

Vaccine compliance 40%

Sensitivity analysis: (10%, 40%,

60%, 80%)

Assumed

Start date of vaccine intervention 15 days after epidemic start

Sensitivity analysis: (15, 30, 60,

90)

Assumed

Vaccination period 60 days Assumed

Vaccine administration rate 60000 people per day Calibration

https://doi.org/10.1371/journal.pcbi.1005521.t002
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base-case scenario of no vaccine intervention, based on the average incidence from 25 repli-

cates (see Fig 2 and Table 3). The simulation timeline of the influenza pandemics are in accor-

dance with prior experiences of influenza pandemics in the United States [34]. S1 Appendix

describes the risk space of transmissibility and clinical severity for the pandemic scenarios, as

defined by the framework for assessing epidemiologic effects of influenza epidemics and pan-

demics by Reed et al [35,36].

Vaccine intervention

Effectiveness of influenza vaccines varies between 10% to 60% [37]. We analyzed the impact

of the vaccine intervention scenario of 40% efficacy and 40% compliance for all age and risk

groups, following Meltzer et al. [4]. It took months to develop and distribute the 2009 H1N1

influenza vaccine, and similar scenarios of delay in vaccine introduction, limited vaccine effi-

cacy and limited supplies are not unlikely in future influenza pandemics. Thereby, we analyze

delays in the implementation of the vaccine intervention with limited efficacy and compliance

rates.

Fig 2. Influenza incidence (average number of new cases per day) during the pandemic for no vaccine

intervention and vaccine intervention scenarios. The epidemic curves illustrate influenza incidence

without and with vaccination intervention for the catastrophic, strong and moderate influenza pandemic

scenarios. The number of cases is the average of new cases over 25 simulations. Higher attack rates cause

the earlier, more severe, and shorter pandemic duration, compared to the less severe but longer pandemics.

The vaccination intervention is applied 15 days after the start of pandemic and implemented for 60 days. The

vaccine intervention scenarios are simulated at 40% efficacy and 40% compliance for all age and risk groups

in the dynamic agent-based model.

https://doi.org/10.1371/journal.pcbi.1005521.g002
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Direct epidemiological effect of vaccine intervention using static model

Static model is used to estimate the direct benefit of influenza vaccination, that is, vaccination

only protects effectively vaccinated individuals who develop protective immune response, but

does not account for preventing influenza transmission from effectively vaccinated individuals

to their social contact network. Using the simulation results of the base-case scenario of no

vaccine intervention from the dynamic model, the influenza attack rates of moderate, strong

and catastrophic pandemic scenarios are decreased by the proportional impact of the vaccine

intervention at 40% coverage and 40% efficacy. Thereby, the influenza attack rates in the 3 age

group sub-populations are decreased by 16% (40% efficacy � 40% compliance) in each of the

three pandemic scenarios (see Table 4).

Table 3. Pandemic cost per capita, attack rate, and reproduction number for different severities of pandemic influenza in the base case scenario

of no vaccine intervention. Pandemic cost per capita is the average cost of influenza related health outcomes among infected individuals for death, hospital-

ization, outpatient visit, and ill but not seeking medical care. The attack rate is the proportion of population infected by influenza during the influenza pandemic.

Reproduction number is the number of secondary cases caused by the index case in a susceptible population.

Base-case scenario of no vaccine intervention Catastrophic influenza Strong

influenza

Moderate influenza

Pandemic cost per capita $678.10 $486.67 $255.18

Attack rate 30.15% 21.96% 11.73%

Reproduction number 1.19 1.13 1.06

https://doi.org/10.1371/journal.pcbi.1005521.t003

Table 4. Pandemic cost per capita, attack rate, and reproduction number for catastrophic, strong and moderate pandemic influenza scenarios

with and without vaccine intervention. Pandemic cost per capita, attack rate and reproduction number with and without vaccine intervention is presented

for catastrophic, strong and moderate influenza pandemic scenarios. The vaccine intervention is implemented at 40% compliance and 40% efficacy which

decreases the pandemic cost per capita, attack rate and reproduction number. Pandemic cost per capita, attack rate and reproduction number are relatively

lower in the dynamic model (direct + indirect effects) in comparison to the static model (direct effect only).

No vaccine intervention Vaccine intervention

Catastrophic influenza Base case Static model Dynamic model

Pandemic cost per capita $678.10 $581.09 $370.56

Attack rate 30.15%

[0–19 years: 48.35%]

[20–64 years: 23.94%]

[65+ years: 14.91%]

25.33%

[0–19 years: 40.62%]

[20–64 years: 20.11%]

[65+ years: 12.52%]

16.34%

[0–19 years: 27.97%]

[20–64 years: 12.25%]

[65+ years: 7.34%]

Reproduction number 1.19 1.15 1.09

Strong influenza Base case Static model Dynamic model

Pandemic cost per capita $486.67 $420.28 $90.81

Attack rate 21.96%

[0–19 years: 36.76%]

[20–64 years: 16.82%]

[65+ years: 10.18%]

18.45%

[0–19 years: 30.88%]

[20–64 years: 14.13%]

[65+ years: 8.55%]

3.90%

[0–19 years: 6.47%]

[20–64 years: 2.59%]

[65+ years: 1.52%]

Reproduction number 1.13 1.11 1.02

Moderate influenza Base case Static model Dynamic model

Pandemic cost per capita $255.18 $225.83 $14.85

Attack rate 11.73%

[0–19 years: 20.64%]

[20–64 years:8.55%]

[65+ years: 5.05%]

9.85%

[0–19 years:17.34%]

[20–64 years: 7.19%]

[65+ years: 4.24%]

0.16%

[0–19 years: 0.30%]

[20–64 years: 0.11%]

[65+ years: 0.06%]

Reproduction number 1.06 1.05 1.00

https://doi.org/10.1371/journal.pcbi.1005521.t004
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Direct and indirect epidemiological effects of vaccine intervention using

dynamic model

We simulated the vaccine intervention scenarios at 40% efficacy and 40% compliance for all

age and risk groups in the dynamic agent-based model. The vaccine intervention is initiated

15 days after the start of the pandemic and is carried out for 60 days. The dynamic model sim-

ulates the diffusion of influenza on the population in Chicago. It takes into account the indirect

effect of limiting disease diffusion by vaccinated individuals, who develop protective immune

response and cut off transmission pathways to secondary and subsequent individuals. The

influenza attack rates for the 3 age groups in moderate, strong and catastrophic pandemic sce-

narios are estimated (see Table 4). Fig 2 includes the epidemic curves (based on 25 replicates

of each scenario) for the three pandemic scenarios with the vaccine intervention.

Vaccine cost

The cost of influenza vaccine is estimated to be $28.62, and includes the clinical personnel,

non-clinical personnel, and all overhead costs [38]. Direct medical costs and indirect produc-

tivity losses were estimated from a prior study, and are presented in Table 5 [39–42].

Pandemic cost estimation

Based on Meltzer’s study [4], we developed a decision tree that includes the probability distri-

bution of an influenza case experiencing the influenza related health outcomes of death, hospi-
talization, outpatient visits, and ill but not seeking medical care, and the cost associated with

these health outcomes among the different age and risk groups (see Fig 3). All costs have been

adjusted to 2015 US$ (see Table 5). We used this decision tree to estimate the cost due to influ-

enza related health outcomes among the different age and risk groups. This cost estimation

process is conducted in all the three scenarios: base case scenario of no intervention using

Table 5. Cost of influenza related health outcomes for different age and risk groups. The costs of influ-

enza related health outcomes of death, hospitalization, outpatient, and ill but not seeking medical care are

based on the study by Carias et al [39], and are updated to 2015 US dollars.

Influenza related health outcome/

Age group (years)

Medical cost + Productivity losses

($ per person)

Death Non-high risk High risk

0–19 1,640,255 1,650,049

20–64 934,931 941,199

65+ 276,971 290,052

Hospitalization Non-high risk High risk

0–19 16,883 35,370

20–64 26,345 34,743

65+ 14,980 22,478

Outpatient Non-high risk High risk

0–19 508 1,051

20–64 634 904

65+ 1,282 3,134

Ill, but not seeking medical care Non-high risk High risk

0–19 129 129

20–64 88 88

65+ 134 134

https://doi.org/10.1371/journal.pcbi.1005521.t005
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Fig 3. Decision tree of health outcomes for influenza cases and related costs. For each influenza case, the

probability of the different health outcomes and related costs depend on the age and risk group of the patient.

Priorities for influenza vaccine interventions
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dynamic model, vaccine intervention scenario using static model, and vaccine intervention

scenario using dynamic model. Within each of these scenarios, for each pandemic severity

(moderate, strong and catastrophic), we compute the pandemic cost, pandemic cost per capita,

net benefits, and return on investment, as illustrated in Table 6 (also, see Tables 3 and 4). The

pandemic cost is the total cost associated with the health outcomes of influenza cases and the

cost of vaccination, and pandemic cost per capita is the average pandemic cost per person. The

net benefits are the difference in cost due to improved health outcomes from vaccination and

the vaccination cost. Return on investment is the gain in net benefits relative to the vaccination

cost.

Patients with pre-existing medical condition have a high risk of experiencing severe influenza related health

outcomes. The probability of each health outcome is assigned an uniform or triangular distribution [4]. For the

uniform distribution, the lower and upper rate are presented; for triangular distribution, the lower, most probably, and

higher rates are presented.

https://doi.org/10.1371/journal.pcbi.1005521.g003

Table 6. Computation of pandemic cost, pandemic cost per capita, net benefits and return on investment. The formulations to compute pandemic

cost, pandemic cost per capita, net benefits and return on investment are presented below for the scenarios of without and with vaccine intervention. Pan-

demic cost is the total cost associated with the health outcomes of influenza cases and the cost of vaccination, and pandemic cost per capita is the average

pandemic cost per person. The net benefits is the difference in cost due to improved health outcomes from vaccination and the vaccination cost. Return on

investment is the gain in net benefits relative to the vaccination cost.

Metrics No vaccine intervention Vaccine intervention

Cost of influenza related

health outcomes

(Cost of influenza related health outcomes) + (Vaccination cost)

Pandemic cost
X

i

X

j

PijBCij
� � X

i

X

j

PijI Cij
� �

þ CvNvð Þ

Per capita (Cost of influenza related health

outcomes) Per capita (Cost of influenza related health outcomes) + Per capita

(Vaccination cost)

Pandemic cost per

capita

P
i

P
jP
ij
B
Cij

� �

N

P
i

P
jP
ij
I
Cij

� �
þ CvNvð Þ

N

Benefits — Costs

(Benefits from reduction in the cost of influenza related health outcomes due to reduction in influenza cases after vaccine

intervention)–(Vaccination cost)

Net benefits Not applicable
X

i

X

j

PijB � P
ij
I

� �
Cij

� �
� CvNvð Þ

Net benefits
Vaccination cost

Return on investment is the gain in net benefits relative to the vaccination cost, that is, dollars saved per $1 investment in vaccine

intervention

Return on investment Not applicable
P

i

P
j P

ij
B
� Pij

Ið ÞCij
� �

� CvNvð Þ

CvNv

Pij
B Number of infected people of age and risk group i with health outcome j in the base case scenario of no vaccine intervention

Pij
I Number of infected people of age and risk group i with health outcome j after vaccine intervention

i Age and risk groups: 0–19 non-high risk, 0–19 high risk, 20–64 non-high risk, 20–64 high risk, 65+ non-high risk, 65+ high risk

j Influenza related health outcomes: death, hospitalization, outpatient visit, ill but not seeking medical care

Cij Cost of influenza related health outcome j for age and risk group i

Cv Influenza vaccine cost

Nv Number of vaccinated people

N Total population

https://doi.org/10.1371/journal.pcbi.1005521.t006
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Perspective of economic evaluation

We conducted economic evaluation from the medical and productivity perspective, and

includes the direct cost of clinical care for influenza related health outcomes incurred by the

health care provider and indirect cost of productivity loss incurred by the patient. To extend

this analysis to a societal perspective, costs incurred by the federal government in vaccine

distribution, vaccine coverage monitoring, vaccine effectiveness monitoring, vaccine safety

monitoring, health communication, and national coordination and technical assistance [43],

productivity loss of volunteers in the influenza vaccine campaign, and costs of global influenza

surveillance for vaccine strain selection will need to be included, which are beyond the scope

of this study.

Simulation replicates

The values of the simulation parameters and their sources are shown in Table 2. Each influenza

pandemic scenario in the agent-based model is simulated 25 times. The costs of influenza-

related health outcomes among the different age and risk groups are estimated using the deci-

sion tree (Fig 3). The agent-based model is executed through SIBEL [44], a web-based tool to

conduct epidemiological disease studies based on realistic social network simulation, and the

influenza-related health outcome estimation using decision tree and cost-benefit analysis is

executed through the R software for statistical computing and graphics [45].

Sensitivity analysis

We conducted univariate sensitivity analysis for vaccine compliance, vaccine efficacy and vac-

cine start date, and their impact on attack rates and return on investment for catastrophic,

strong, and moderate influenza pandemic scenarios with no vaccine intervention (base case),

and with vaccine intervention in static model (direct effect) and dynamic model (direct + indi-

rect effects).

Results

Base case scenario of no vaccine intervention

The pandemic cost per capita is $678.10, $486.67 and $255.18 for catastrophic, strong, and

moderate influenza scenarios respectively (see Table 3). The attack rate is 30.15%, 21.96% and

11.73% for catastrophic, strong, and moderate influenza scenarios respectively. The reproduc-

tion number is 1.19, 1.13 and 1.06 for catastrophic, strong, and moderate influenza scenarios

respectively. The pandemic cost per capita is positively correlated with attack rate and repro-

duction number, with the highest in catastrophic influenza scenario followed by the strong

and moderate influenza scenarios.

Vaccine interventions

The vaccine intervention is simulated at 40% compliance and 40% efficacy, using the static

model and the dynamic model. The vaccine intervention decreases the pandemic cost per cap-

ita, attack rate and reproduction number in the catastrophic, strong and moderate influenza

pandemic scenarios in both the static and dynamic models.

Fig 4A, 4B and 4C illustrate the comparison of pandemic cost per capita, attack rate and

reproduction number in the catastrophic, strong and moderate influenza pandemic scenarios

with and without vaccine intervention. In the catastrophic influenza pandemic scenario with

vaccine intervention, the pandemic cost per capita, attack rate and reproduction number are

$370.56, 16.34% and 1.09 respectively in the dynamic model, while they are $581.09, 25.33%
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and 1.15 respectively in the static model (see Table 4). In the strong influenza pandemic sce-

nario with vaccine intervention, the pandemic cost per capita, attack rate and reproduction

number are $90.81, 3.90% and 1.02 respectively in the dynamic model, while they are $420.28,

18.45% and 1.11 respectively in the static model. In the moderate influenza pandemic scenario

with vaccine intervention, the pandemic cost per capita, attack rate and reproduction number

are $14.85, 0.16% and 1.00 respectively in the dynamic model, while they are $225.83, 9.85%

and 1.05 respectively in the static model.

Molinari et al estimated the annual economic impact (medical costs and productivity loss)

of seasonal influenza in the United States to be $87.0673 billion (95% CI: $47.2153, $149.5086)

in 2003 with the vaccine intervention [40], which relates to an inflation adjusted cost per capita

of $392.24 (95% CI: $212.71, $673.54) in $2015. We estimated the pandemic cost per capita

with no vaccine intervention to be $678.10, $486.67 and $255.18 (in $2015) for catastrophic,

strong, and moderate influenza scenarios respectively, and with vaccine intervention to be

$370.56, $90.81 and $14.85 respectively.

Direct and indirect effects on return on investment

While the vaccine interventions are cost-beneficial in both the dynamic and static models, the

return on investment is relatively higher in the dynamic model due to the combined impact of

direct and indirect effects, in comparison to the static model which includes only the direct

effect (see Fig 5 and Table 7).

Prioritization of vaccine intervention

Vaccine prioritization criteria includes risk of death, total deaths, net benefits, and return on
investment. Table 8 shows the values for risk of death, total deaths, net benefits, and return on

investment of high and non-high risk groups among the 0–19, 20–64, 65+ years subpopulations

for the catastrophic, strong and moderate influenza pandemic scenarios. The prioritization cri-

teria of risk of death, total deaths, net benefits, and return on investment assist in the decision

making process for vaccine prioritization among different age and risk groups, as shown in

Table 9.

Fig 4. Pandemic cost per capita, attack rate and reproduction number in the catastrophic, strong and moderate influenza pandemic scenarios

with and without vaccine intervention. Pandemic cost per capita, attack rate and reproduction number are relatively lower in the dynamic model due to

the combined impact of direct and indirect effects, in comparison to the static model which includes only the direct effect. Fig 4A: Pandemic cost per capita

in the catastrophic, strong and moderate influenza pandemic scenarios with and without vaccine intervention. Fig 4B: Attack rate in the catastrophic, strong

and moderate influenza pandemic scenarios with and without vaccine intervention. Fig 4C: Reproduction number in the catastrophic, strong and moderate

influenza pandemic scenarios with and without vaccine intervention.

https://doi.org/10.1371/journal.pcbi.1005521.g004
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Risk of death

Fig 6A illustrates the prioritization criteria for the vaccine intervention based on the risk of
death. In the catastrophic influenza pandemic scenario, the risk of death among the high-risk

65+ years subpopulation is the highest at 392.18 deaths per 100,000 influenza cases, while it is

the lowest among the non-high risk 0–19 years subpopulation at 6.63 deaths per 100,000 influ-

enza cases. In the strong influenza pandemic scenario, the risk of death among the high-risk

0–19 years subpopulation is the highest at 281.08 deaths per 100,000 influenza cases, while it is

the lowest among the non-high risk 0–19 years subpopulation at 5.04 deaths per 100,000 influ-

enza cases. In the moderate influenza pandemic scenario, the risk of death among the high-

risk 0–19 years subpopulation is the highest at 157.85 deaths per 100,000 influenza cases, while

it is the lowest among the non-high risk 20–64 years subpopulation at 2.65 deaths per 100,000

influenza cases.

Total deaths

Fig 6B illustrates the prioritization criteria for the vaccine intervention based on the propor-

tion of total deaths. In the catastrophic influenza pandemic scenario, the proportion of total

deaths among the high-risk 20–64 years subpopulation is the highest at 0.45, while it is the

Fig 5. Return on investment of vaccine intervention. Return on investment is the gain in net benefits relative to the

vaccination cost, that is, dollars saved per $1 investment in vaccine intervention. Economic impact of the vaccine

intervention includes both the direct and indirect effects. The direct effect is evaluated from the static model, and the

direct and indirect effects is evaluated from the dynamic model.

https://doi.org/10.1371/journal.pcbi.1005521.g005
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Table 7. Pandemic cost, net benefits and return on investment. Pandemic cost is the total cost associated with the health outcomes of influenza cases

and the cost of vaccination. Net benefits are the difference in cost due to improved health outcomes from vaccination and the vaccination cost. Return on

investment is the gain in net benefits relative to the vaccination cost, that is, dollars saved per $1 investment in vaccine intervention.

Static model (direct effect)

Pandemic

influenza

Pandemic cost with no

vaccine intervention

(million $)

Pandemic cost with vaccine

intervention (million $)

Vaccination

cost

(million $)

Net benefits

(million $)

Return on investment of

vaccine intervention

Catastrophic 6,135.18 5,153.93 103.56 877.68 8.47

Strong 4,403.21 3,698.98 103.57 600.66 5.80

Moderate 2,308.79 1,939.60 103.57 265.62 2.56

Dynamic model (direct + indirect effects)

Pandemic

influenza

Pandemic cost with no

vaccine intervention

(million $)

Pandemic cost with vaccine

intervention (million $)

Vaccination

cost

(million $)

Net benefits

(million $)

Return on investment of

vaccine intervention

Catastrophic 6,135.18 3,249.14 103.56 2,782.47 26.87

Strong 4,403.21 718.04 103.57 3,581.59 34.58

Moderate 2,308.79 30.79 103.57 2174.43 21.00

https://doi.org/10.1371/journal.pcbi.1005521.t007

Table 8. Risk of death, total deaths, net benefits and return on investment for different age and risk groups in the catastrophic, strong, and moder-

ate influenza pandemic scenarios. Risk of death is estimated based on the number of influenza related deaths per 100,000 subpopulation for the specific

age and risk groups. Total deaths is estimated based on the proportion of influenza related deaths for the specific age and risk groups among total influenza

related deaths. Net benefits are the difference in cost due to improved health outcomes from vaccination and the vaccination cost. Return on investment is the

gain in net benefits relative to the vaccination cost, that is, dollars saved per $1 investment in vaccine intervention.

Catastrophic influenza pandemic

Age and risk group Risk of death

(per 100,000 cases)

Proportion of total deaths Net benefits (million $) Return on investment

Non-high risk 0–19 yrs 6.63 0.031 280.05 9.86

High risk 0–19 yrs 369.70 0.117 484.16 249.16

Non-high risk 20–64 yrs 7.43 0.065 436.93 8.20

High risk 20–64 yrs 308.19 0.452 1201.38 133.99

Non-high risk 65+ yrs 51.36 0.055 68.80 10.49

High risk 65+ yrs 392.18 0.280 311.13 47.41

Strong influenza pandemic

Age and risk group Risk of death

(per 100,000 cases)

Proportion of total deaths Net benefits (million $) Return on investment

Non-high risk 0–19 yrs 5.04 0.033 425.90 14.99

High risk 0–19 yrs 281.08 0.127 714.00 367.42

Non-high risk 20–64 yrs 5.22 0.064 542.70 10.18

High risk 20–64 yrs 216.44 0.450 1462.52 163.11

Non-high risk 65+ yrs 35.08 0.053 79.71 12.15

High risk 65+ yrs 267.86 0.272 356.77 54.37

Moderate influenza pandemic

Age and risk group Risk of death

(per 100,000 cases)

Proportion of total deaths Net benefits (million $) Return on investment

Non-high risk 0–19 yrs 2.83 0.036 279.50 9.83

High risk 0–19 yrs 157.85 0.139 483.30 248.69

Non-high risk 20–64 yrs 2.65 0.064 300.61 5.64

High risk 20–64 yrs 110.11 0.447 864.83 96.45

Non-high risk 65+ yrs 17.38 0.052 43.02 6.56

High risk 65+ yrs 132.71 0.263 203.17 30.96

https://doi.org/10.1371/journal.pcbi.1005521.t008
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lowest among the non-high risk 0–19 years subpopulation at 0.031. In the strong influenza

pandemic scenario, the proportion of total deaths among the high-risk 20–64 years subpopula-

tion is the highest at 0.45 while it is the lowest among the non-high risk 0–19 years subpopula-

tion at 0.033. In the moderate influenza pandemic scenario, the proportion of total deaths

among the high risk 20–64 years subpopulation is the highest at 0.447, while it is the lowest

among the non-high risk 0–19 years subpopulation at 0.036.

Net benefits

Fig 6C illustrates the prioritization criteria for the vaccine intervention based on net benefits. In

the catastrophic influenza pandemic scenario, the net benefits among the high-risk 20–64 years

subpopulation is the highest at $1201.38 million, while it is the lowest among the non-high risk

65+ years subpopulation at $68.80 million. In the strong influenza pandemic scenario, the net

benefits among the high risk 20–64 years subpopulation is the highest at $1462.52 million,

while it is the lowest among the non-high risk 65+ years subpopulation at $79.71 million. In the

moderate influenza pandemic scenario, the net benefits among the high risk 20–64 years

Table 9. Prioritization of influenza vaccine intervention. Prioritization of influenza vaccine intervention among different age and risk groups based on dif-

ferent criteria: risk of death, total deaths, net benefits, and return on investment. aRisk of death is estimated based on the number of influenza related deaths

per 100,000 subpopulation for the specific age and risk groups. Risk of death is the highest among the high risk 65+ years subpopulation in the catastrophic

influenza and it is the highest among high risk 0–19 years subpopulation in the strong, and moderate influenza pandemic scenarios. bTotal deaths is estimated

based on the proportion of influenza related deaths for the specific age and risk groups among total influenza related deaths. The proportion of influenza

related deaths is the highest among the high risk 20–64 years subpopulation in the catastrophic, strong, and moderate influenza pandemic scenarios. cNet

benefits are the difference in cost due to improved health outcomes from vaccination and the vaccination cost. Net benefits are the highest among the high

risk 20–64 years subpopulation in the catastrophic, strong, and moderate influenza pandemic scenarios. dReturn on investment is the gain in net benefits rela-

tive to the vaccination cost, that is, dollars saved per $1 investment in vaccine intervention. Return on investment is highest among the high risk 0–19 years

subpopulation in the catastrophic, strong and moderate influenza pandemic scenarios.

Prioritization criteria–Catastrophic influenza pandemic

Priority Risk of deatha Total deathsb Net benefitsc Return on investmentd

1 (high) High risk 65+ yrs High risk 20–64 yrs High risk 20–64 yrs High risk 0–19 yrs

2 High risk 0–19 yrs High risk 65+ yrs High risk 0–19 yrs High risk 20–64 yrs

3 High risk 20–64 yrs High risk 0–19 yrs Non-high risk 20–64 yrs High risk 65+ yrs

4 Non-high risk 65+ yrs Non-high risk 20–64 yrs High risk 65+ yrs Non-high risk 65+ yrs

5 Non-high risk 20–64 yrs Non-high risk 65+ yrs Non-high risk 0–19 yrs Non-high risk 0–19 yrs

6 (low) Non-high risk 0–19 yrs Non-high risk 0–19 yrs Non-high risk 65+ yrs Non-high risk 20–64 yrs

Prioritization criteria–Strong influenza pandemic

Priority Risk of death Total deaths Net benefits Return on investment

1 (high) High risk 0–19 yrs High risk 20–64 yrs High risk 20–64 yrs High risk 0–19 yrs

2 High risk 65+ yrs High risk 65+ yrs High risk 0–19 yrs High risk 20–64 yrs

3 High risk 20–64 yrs High risk 0–19 yrs Non-high risk 20–64 yrs High risk 65+ yrs

4 Non-high risk 65+ yrs Non-high risk 20–64 yrs Non-high risk 0–19 yrs Non-high risk 0–19 yrs

5 Non-high risk 20–64 yrs Non-high risk 65+ yrs High risk 65+ yrs Non-high risk 65+ yrs

6 (low) Non-high risk 0–19 yrs Non-high risk 0–19 yrs Non-high risk 65+ yrs Non-high risk 20–64 yrs

Prioritization criteria–Moderate influenza pandemic

Priority Risk of death Total deaths Net benefits Return on investment

1 (high) High risk 0–19 yrs High risk 20–64 yrs High risk 20–64 yrs High risk 0–19 yrs

2 High risk 65+ yrs High risk 65+ yrs High risk 0–19 yrs High risk 20–64 yrs

3 High risk 20–64 yrs High risk 0–19 yrs Non-high risk 20–64 yrs High risk 65+ yrs

4 Non-high risk 65+ yrs Non-high risk 20–64 yrs Non-high risk 0–19 yrs Non-high risk 0–19 yrs

5 Non-high risk 0–19 yrs Non-high risk 65+ yrs High risk 65+ yrs Non-high risk 65+ yrs

6 (low) Non-high risk 20–64 yrs Non-high risk 0–19 yrs Non-high risk 65+ yrs Non-high risk 20–64 yrs

https://doi.org/10.1371/journal.pcbi.1005521.t009
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subpopulation is the highest at $864.83 million, while it is the lowest among the non-high risk

65+ years subpopulation at $43.02 million.

Fig 6. Prioritization of influenza vaccine intervention. Prioritization of influenza vaccine intervention among different age and risk groups based on

different criteria: risk of death, total deaths, net benefits, and return on investment. Fig 6A: Risk of death is estimated based on the number of influenza

related deaths per 100,000 subpopulation for the specific age and risk groups. Risk of death is the highest among the high risk 65+ years subpopulation in

the catastrophic influenza and it is the highest among high risk 0–19 years old among strong, and moderate influenza pandemic scenarios. Fig 6B: Total

deaths is estimated based on the proportion of influenza related deaths for the specific age and risk groups among total influenza related deaths. The

proportion of influenza related deaths is the highest among the high risk 20–64 years subpopulation in the catastrophic, strong, and moderate influenza

pandemic scenarios. Fig 6C: Net benefits are the difference in cost due to improved health outcomes from vaccination and the vaccination cost. Net

benefits are the highest among the high risk 20–64 years subpopulation in the catastrophic, strong, and moderate influenza pandemic scenarios. Fig 6D:

Return on investment is the gain in net benefits relative to the vaccination cost, that is, dollars saved per $1 investment in vaccine intervention. Return on

investment is highest among the high risk 0–19 years subpopulation in the catastrophic, strong and moderate influenza pandemic scenarios.

https://doi.org/10.1371/journal.pcbi.1005521.g006
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Return on investment

Fig 6D illustrates the prioritization criteria for the vaccine intervention based on return on
investment. In the catastrophic influenza pandemic scenario, the return on investment among

the high-risk 0–19 years subpopulation is the highest at 249.16 (i.e., $249.16 saved for every $1

invested in vaccine intervention), while it is the lowest among the non-high risk 20–64 years

subpopulation at 8.20 (i.e., $8.20 saved for every $1 invested in vaccine intervention). In the

strong influenza pandemic scenario, the return on investment among the high-risk 0–19 years

subpopulation is the highest at 367.42 (i.e., $367.42 saved for every $1 invested in vaccine inter-

vention), while it is the lowest among the non-high risk 20–64 years subpopulation at 10.18

(i.e., $10.18 saved for every $1 invested in vaccine intervention). In the moderate influenza

pandemic scenario, the return on investment among the high-risk 0–19 years subpopulation is

the highest at 248.69 (i.e., $248.69 saved for every $1 invested in vaccine intervention), while it

is the lowest among the non-high risk 20–64 years subpopulation at 5.64 (i.e., $5.64 saved for

every $1 invested in vaccine intervention).

Sensitivity analysis

We conducted univariate sensitivity analysis for vaccine compliance, vaccine efficacy and vac-

cine start date, and their impact on attack rates and return on investment for catastrophic,

strong, and moderate influenza pandemic scenarios.

Vaccine compliance, vaccine efficacy and vaccine start date impact on attack rate. Fig

7 illustrates the univariate sensitivity analysis for vaccine compliance rates of 10%, 40%, 60%

and 80% (Fig 7A), vaccine efficacy rates of 10%, 20%, 30%, 40%, 50% and 60% (Fig 7B) and

vaccine start dates after epidemic onset of day 15, day 30, day 60 and day 90 (Fig 7C), and their

impact on attack rates for catastrophic, strong, and moderate influenza pandemic scenarios

with no vaccine intervention (base case) and vaccine intervention (static and dynamic

models).

We observe a negative correlation between vaccine compliance and attack rate, negative

correlation between vaccine efficacy and attack rate, and positive correlation between vaccine

start date and attack rate. The relative impact in the dynamic model is higher due to the com-

bined benefits of direct and indirect effects of the vaccine intervention, in comparison to the

static model with only the direct effect of the vaccine intervention.

Fig 7. Sensitivity analysis of vaccine compliance, vaccine efficacy and vaccine start date, and impact on attack rate. Univariate sensitivity analysis

for vaccine compliance rates of 10%, 40%, 60% and 80% (Fig 7A), vaccine efficacy rates of 10%, 20%, 30%, 40%, 50% and 60% (Fig 7B) and vaccine

start dates after epidemic onset of day 15, day 30, day 60 and day 90 (Fig 7C), and their impact on attack rates for catastrophic, strong, and moderate

influenza pandemic scenarios with no vaccine intervention (base case) and vaccine intervention (static and dynamic models).

https://doi.org/10.1371/journal.pcbi.1005521.g007
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Vaccine compliance impact on return on investment. Fig 8 illustrates the univariate sen-

sitivity analysis for vaccine compliance rates of 10%, 40%, 60% and 80%, and their impact on

return on investment for catastrophic (Fig 8A), strong (Fig 8B) and moderate (Fig 8C) influ-

enza pandemic scenario in the static (direct benefit) and dynamic (direct + indirect benefits)

models. We observe a negative correlation between vaccine compliance and return on invest-

ment in the dynamic model, indicating that the return on investment is higher with vaccine

introduction and decreases with vaccine compliance but also beneficially decreases the attack

rate. In the static model, return on investment remains stable for the varied rates of vaccine

compliance, with relatively higher return on investment in the catastrophic followed by strong

and moderate pandemic influenza scenarios.

Vaccine efficacy impact on return on investment. Fig 9 illustrates the univariate sensitiv-

ity analysis for vaccine efficacy rates of 10%, 20%, 30%, 40%, 50% and 60%, and their impact on

return on investment for catastrophic (Fig 9A), strong (Fig 9B) and moderate (Fig 9C) influenza

pandemic scenario in the static and dynamic models. We observe a positive correlation between

Fig 8. Sensitivity analysis of vaccine compliance and impact on return on investment. Univariate sensitivity analysis for vaccine compliance rates of

10%, 40%, 60% and 80%, and their impact on return on investment for catastrophic (Fig 8A), strong (Fig 8B) and moderate (Fig 8C) influenza pandemic

scenario in the static (direct benefit) and dynamic (direct + indirect benefits) models.

https://doi.org/10.1371/journal.pcbi.1005521.g008

Fig 9. Sensitivity analysis of vaccine efficacy and impact on return on investment. Univariate sensitivity analysis for vaccine efficacy rates of

10%, 20%, 30%, 40%, 50% and 60%, and their impact on return on investment for catastrophic (Fig 9A), strong (Fig 9B) and moderate (Fig 9C)

influenza pandemic scenario in the static (direct benefit) and dynamic (direct + indirect benefits) models.

https://doi.org/10.1371/journal.pcbi.1005521.g009
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vaccine efficacy and return on investment in the dynamic and static models, with relatively

higher return on investment in the dynamic model compared to the static model.

Vaccine start date impact on return on investment. Fig 10 illustrates the univariate sen-

sitivity analysis for vaccine start dates after epidemic onset of day 15, day 30, day 60 and day

90, and their impact on return on investment for catastrophic (Fig 10A), strong (Fig 10B)

and moderate (Fig 10C) influenza pandemic scenario in the static and dynamic models. We

observe a negative correlation between vaccine start date and return on investment in the

dynamic and static models, with relatively higher return on investment in the dynamic model

compared to the static model.

Discussion

Direct and indirect epidemiological and economic effects of vaccine

intervention

Direct effect is due to the immune protection gained by effectively vaccinated individuals, and

indirect effect is due to blocking of the influenza transmission by vaccinated individuals to sus-

ceptible individuals in their social network. The static model provides a conservative estimate

of the epidemiological and economic benefits of influenza vaccine intervention by accounting

for only the direct effect. The dynamic model provides a comprehensive estimate of the epide-

miological and economic benefits of influenza vaccine intervention by accounting for both the

direct and indirect effects.

The vaccine intervention has a higher probability of effectively vaccinating individuals who

will have otherwise being infected in the absence of the vaccine intervention in more severe

pandemic scenarios (such as catastrophic influenza). This is due to relatively higher attack rates

and higher proportion of population at risk of influenza infection in comparison to less severe

pandemic scenarios (such as moderate influenza). Thereby, the impact of the direct effect

decreases from catastrophic, strong to moderate influenza pandemic scenarios (see Fig 5).

The vaccine intervention has a lower probability of breaking transmission pathways in more

severe pandemic scenarios (such as catastrophic influenza), because the transmission network is

densely connected in comparison to sparsely connected transmission networks in less severe

pandemic scenarios (such as moderate influenza). Thereby, the impact of the indirect effect

increases from catastrophic, strong to moderate influenza pandemic scenarios (see Fig 5).

Fig 10. Sensitivity analysis of vaccine start date and impact on return on investment. Univariate sensitivity analysis for vaccine start dates after

epidemic onset of day 15, day 30, day 60 and day 90, and their impact on return on investment for catastrophic (Fig 10A), strong (Fig 10B) and

moderate (Fig 10C) influenza pandemic scenario in the static (direct benefit) and dynamic (direct + indirect benefits) models.

https://doi.org/10.1371/journal.pcbi.1005521.g010
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Pandemic cost per capita, attack rate and reproduction number are relatively lower in the

dynamic model due to the combined impact of direct and indirect effects, in comparison to

the static model which includes only the direct effect, in the catastrophic, strong and moderate

influenza pandemic scenarios. While the vaccine interventions are cost-beneficial in both the

dynamic and static models, the return on investment is relatively higher in the dynamic model

in comparison to the static model.

Prioritization of vaccine interventions

We analyzed vaccine prioritization criteria based on risk of death, total deaths, net benefits and

return on investment for the high and non-high risk groups among 0–19, 20–64 and 65+ years

subpopulations. The risk of death is the highest among the high-risk 65+ years subpopulation

in the catastrophic influenza, and it is the highest among the high-risk 0–19 years subpopula-

tion in the strong and moderate influenza pandemic scenarios. The proportion of total deaths
is the highest among the high-risk 20–64 years subpopulation in the catastrophic, strong and

moderate influenza pandemic scenarios. The net benefits are the highest among the high-risk
20–64 years subpopulation in the catastrophic, strong and moderate influenza pandemic sce-

narios. The return on investment is the highest in the high-risk 0–19 years subpopulation in the

catastrophic, strong and moderate influenza pandemic scenarios.

The proportion of total deaths and net benefits measure the epidemiological and economic

impact respectively, and are dependent on the absolute size of the different risk and age group

subpopulations. Risk of death and return on investment measure the epidemiological and eco-

nomic impact respectively, and are independent of the absolute size of the different risk and

age group subpopulations. Based on risk of death and return on investment, high-risk groups

of the three age group subpopulations are recommended for prioritization of influenza vaccine

intervention. Also, the vaccine intervention is cost-beneficial for all age and risk groups.

Targeted vaccination

The attack rates among the children (0–19 years) are higher than the attack rates among the

adults (20–64 years) and seniors (65+ years) in the catastrophic, strong, and moderate influ-

enza pandemic scenarios, as illustrated in Table 4. This can be attributed to their larger social

contact network and homophilous interactions in schools. Thereby, if we target children for

vaccination, there will be higher reduction among the children as well on the overall attack

rate in the general population, as also illustrated in prior studies by Hodgson et al [16], Fergu-

son et al [17], and Germann et al [18]. Also, as shown in Table 9, high risk children have the

highest return on investment from the vaccine intervention.

Public health implications

The dynamic model provides improved estimates of the epidemiological and economic benefits of

vaccine interventions in comparison to a static model, by accounting for both the direct and indi-

rect effects. These comprehensive estimates assist in prioritization of vaccine interventions among

subpopulations of different risk and age groups, especially during influenza pandemics with lim-

ited availability of vaccines. Decision makers can use the dynamic model simulations to compare

the epidemiological and economic impact of using different prioritization criteria of influenza vac-

cine interventions among different risk and age group subpopulations, thereby optimizing alloca-

tion of limited resources and improving evidence-based public health policy and practice.

Based on risk of death and return on investment, high-risk groups of the three age group sub-

populations can be prioritized for vaccination, and the vaccine interventions are cost saving for

all age and risk groups. The attack rates among the children are higher than among the adults
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and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their

larger social contact network and homophilous interactions in school. Based on return on in-

vestment and higher attack rates among children, we recommend prioritizing children (0–19

years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of

limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years)

after high-risk groups for influenza vaccination during times of limited vaccine supplies.

Modeling implications

We used an agent-based individual model in this study to estimate the direct and indirect epi-

demiological and economic impact of vaccine interventions during an influenza pandemic

in Chicago, similar to related studies [14,46,47]. Alternatively, a population level compartmen-

tal model can also be used to conduct this study, similar to related studies [15,48,49]. While

agent-based individual models add heterogeneity in contact patterns between individuals in

comparison to homogeneous mixing in compartmental models, it will be valuable to compare

the vaccine intervention priorities derived from these two modeling methods in future studies.

Limitations

We used a mean estimate of $28.62 (inflation adjusted to 2015 US dollars) for the cost of influ-

enza vaccine, and did not include the range and uncertainty in vaccination costs by location

and size of clinical practice. While beyond the scope of this study, this analysis can be extended

to additional studies for a range of vaccine compliance and efficacy values at different attack

rates of influenza pandemics in different rural and urban areas of the United States and at the

country level, to infer objective prioritization criteria for influenza vaccine interventions

among different risk and age groups.
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