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Interplay between correlations and 
Majorana mode in proximitized 
quantum dot
G. Górski1, J. Barański2, I. Weymann3 & T. Domański4

We study the low energy spectrum and transport properties of a correlated quantum dot coupled 
between normal and superconducting reservoirs and additionally hybridized with a topological 
superconducting nanowire, hosting the Majorana end-modes. In this setup the Majorana quasiparticle 
leaking into the quantum dot can be confronted simultaneously with the on-dot pairing and 
correlations. We study this interplay, focusing on the quantum phase transition from the spinless (BCS-
type) to the spinful (singly occupied) configuration, where the subgap Kondo effect may arise. Using 
the selfconsistent perturbative treatment for correlations and the unbiased numerical renormalization 
group calculations we find that the Majorana mode has either constructive or destructive effect on the 
low-energy transport behavior of the quantum dot, depending on its spin. This spin-selective influence 
could be verified by means of the polarized STM spectroscopy.

Recent intensive studies of nanoscopic superconductors focused on quasiparticles, which resemble the Majorana 
fermions1–7 that are identical to their own antiparticles. Such exotic objects can appear at defects8 or boundaries 
of topological superconductors9,10 and non-Abelian character make them appealing for quantum computing or 
novel spintronic devices11. Although Majorana quasiparticles have been predicted in various physical setups12–22, 
their experimental realization has been so far evidenced in nanowires proximitized to the bulk s-wave supercon-
ductors by the ballistic tunneling23,24, STM measurements25–28 and using lithographic structures29. Coalescence of 
the Andreev (finite-energy) bound states into the Majorana (zero-energy) quasiparticles has been also achieved 
in hybrid structures, comprising quantum dots (QDs) side-attached to topological superconducting nanow-
ires30,31. This phenomenon, initially predicted by E. Vernek et al.32, has been investigated theoretically by various 
groups33–35 and quantum dots proved to be convenient testing grounds of the Majorana modes.

Inspired by the high precision scanning-tunneling-microscopy (STM) of hybrid structures31 we consider the 
setup (Fig. 1) in which the leaking Majorana mode is confronted simultaneously with (i) the electron correlations 
and (ii) the proximity-induced pairing. Correlation effects have been previously addressed on the Hartree-Fock 
level36, using the equation of motion approach37 and numerical renormalization group (NRG) technique38, but 
mainly in the weak coupling ΓN limit. Our present analysis is complementary to the former studies, focusing 
on the subgap features (including Kondo effect) of the correlated quantum dot near its changeover between the 
BCS-type (spinless) and singly-occupied (spinful) configurations39,40. Since the Kondo and Majorana features show 
up at zero-energy, we shall analyze their interplay and check whether they compete, cooperate or have some other 
relationship. Such interplay could be encountered in STM-type geometries, analogous to what has been reported 
by the Princeton25 and Basel26 groups. One can use e.g. nanochains of Fe atoms deposited on superconducting 
substrate (like Pb or Al) with additional side-coupled adatoms, probing them either by the normal25,26 or ferromag-
netic28 STM tip. In this regard the remarkable technological progress has been recently achieved by H. Kim et al.31, 
who fabricated Fe chains (comprising from 3 to 40 atoms) on the surface of superconducting Re using single-atom 
manipulation method. When attaching individual Fe atoms to the already existing nanochain, the spin-polarized 
STM measurements (using PtIr tips) inspected emergence of the Majorana modes from the Andreev bound states 
and controlled ongoing evolution of quasiparticles in the nanochain. Such atom-by-atom construction of nano-
scopic hybrids can help verifying the subtle interplay of the Majorana quasiparticles with the subgap Kondo effect. 
In what follows, we study this issue in a systematic way predicting novel spin-resolved signatures.
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Results
In the absence of Majorana quasiparticles the interplay between correlations and proximity induced on-dot pair-
ing has been investigated in N-QD-S junctions by several groups39–41. Here we study the role of Majorana mode, 
exploring its influence on the subgap electronic states. Our major concern is to focus on the quantum phase 
transition/crossover from the spinful (singly occupied) to the spinless (BCS-type) configurations39,40, when the 
Andreev bound states cross each other. Analysis of correlations and their relationship with the Majorana qua-
siparticles has been previously performed mainly for the QD embedded between both metallic32,42–49 or ferro-
magnetic50,51 electrodes. Signatures of the leaking Majorana quasiparticle have been predicted in the tunneling 
conductance. In particular, for the long nanowires (with negligible overlap between the Majorana modes), the 
linear conductance should reach 3e2/2h, whereas for short ones (with the overlapping Majoranas) its value would 
approach 2e2/h43,44,50,51. Thermoelectric properties of such N-QD-N setup revealed that the thermopower is 
going to reverse its sign43,50,51. For junctions, comprising one normal and another superconducting electrode, 
the influence of the Majorana quasiparticle on the low-energy (subgap) spectrum of correlated QDs is much less 
explored37,38,46,52. Due to the induced electron pairing53,54 any physical process for a given spin would simultane-
ously affect its opposite counter-partner55. To be more specific, the Majorana quasiparticle hybridized with, let us 
say spin-↑ electron, would also affect the spectrum of the spin-↓ electrons. Here we find that, despite this mixing, 
the leaking Majorana mode has spin-selective influence on the subgap quasiparticles. We discuss this phenomenon 
for uncorrelated and correlated quantum dots, respectively. Moreover, since both spin components are important 
for the Andreev scattering processes, we examine in detail the resulting subgap transport properties.

Low energy microscopic model.  Practical realizations of topological superconducting phase in semicon-
ducting wires23,24 or magnetic atoms’ chains25–28 rely on p-wave pairing (of identical spins) between the near-
est neighbor sites, reminiscent of the Kitaev toy model10. Let us assume that such inter-site pairing is induced 
between ↑ electrons (we shall revisit this assumption in the last subsection) and only this particular spin compo-
nent of the QD is directly coupled to the Majorana quasiparticle32,56. Via the proximity induced on-dot pairing, the 
other (↓) spin would be indirectly affected by the Majorana quasiparticle. Effectively, any process engaging spin-↑ 
electrons would simultaneously (although with different efficiency) affect the opposite spin55. This is important 
for the particle-to-hole conversion scattering mechanism, contributing to the subgap charge transport at low 
temperatures.

On a microscopic level, our setup (Fig. 1) can be described by the Anderson-type Hamiltonian

∑= + + +
β

β β
=

−H H H H H( ) ,
(1)S N

QD QD MQD
,

where ξ= ∑ σ σ σ
†H c cN k kN k N k N,  describes the metallic electrode, ξ= ∑ − ∑ Δ + . .σ σ σ ↑ − ↓

† † †H c c c c h c( )S k kS k S k S k k S k S,  
refers to s-wave superconducting substrate and electron energies ξkβ are measured with respect to the chemical 
potentials μβ. The correlated QD is described by ε= ∑ +σ σ σ ↓ ↑

†H d d Un nQD , where ε denotes the energy level and 
U stands for the repulsive interaction between opposite spin electrons. The QD is coupled to both external reser-
voirs via = ∑ + . .β σ β σ σβ−

†H V d c h c( )QD k k k, , where Vkβ denote the matrix elements. In a wide bandwidth limit, it 
is convenient to introduce the auxiliary couplings π δ ω ξΓ = ∑ | | −β ββ V2 ( )k k k

2 , which can be assumed constant. 
It has been shown57–60, that for |ω| ≪ Δ the superconducting electrode induces the static pairing inside the quan-
tum dot, + ≈ − +Γ

− ↑ ↓ ↓ ↑
† †H H d d d d( )S S QD 2

S . We make use of this low energy model, whose extension to arbitrary 
values of Δ has been discussed for instance in ref.33.

The zero-energy end modes of the topological nanowire can be modeled by the following term47

ε η η λ η η= + +↑ ↑
†H i d d( ) (2)MQD m 1 2 1 1

Figure 1.  Schematic view. Quantum dot (QD) deposited on superconducting substrate (S) and hybridized with 
the Rashba nanowire [hosting the Majorana end-modes η1 and η2], which is probed by metallic tip (N) via the 
Andreev tunneling.
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with the hermitian operators η η= †
i i  and εm accounts for overlap between the Majorana quasiparticles. We recast 

these Majorana operators by the standard fermionic ones5 η = + †f f( )1
1
2

 and η = −− †f f( )i
2 2

 so that (2) can 
be expressed as

ε
ε

= − + + −↑ ↑
† † †H t d d f f f f( )( )

2
, (3)MQD m m

m

where λ=t / 2m .

Spectrum of uncorrelated quantum dot.  We first consider the uncorrelated QD case (U = 0). Let us 
calculate the retarded Green’s function ω = 〈〈Ψ Ψ 〉〉†( ) ;  defined in the matrix notation Ψ = ↑ ↓

† †d d f f( , , , )
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where b = ω + ε + iΓN/2 − (ΓS/2)2/(ω − ε + iΓN/2). For εm = 0 (in absence of any overlap between the Majorana 
modes) this Green’s function (4) simplifies to
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where ω ω ω ω ω Γ≡ − +D D D t i( ) ( )[ ( ) 4 ( /2)]m N1 1
2  and D1(ω) ≡ (ω + iΓN/2)2 − ε2 − (ΓS/2)2. The first terms on r.h.s. 

of the Eqs (5–7) represent the Green’s function of QD coupled only to N and S electrodes (tm = 0) and additional 
terms are contributed by the Majorana quasiparticles. In the superconducting atomic limit (ΓN → 0) these Green’s 
functions are characterized by five poles: two of them corresponding to the Andreev bound states 
( ε± + Γ( /2)S

2 2 ) and the other three states with energies (0, ε± + Γ + t( /2) (2 )S m
2 2 2 ) resulting from the 

Majorana quasiparticles.
Figure 2 shows the spin-resolved normalized spectral function ω ρ ω= Γσ

π
σA ( ) ( )N2

, where ρ ω = −σ π
( ) 1

〈〈 〉〉σ σ ω+ +
†d dIm ; i0 , obtained for the uncorrelated QD at half-filling (ε = 0) for various couplings tm. As a reference 

shape, we display the spectrum in the absence of the Majorana quasiparticles (tm = 0), revealing the Andreev 
quasiparticle peaks at ω ε= ± + Γ( /2)S

2 2  whose broadening is described by ΓN. For tm ≠ 0 the spin-resolved 
spectra are no longer identical due to the direct (indirect) coupling of ↑ (↓) QD electrons with the side-attached 
Majorana state. The most significant differences show up near ω ~ 0. In particular, direct hybridization of ↑ elec-
trons depletes their spectrum near the Majorana state. Exactly at ω = 0 the spectral function is reduced by half, 

= .↑ ≠ ↑ =A A(0) 0 5 (0)t t0 0m m
, similarly to what has been reported for the same geometry with both 

non-superconducting leads44,50,56. Contrary to this behavior, the spin-↓ electrons (indirectly coupled to the 
Majorana state via on-dot pairing) clearly gain the electronic states. Again, at ω = 0 the spectral function A↓(0) 
does not depend on tm (unless tm vanishes). This constructive feedback of the side-attached Majorana state on 

Figure 2.  Free quasiparticle spectrum. The normalized spectral function ω ρ ω= Γσ
π

σA ( ) ( )N2
 of the 

uncorrelated dot U = 0 obtained for ΓS = 2ΓN, ε = 0 and various couplings tm.
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spin-↓ electrons has no analogy to any normal systems44,50,56. Upon increasing the coupling tm, we observe a grad-
ual splitting of the Andreev quasiparticles, leading to the emergence of the effective molecular structure. We can 
notice some differences appearing in the spectrum Aσ(ω) of spin-↑ and spin-↓ electrons, especially in the low 
energy region.

Subgap Andreev transport.  Low energy quasiparticles of quantum dot side-attached to the Majorana 
mode can be probed in our setup (Fig. 1) only indirectly, via the tunneling current. When voltage V applied 
between the normal tip and superconducting substrate is smaller than the energy gap Δ, at low temperatures the 
charge transport is solely due to the Andreev reflections61. For noninteracting systems such transport mechanism 
can be quantitatively determined from the Landauer-type formula

∫ ω ω ω ω= − − +I V e
h

d T f eV f eV( ) ( )[ ( ) ( )], (8)A A

where f(x) = [1 + exp(x/kBT)]−1 is the Fermi distribution. The energy-dependent transmittance

ω ω ω= Γ + ΓT ( ) ( ) ( ) (9)A N N
2

12
2 2

21
2 

describes a probability of electron (from STM tip) with spin σ to be converted into a hole (reflected back to the 
STM tip) with an opposite spin σ, injecting one Cooper pair into the superconducting substrate. The same expres-
sion (8) is valid (but only approximately) for the correlated quantum dots62. The corresponding differential con-
ductance GA(V) = dIA(V)/dV can detect the subgap quasiparticle states, even though the particle and hole degrees 
of freedom are mixed with each other60. In particular, at zero temperature the differential conductance simplifies 
to ω ω= = + + = −G V T eV T eV( ) [ ( ) ( )]A

e
h A A

2 2
.

Figure 3 shows the differential Andreev conductance obtained at zero temperature for different values of tm, 
assuming εm = 0. We observe that for finite couplings tm ≠ 0 the linear Andreev conductance GA(V = 0) drops to 
the value = =G V( 0)A t

1
4 0m

. This result is qualitatively different from what has been obtained for N-QD-N junctions, 
where = = =≠ =G V G V( 0) ( 0)t t0

3
4 0m m

44. Upon increasing the coupling tm the nonlinear conductance GA(V ≠ 0) 
develops four local maxima, two of them at ε Γ± + ( /2)S

2 2  and additional pair at ε± + Γ + t( /2) (2 )S m
2 2 2 . 

These local maxima are no longer equal to the perfect Andreev conductance 4e2/h. They originate from the 
Andreev states mixed with the Majorana quasiparticle (see Fig. 2).

In N-QD-N junctions with the side-attached Majorana nanowire the weak coupling tm leads to the fractional 
Fano-type interference patterns63. In consequence, the density of states is reduced by half and the corresponding 
linear conductance drops to 3/4 of its original value, namely to +e h e h/ /2 1

2
2  as compared to the maximum 2e2/h 

for tm = 0 case. In our N-QD-S setup (Fig. 1) both spins participate in forming the local pairs, therefore Andreev 
current [dependent on the squared anomalous Green’s functions 12(ω) and 21(ω)] is characterized by the linear 
conductance GA(V = 0) reduced down to 25% for arbitrary coupling tm ≠ 0 (Fig. 3).

Majorana signatures in the correlated quantum dot.  We now analyze the case of correlated quantum 
dot, focusing on the subgap Kondo effect originating from the Coulomb potential U and the coupling ΓN to the 
normal STM tip. In the absence of the Majorana quasiparticle it has been shown58,59, that upon increasing the 
ratio ΓS/U the subgap Kondo peak gradually broadens39,40. This behavior occurs elusively when approaching the 
quantum phase transition from the spinful configuration side57. Our main purpose here is to examine how this 
subgap Kondo effect (appearing at zero energy) gets along with the leaking Majorana mode. Some earlier studies 
of the correlated quantum dot coupled to both normal (conducting) electrodes in presence of the side-attached 
Rashba chain indicated a competition between the Kondo and Majorana physics44,50,51,56,64,65. For sufficiently long 
wire (εm = 0) the Kondo effect is preserved only for the spin-↓ channel (which is not coupled to the Majorana 
zero-energy mode), whereas for the other spin-↑ channel there appears a dip in the spectral density at ω = 0 (rem-
iniscent to what we observed in the upper panel of Fig. 2). In consequence, the total transmission is partly 
blocked, suppressing the linear conductance from 2e2/h to the fractional value 3e2/2h43,44,50,51,56. On the other 

Figure 3.  Subgap conductance. The differential Andreev conductance obtained for the same model parameters 
as in Fig. 2.
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hand, for short Rashba wires (εm ≠ 0), the Kondo peak survives in both spin channels, however, with its width 
affected by εm. All initial Kondo features are fully recovered in both of the spin-channels only for εm  (|ε|, U, Γ).

When the correlated quantum dot is embedded between the metallic and superconducting leads (N-QD-S), 
the subgap Kondo effect is controlled by U/ΓS ratio and ε39,40,58,60,66, which decide whether QD ground-state is the 
(spinful) doublet σ  or the (spinless) BCS-type − ↑↓u v0  configuration. In particular, for the half-filled QD 
ε = −( )U

2
 the BCS singlet is realized for U < ΓS, whereas the doublet is preferred for U > ΓS

57. Obviously, the 
Kondo physics might occur only in the latter case, owing to antiferromagnetic exchange interactions driven 
between the QD and normal lead40,67. Figure 4 shows the corresponding spectral functions obtained at zero tem-
perature by perturbative treatment of the Coulomb potential. The panel (a) refers to N-QD-S junction in the 
absence of the Majorana mode. In the weak interaction U regime, the spectral function is characterized by two 
Andreev peaks. When approaching U ≈ ΓS, these quasiparticle peaks merge, signaling a quantum phase transition 
(formally for ΓN ≠ 0 it becomes a continuous crossover). In the strongly correlated limit (U > ΓS), we observe 
development of the subgap Kondo peak at ω = 0 whose width gradually shrinks upon increasing the ratio of U/
ΓS

40,58. In the presence of side-attached nanowire, the Majorana mode has completely different influence on each 
spin channel (panels b and c in Fig. 4). In some analogy to the non-interacting case the spectral function A↑(ω) is 
partly depleted near ω ~ 0 (due to destructive interference caused by the Majorana mode37), whereas the other 
spectral function A↓(ω) shows an opposite effect. For the latter case the Majorana mode contributes some elec-
tronic states near zero energy, therefore the Kondo peak becomes magnified.

Figures 5 and 6 present the spectral functions of spin-↑ and spin-↓ electrons obtained by the unbiased NRG 
calculations (see Methods for details). To inspect what happens to the Kondo state due to the side-attached 
Majorana mode, we display (in the insets) the low energy spectrum in the logarithmic scale. Quasiparticle states 
of spin-↑ electron (directly coupled to the Majorana mode) are strongly suppressed near ω ~ 0. In the weak 
Majorana-dot coupling regime (b & c panels) such effect originates from the destructive quantum interference37. 
However, for stronger couplings (e.g. for tm = 0.8ΓN), QD electrons are substantially mixed with the Majorana 
mode and, in consequence, A↑(ω) develops novel (molecular) structure, revealing suppression of the zero-energy 
quasiparticles. This is particularly evident in the inset of Fig. 5(d). The spin-↓ sector (Fig. 6) reveals an opposite 

Figure 4.  Spectrum of correlated dot. The spin-resolved spectral function Aσ(ω) obtained by the SOPT 
method at zero temperature for the half-filled quantum dot (ε = −U/2), using tm = 0 (left panel) and tm/ΓN = 0.2 
(middle/right panels).
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Figure 5.  Spectrum of spin-↑ electrons. The normalized spectral function A↑(ω) for spin ↑ obtained from NRG 
calculations for ΓS = 2ΓN, various ratios of U/ΓN and several values of the coupling tm, as indicated. The other 
parameters are ε = −U/2, εm = 0 and ΓN = D/50, with D the band halfwidth.
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tendency. In this case, the Majorana mode indirectly affects the states predominantly in the vicinity of ω ~ 0. In the 
weak coupling limit the Kondo effect (existing for U ≥ ΓS) seems to be robust but its shape slightly broadens (see 
the insets of panels b & c). In the molecular regime (panel d) the electronic states cumulate near the zero energy, 
forming a single peak. We interpret it as an indirect leakage of the Majorana quasiparticle driven by the on-dot pair-
ing. Numerical results obtained by the NRG calculations qualitatively agree with the selfconsistent perturbative 
treatment. In the weak coupling limit (small tm), both methods show detrimental influence of the Majorana mode 
on the subgap Kondo effect of ↑ spin and less severe (almost neutral) effect on ↓ spin sector. In the latter case the 
Kondo peak seems to be robust (it merely broadens). On the other hand, for the QD strongly coupled to the top-
ological nanowire, we find that the Majorana mode strongly affects both spin sectors, substantially redistributing 
their quasiparticle spectra. Under such circumstances the Kondo state is hardly evident.

Majorana and Kondo features in subgap transport.  Empirical detection of the subgap quasiparticles 
of correlated QD would be possible in our setup by the Andreev current conductance. The direct Andreev scatter-
ing, however, mixes the contributions of both spin channels to the effective transmittance (9). Figure 7 presents 
the transmittance TA(ω) obtained by NRG calculations for several couplings tm, as indicated. Variation of the 
differential Andreev conductance GA(V) with respect to the Coulomb potential U for the weak (b) and strong (c) 
coupling tm limits is shown in Fig. 8. Nonequilibrium conditions have been taken into account within the pertur-
bative approach, following the steps discussed by us in ref.40. In the weakly correlated case these plots resemble 
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Figure 6.  Spectrum of spin-↓ electrons. The spectral function A↓(ω) obtained by the NRG calculations for the 
same set of parameters as in Fig. 5.

Figure 7.  Kondo and Majorana signatures in subgap transmittance. The Andreev transmittance TA(ω) obtained 
by NRG for the half-filled QD and for different values of tm, as indicated. The other parameters are as in Fig. 5.
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the results of the uncorrelated QD presented in Fig. 3. Remarkable changes appear in the strongly correlated limit, 
especially on the doublet side U ≥ ΓS.

To clarify the aforementioned behavior let us notice that in the absence of the Majorana mode (tm = 0) the 
differential conductance is characterized by two peaks at bias V, coinciding with energies of the Andreev states. 
The zero-bias enhancement comes from the subgap Kondo effect, but solely in the doublet region (i.e. for U ≥ ΓS). 
Using the generalized Schrieffer-Wolff approach for the N-QD-S setup we have previously estimated40, that the 
effective Kondo temperature of the half-filled QD scales as lnTK ∝ 1/[1 − (ΓS/U)2]. In particular, it yields enhance-
ment of TK with respect to ΓS upon approaching the doublet-singlet transition. This unique behavior is valid for 
arbitrary Δ, as has been revealed by the NRG studies39. In the limit ΓU S, the Andreev tunneling is strongly 
suppressed, because the off-diagonal Green’s function (characterizing efficiency of the induced on-dot pairing) 
nearly completely vanishes. These effects are illustrated in Fig. 8a.

The side-attached Majorana mode strongly affects the mentioned behavior. In the weak coupling limit 
(Fig. 8b) its influence is merely manifested near the zero-bias conductance. For Γ ~ US , we observe a superposi-
tion of the leaking Majorana feature (whose width depends on tm) with leftovers of the Kondo peak, surviving 
only in the spin-↓ channel. For the strong tm-coupling case (Fig. 8c), the differential conductance GA(V) develops 
some novel molecular structure, characterized by four peaks. We interpret them as the bonding and anti-bonding 
mutations of the initial Andreev quasiparticles caused by strong hybridization with the Majorana mode. Upon 
increasing the Coulomb potential the internal peaks gradually merge into a single central one, whereas the exter-
nal peaks loose their spectral weights.

Majorana quasiparticles coupled to both spins.  In realistic situations the spin-orbit coupling and the 
Zeeman effect break spin-rotational symmetry in Majorana nanowires. Spin is hence no longer a good quantum 
number. For this reason in proximitized nanowires with the strong spin-orbit interactions and in the presence of 
magnetic field effective intersite pairing is induced between the ‘tilted’ spins. Nevertheless, one can project this 
triplet pairing onto ↑ and ↓ components, estimating their amplitudes. Under these circumstances the Majorana 
quasiparticles emerge simultaneously in the spin-↑ and ↓ channels, but of course with different probabilities. The 
polarized Majorana quasiparticles have been indeed observed by A. Yazdani and coworkers in the STM measure-
ment (using a ferromagnetic tip), for Fe atom nanochain deposited on superconducting Pb substrate28. Detailed 
analysis of this issue has been recently addressed by several groups68–70. To capture such magnetic polarization we 
generalize the initial model (3), assuming finite couplings of the Majorana modes to both spins of the quantum dot
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where tm↑ = tmp and tm↓ = tm(1 − p) with polarization p ∈ [0, 1]. The Green’s function of the uncorrelated QD is 
given by
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For reliable analysis of the correlation effects we have determined the spectral functions Aσ(ω) by NRG calcu-
lations, focusing on the strong correlation limit U > ΓS. Figure 9 shows the spectral function A↑(ω) obtained in the 
Kondo regime for a number of polarizations p indicated in the legend. Spectra of the spin-up electrons for polarization 
p are identical with spectra of the spin-down electrons for polarization 1 − p, therefore, the behavior of A↓(ω) can be 
easily deduced from Fig. 9. We have inspected the spectral behavior in the weak (tm = 0.1ΓN), moderate (tm = 0.2ΓN) 
and strong coupling (tm = 0.8ΓN) regions, respectively. We notice that polarization imposes a particle-hole asymmetry 

Figure 8.  Nonlinear conductance of correlated dot. The differential subgap conductance GA(V) as a function of 
the applied voltage V and the Coulomb potential U obtained at T = 0 for the half-filled QD, using ΓS = 2ΓN and 
for different values of tm, as indicated.
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Aσ(ω) ≠ Aσ(−ω), both in the interferometric (small tm) as well as in the molecular (large tm) regime. Upon depart-
ing from the fully polarized case (p = 1 or p = 0) towards p → 0.5, the spin-selective influence gradually disappears. 
Nevertheless, for the realistic 30% polarization (p = 1 − 0.3) reported by Yazdani’s group28, we still clearly observe a 
destructive/constructive influence of the Majorana mode on the spectrum of spin up/down electrons.

Experimental observation of these spin-resolved and asymmetric features would be difficult by means of 
the local Andreev spectroscopy, because it mixes both spin degrees of freedom. For the same reason the local 
Andreev conductance would be rather weakly sensitive to polarization p. Another efficient tool for probing the 
magnetically polarized QD spectra might be nonlocal spectroscopy based on the selective equal spin Andreev 
reflection (SESAR) technique, briefly discussed in Methods. For some quantitative study one should apply the 
Bogoliubov de Gennes treatment for the tight binding description of the topological nanowires, which is however 
beyond the scope of the present study restricted to the low energy microscopic scenario.

Discussion
We have analyzed the spin-resolved spectroscopic features of the quantum dot side-coupled to the topologically 
nontrivial superconducting nanowire, hosting the Majorana quasiparticles. Considering STM-type geometry, we 
have investigated the subgap electronic spectrum of QD and the Andreev conductance. In the uncorrelated case 
(U = 0), the Majorana quasiparticle induces either the zero-energy peak or dip in the QD spectrum, depending 
on its spin (Fig. 2). We assign it to the constructive or destructive quantum interference63. The direct Andreev 
conductance (equally sensitive to both spin sectors) would be predominantly affected by a destructive influence, 
manifested by the zero-bias dip in the weak hybridization tm regime. In the molecular limit the QD spectrum and 
Andreev conductance are characterized by the emergent multi-peak structures.

We have also addressed the correlation effects, confronting them with the proximity induced on-dot pairing 
and the Majorana quasiparticle. Repulsive Coulomb interaction can cause the quantum phase transition from the 
spinless to spinful configuration57,59, qualitatively affecting the spin exchange mechanism (between QD and itin-
erant electrons of the normal electrode) leading to the subgap Kondo effect39,40. We have studied this mechanism 
in the presence of Majorana quasiparticles. Our calculations based on the selfconsistent perturbative treatment 
of the Coulomb potential U and using the unbiased NRG method reveal that the side-attached Majorana mode 
has spin-selective influence on the subgap Kondo effect. For spin-↑ electrons (directly coupled to the Majorana 
mode), it has a detrimental influence, whereas for the spin-↓ sector, the opposite tendency occurs. Such construc-
tive/destructive influence of the Majorana mode on the proximitized QD could be probed either by spin-selective 
Andreev scattering71, spin-resolved current correlations72, or non-local spin blocking effect73.

Relationship between the Kondo state and the Majorana mode studied here differs from the previous consid-
erations of the topological Kondo effect realized in the correlated nanowires64,65,74–77. In our context the subgap 
Kondo effect would be observable solely upon approaching the quantum phase transition of the correlated QD 
(manifested by the crossing Andreev quasiparticles). Since such crossing occurs at zero energy (i.e. the Fermi 
level), this effect should interfere with the zero-energy Majorana mode and the resulting would show up in the 
tunneling characteristics. Our study predicts the following features, which could be verified experimentally: (i) 
reduction of the linear conductance down to 25% of the perfect value typical for N-QD-S junctions59 in contrast 
to the reduction to 75% of the unitary value predicted for N-QD-N junctions44, (ii) suppression of the direct 
Andreev conductance near the parity changeover of the QD ground state (from the spinless to spinful configura-
tion) in the weak hybridization (small tm) limit, (iii) development of the molecular structure in the strong hybrid-
ization (large tm) limit, in which the Majorana mode is combined with the Andreev and the subgap Kondo states, 
(iv) additional signatures of the Majorana mode appearing in the nonlocal Andreev scattering via the topological 
nanowire (see Methods), which could detect the singlet-doublet quantum phase transition.

Methods
Perturbative treatment of correlations.  In a weakly interacting system the Coulomb term Un↓n↑ can be 
treated via perturbative scheme. It has been shown that the second-order perturbation theory (SOPT)78 properly 
accounts for essential features of the subgap Kondo effect58, at least qualitatively40,67. For the proximitized quan-
tum dot one can formulate this SOPT approach, using the Dyson equation ω ω ω= − Σ− = −

( ) [ ( )] ( )U1 0 1
   with 

the diagonal and off-diagonal parts of the matrix selfenergy58

Figure 9.  Spectrum for the polarized system. Spectral function A↑(ω) of the correlated QD obtained by NRG 
for varying p, using ΓS = 2ΓN, U = 5ΓN and several tm, as indicated. The other spectral function obeys the 
identity A↓(ω)p = A↑(ω)1−p.
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The terms proportional to U originate from the usual Hartree-Fock-Bogoliubov (static) approximation, 
whereas the second-order (dynamic) contributions ωΣ ( )ij

(2)  can be expressed by the following convolutions67
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The auxiliary functions ρ ω ω ω≡ + ±
π

± − +i f( ) Im ( 0 ) ( )ij ij
1 0  are computed, using the uncorrelated Green’s func-

tions (4) but with the Hartree-Fock-Bogoliubov (static) shifts taken into account58. We have selfconsistently 
determined the selfenergies (12–14) for sufficiently dense mesh of the discretized energy ω, slightly above the real 
axis.

NRG calculations.  The most reliable analysis of the interplay of correlation effects with electron-pairing and 
the leaking Majorana quasiparticle is possible within the numerical renormalization group (NRG) approach79. We 
have performed such calculations, focusing on the low energy (subgap) physics of the effective model
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describes the interacting quantum dot with the proximity induced on-dot pairing. In practice, we have numeri-
cally investigated the following Hamiltonian
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where σ
†cj N

( )  represent j-th site operators of the Wilson’s semi-infinite chain, tj are the hopping integrals between the 
neighboring sites and we have assumed the flat density of states ρ =

D
1

2
 of the normal lead with a cutoff D U. 

This single-channel model (19) allowed for a good quality computational analysis. We have performed numerical 
calculations, using the Budapest Flexible DM-NRG code80 for constructing the zero-temperature density matrix 
of the system and calculating the spin-resolved spectral functions for arbitrary model parameters U, ε, Γβ, tm and 
εm. Since the coupling tm to Majorana mode and superconducting pairing correlations ΓS break the spin and 
charge symmetries, only the charge parity symmetry of the total Hamiltonian was used. In calculations we kept at 
least 1024 states per iteration and imposed the discretization parameter Λ = 2. Our results were averaged over 
Nz = 4 interleaved discretization81, using the logarithmic Gaussian broadening to obtain the smooth spectral 
functions. In this paper we focused on the half-filled case ε = −U/2, assuming εm = 0.

Nonlocal Andreev transport.  Let us finally discuss some additional contribution to the charge transport 
between N and S electrodes indirectly via the topological nanowire. In the subgap regime (where any single parti-
cle tunneling is prohibited) there might occur the nonlocal Andreev tunneling. Physically, it could originate from 
a particle-hole scattering through the anomalous terms

.σ ω+ +d f; (20)i0

These propagators describe the indirect conversion of electrons (arriving from the metallic lead) to holes 
(injected to the topological nanowire) and further transmitting the pairs into the superconducting electrode. 
Such mechanism is analogous to the crossed Andreev reflections observed in three-terminal (or multiple) junc-
tions. Let us notice, that the nonlocal Andreev mechanism can be realized individually for both spin orientations 
(although with significantly different probabilities). In particular, the nonlocal transfer of the spin-↑ channel 
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would correspond to, so called, selective equal spin Andreev reflection (SESAR) proposed in ref.71. Such SESAR 
mechanism is allowed, because electrons of the topological nanowire are effectively bound into intersite pairs of 
the identical spins (i.e. triplet pairing)19. The spin-selective nonlocal Andreev transport has been shown to be a 
very useful tool for probing the spatial extent and magnetic polarization of the Majorana quasiparicles68.

Within the low energy scenario (2) we can estimate only quantitatively such nonlocal Andreev scattering, 
by exploring the propagators (20). A quantitative analysis of the nonlocal Andreev conductance would require 
some microscopic description of the Rashba or helically ordered proximitized nanowire, using the Bogolubov 
de Gennes approach. Here we restrict to evaluation of the squared absolute values of terms (20), analogous to 
the direct Andreev transmittance (9). Figure 10 shows the results obtained within the selfconsistent perturbative 
treatment for the half-filled QD and for various U, as indicated. These spin-dependent quantities are normalized 
to their zero-energy values of the noninteracting case
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We clearly notice that correlations lead to the completely different behavior in each spin component. The 
nonlocal (SESAR) Andreev transport of spin-↑ electrons is enhanced upon increasing the ratio U/ΓN. In the 
weak correlation limit U ≤ ΓS (when the QD ground state is in BCS-type configuration) it is characterized by a 
single peak at zero energy. In the strongly correlated case U ≥ ΓS (corresponding to the spinful QD configuration) 
the nonlocal Andreev probability develops two-peak structure. Contrary to this behavior, the nonlocal Andreev 
transport of spin-↓ electrons is monotonously suppressed by the Coulomb potential. We assign such effect to the 
fact, that influence of the Majorana quasiparticle on spin-↓ electrons occurs indirectly via the particle-hole mix-
ing. For strong enough Coulomb potential the on-dot pairing diminishes, therefore the nonlocal Andreev scat-
tering of spin-↓ electrons is substantially suppressed. On the other hand, this parity changeover (from the spinless 
BCS-type to the spinful doublet configuration) is accompanied by evolution of the nonlocal (SESAR) Andreev 
scattering of spin-↑ electrons from a single to double peak behavior, which should be detectable by spin-resolved 
spectroscopic techniques28,31.
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