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Benzo(a)pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic

hydrocarbon (PAH) whose toxicological e�ects in the vessel-wall cells have

been recognized. Many lines of evidence suggest that tobacco smoking

and foodborne BaP exposure play a pivotal role in the dysfunctions of

vessel-wall cells, such as vascular endothelial cell and vascular smooth muscle

cells, which contribute to the formation and worsening of cardiovascular

diseases (CVDs). To clarify the underlyingmolecularmechanismof BaP-evoked

CVDs, the present study mainly focused on both cellular and animal

reports whose keywords include BaP and atherosclerosis, abdominal aortic

aneurysm, hypertension, or myocardial injury. This review demonstrated the

aryl hydrocarbon receptor (AhR) and its relative signal transduction pathway

exert a dominant role in the oxidative stress, inflammation response, and

genetic toxicity of vessel-wall cells. Furthermore, antagonists and synergists

of BaP are also discussed to better understand its mechanism of action on

toxic pathways.

KEYWORDS

Benzo(a)pyrene, cardiovascular diseases, AhR, oxidative stress, inflammation,

genotoxicity

Introduction

BaP is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings

found in coal tar with the formula C20H12 in the nineteenth century (1). The main

sources of BaP in food are from pollution materials in the environment or produced by

the pyrolysis of amino acids, fatty acids, and carbohydrates (2).The BaP is formed during

the incomplete combustion of organic matter at temperatures between 300 and 600◦C,
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and is primarily found in automobile emissions, cigarette

smoke, coal tar and charcoal-broiled foods (3, 4). Due to their

lipophilic and hydrophobic characteristics, polycyclic aromatic

hydrocarbon (PAH) finally accumulates in the food chain.

Dietary exposure accounts for more than 90% of the total

exposure to PAHs in the general population in various countries

(5). Nowadays, BaP is the first pollution indicator of PAHs in

food designated by the scientific community (6).

Cardiovascular diseases (CVDs) are associated with DNA

damage, including DNA adduct and oxidative DNA damage,

in both circulating and vessel-wall cells. And environmental

chemical carcinogens have been identified to be as a risk factor

for CVDs (7–10). In addition, collective evidence from these

studies revealed that the cardiovascular toxicity of foodborne

contaminants is mainly attributed to PAHs, especially BaP.

However, no literature review focuses on the association between

BaP and CVDs. In this review, we aimed to provide a

comprehensive understanding of the mechanism of cell toxicity

effects of BaP in CVDs, mainly focusing on atherosclerosis (AS),

hypertension (HTN), and abdominal aortic aneurysm (AAA).

Sources, metabolism and tissue
toxicity of BaP

The primary sources of PAH contamination can be divided

into two groups: anthropogenic pollution and natural pollution.

Natural sources of PAHs are negligible or less important. The

significant determinants of PAH pollution are anthropogenic

pollution sources, classified into four groups, i.e., industrial,

mobile, domestic, and agricultural pollution sources (11). In fact,

the main source of exposure to PAHs for non-smokers and non-

occupationally exposed adults are food. Diet contributes to more

than 90% of total PAHs exposures in the general population

in various countries (2, 5). PAHs can generate during the

food preparation procession (contaminated by environmental

PAH that are present in air, soil, or water by deposition and

transfer), or during processing and cooking (12). BaP is the first

pollution indicator of PAHs in food. Therefore, foodborne BaP

contaminants are a primary source of BaP uptake by humans.

After entering the body, except for a small part of BaP

excreted in the feces in its original form, most of the BaP

accumulated in the gastrointestinal tract, epididymal fat, lung,

liver, brain, and kidney (13). BaP is highly lipophilic and can be

easily absorbed into cells through the plasma membrane. BaP

can be metabolized into dozens of metabolites through AhR and

aromatic hydrocarbon metabolizing enzymes (14–16), such as 1,

2-dihydroxy-1, 2-dihydrobenzopyrene, benzopyrene diketone,

and BPDE. The conversion to hydroxyl compounds or ketones

is a detoxification reaction, while the conversion to epoxide is an

activation reaction. About 10% of BaP is converted to BPDE in

the organism (17). BPDE has a strong oxidizing capacity, which

can cause oxidative damage to DNA, affect DNA replication, and

induce apoptosis and gene mutation.

BaP is well known for its carcinogenic activity early in 1930,

and numerous studies since the 1970s have documented links

between BaP intake and cancers (1, 18, 19). It has been classified

as class I carcinogen by the International Agency for Research

on Cancer (www.iarc.who.int). The exposure of BaP results in

extensive and selective formation of BPDE, which has high

interaction activity with DNA and forms a DNA adduct, the

major mutagen in tobacco smoke (7, 20). Properly speaking, BaP

is a procarcinogen. Its carcinogenic effects depend on the activity

of the detoxification enzymes cytochrome P450 1A1 (CYP1A1)

and CYP1B1, which enzymatic metabolism BaP to BPDE (21,

22). Furthermore, BaP induces the CYP1A1 gene expression by

activating the AhR nuclear translocation signal pathway (23, 24).

Furthermore, most of the BPDE-DNA adducts can be removed

from DNA by nucleotide excision repair mechanism within

the cell. Therefore, continuous or high doses of BaP intake

will inevitably cause errors during DNA replication leading

to carcinogenic mutations (23–25). Besides, there is growing

evidence that BaP has strong toxic effects on the nervous system

(26), immune system (27, 28), and reproductive system (29).

AhR is a ligand-activated transcription factor best known for

mediating carcinogen toxicity and tumor-promoting properties,

including dioxin and BaP (30). AhR belongs to the basic

helix-loop-helix transcription factors family. And numerous

studies have revealed that the toxicity of BaP has been

linked to activation of the AhR (31–33). In the absence of

ligands, AhR exists predominantly in the cytosolic compartment

in association with a chaperone complex (Hsp90/XAP/p23)

(30). Upon BaP binding to AhR, dimerization of AhR and

the aryl hydrocarbon receptor nuclear translocator (ARNT)

occurs. The AhR/ARNT heterodimer then binds to xenobiotic

responsive elements (XREs) (core sequence: GCGTG) in

the promoters of BaP-regulated genes, such as cytochrome

P450s (CYPs), intercellular cell adhesion molecule 1 (ICAM1),

vascular cell adhesion molecule 1 (VCAM1), and prostaglandin

endoperoxide synthase 2 (PTGS2) (33–35).

CYPs are membrane-associated proteins that use

molecular oxygen and reduce the equivalents of NADPH

to catalyze oxidative, peroxidative, and reductive metabolism

of endogenous and exogenous substrates (36). More than 400

genes encoding CYP-associated activities have been cloned, but

their relative expression exhibits remarkable tissue, gender, and

developmental specificity (37). Kerzee and Ramos investigated

constitutive and inducible expression of these two CYPs from

AhR knockout mice. Their results show that the expression

of CYP1A1 was inducible in BaP-treated AhR+/+ mice,

and CYP1B1 was expressed under constitutive and inducible

conditions irrespective of AhR phenotype or growth status

(36). In mouse aortic smooth muscle cells, BaP increased the

aryl hydrocarbon hydroxylase activity. The specific inhibitor

of CYP1B1, but not CYP1A1, could reverse the BaP-induced
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DNA adducts formation, which may contribute to atherogenesis

by PAHs (38). Furthermore, CYP1A1−/− and AhR−/− mice

formed smaller atherosclerotic lesions size and oxidative stress

when suffering over 10 weeks of 10 mg/kg/body weight(bw) BaP

treatment (39, 40).

Vascular toxicity e�ects and
underlying mechanism of BaP

As early as 1977, it was reported that the aorta was

the target organ of BaP (41). However, it is only in recent

years, the cardiovascular toxicity of BaP attracted considerable

attention. Currently, as an independent risk factor for CVDs,

BaP has been found to be closely related to CVDs, including

AS, HTN and AAA, and shows multiple kinds of vascular

toxicity (10, 11, 13, 42). Preclinical studies have found that BaP

exposure is correlated with oxidative stress and vascular toxicity.

In addition, investigations have discovered a relationship

between BaP exposure and the occurrence and development of

CVDs (11).

Atherogenic e�ect of BaP

Atherosclerosis (AS) is a chronic pathological process in

the large artery wall and is characterized by the accumulation

of oxidized lipid, fibrous elements, and calcification. This

process is initiated by endothelium injury, followed by a

cascade of events, which causes the vessel narrowing and

activation of inflammatory responses leading to atheroma

plaque formation (43–45). As a result, these processes result

in multiple cardiovascular complications, including myocardial

infarction, heart failure, stroke, and claudication, which remain

the leading cause of death globally (46). Moreover, this complex

disease is caused by the interaction of multiple genetic and

environmental risk factors, which include western pattern diet,

tobacco smoking, and air pollution (45).

In ApoE−/− background atherosclerotic animal models, 4

days of 5–8 mg/kg/bw BaP grave treatment can increase the

serum epsilon A and high-density lipoprotein (HDL) level (47).

Moreover, the BPDE-DNA adduct could also be observed in the

aorta tissues (47), while compared to the control groups, 12–

24 weeks of treatment increased the expression of monocyte

chemoattractant protein 1 (MCP1), and promoted the release

of transforming growth factor beta (TGFβ) and tumor necrosis

factor α (TNFα) in vascular wall cells (48–50). In response

to the inflammatory mediator, the atherosclerosis lesion may

be heavily infiltrated with pro-inflammation cells, including

macrophages, T cells and neutrophils (49), and the lesion size

began to enlarge (13, 50).

Exposure to BaP plays a vital role in the etiology of

atherosclerosis (Table 1). The endothelium represents the inner

cell layer of blood vessels and is supported by smooth muscle

cells and pericytes, which form the vessel structure (51).

Due to direct blood contact, the blood vessel endothelium is

inevitably exposed to genotoxic substances that are systemically

taken up by the body, including BaP (17). One key step

in the development of atherosclerosis is vascular endothelial

dysfunction, followed by cell death and a local inflammatory

response (48, 53, 67). Besides, there is strong evidence to

suggest oxidative stress is one of the most potent inductors of

vascular inflammation in atherogenesis. nuclear factor-κB (NF-

κB) may respond directly to BaP-induced oxidative stress, and

the activation of NF-κB is a key redox-sensitive event associated

with vascular dysfunction (54).

Caveolae are non-clathrin-coated plasma membrane

microdomains enriched in cholesterol and glycosphingolipids.

They are particularly abundant in endothelial cells and play

an important role in membrane traffic and cellular signal

transduction (52, 68). Oesterling and his collage observed that

caveolin-1 mediated the BaP-induced ICAM1 expression in

primary human endothelial cells. They also illustrated that

β-naphthoflavone/BaP induced ICAM1 expression by signaling

through MEK, MAPK, and AP-1 leading to increased adhesion

of monocytes to the activated endothelium (52, 68).

Besides, BaP-induced bulky DNA adducts and the

consequent DNA mutations in vascular cells are considered to

be involved in AS (31). BaP forms BPDE through a three-step

activation process catalyzed by human cytochrome P450

enzymes, notably CYP1A1 and CYP1B1, and by epoxide

hydrolase (17). A screening for DNA repair factors in BPDE

treated human umbilical vein endothelial cells (HUVECs)

revealed that the nucleotide excision repair (NER) proteins

excision repair cross-complementation (ERCC) 1, ERCC 4 and

ligase I were expressed at lower levels in HUVECs compared

with human umbilical artery smooth muscle cells (HUASMCs)

and haemopoietic progenitor cell (HPCs), which corresponds

with the impaired NER-mediated removal of BPDE adducts

from DNA (17). These data revealed that HUVECs is more

sensitive to BPDE than HPCs and HUASMCs and displays an

unexpected DNA repair-impaired phenotype.

Vascular smooth muscle cells (VSMCs) are located

in the mid-membrane of the vascular wall and are

responsible for the structural characteristics of the vessel

wall. Abnormal proliferation, migration, and invasion of

VSMCs have been suggested to be the major contributor

to the development of atherosclerotic lesions (57, 58, 69).

Evidence shows that BaP could activate interleukin 6 (IL6)

production and suppress nitric oxide-induced apoptosis in

VSMCs. A significant role of IL6 in the pathophysiology of

atherosclerosis has also been suggested, and atherosclerosis

even has been suggested to be an inflammatory disease

(69, 70). Furthermore, BaP was capable of inducing the

activation of NF-κB and MAPK in VSMCs. Both NF-

κB inhibitor and MAPK inhibitor significantly reversed
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TABLE 1 E�ects of BaP on AS.

Models Treatment Effects Reference

Cell model HUVECs 1 µmol/L BaP for 2 h pro-inflammation and enhance COX2, CYP1A1 and cPLA2 activity; ↑ CYP1A1, ICAM1, VCAM1, ↓PTGS2, PLA2G4A, NOS3 gene

expression

(51)

10–25 µmol/L for 24 h ↑monocyte adhesion and ICAM-1 depend on AhR activation, ↑MEK, p38-MAPK, c-Jun phosphorylation; ↑ AP-1 DNA binding (52)

0.5–1.5 µmol/L BPDE

for 96 h

↑ apoptosis, necrosis, ↓ ERCC1, ERCC4 and ligase I, ↑ BPDE-DNA adducts (17)

0–10 µmol/L for 4 or

24 h

↑MCP1, CYPIA1, ↓ cell viability (48)

10 µmol/L for 1–5 d ↑ VEGF, and can be reversed by ERK inhibitor (53)

10µM for 24h ↑ CCL1, CYP1A1 in an AhR- and calcium-dependent manner (32)

Human endothelial

progenitor cells

10-50 µmol/L for 24 h ↓ proliferation, migration, adhesion, and angiogenesis, ↑ IL1β, TNFα, ROS, ↑ NF-κB activation (54)

0.1–10 µmol/L for 5–7 d ↓ adherent and proliferation, ↑ CYP1A1, and reversed by AhR antagonist, ↑ PAH-related adducts (55)

Human fetoplacental

ECs

0.01–1 µmol/L for

6–24 h

↓ angiogenesis, ↑ COX2, PTGS2 mediated by AhR activation (33)

Human coronary

artery ECs

30 µmol/L for 0–140min ↑ 3H-arachidonate release and apoptosis, ↑ phospholipase A2 activation (56)

Mouse aortic

endothelial cells

1 µmol/L ↑Cu/Zn- SOD and catalase, ↑AhR, CYP1A1/1B1 protein level; ↑ GST activity and BaP detoxification; (31)

Rat VSMCs 10 µmol/L for 24 h ↓ NO-induced apoptosis, ↑ NF-κB and MAPK, ↑ IL6 production (57)

0.1–2 µmol/L for 24 h ↑ cell migration and invasion, ↑MMPs, and inhibited by MMPs inhibitor or AhR antagonist (58)

0–10 µmol/L for 0–30 h ↓ T-cadherin, and reversed by AhR antagonist a-naphthoflavone (59)

0.1–5µmol/L for 24 h ↑ COX2, prostaglandin, ERK phosphorylation, and NF-κB activation; reversed by MAPK or NF-κB inhibitor (60)

3 µmol/L for 24 h ↑ C/EBP-α/β, ARE/EpRE repressed, whereas AhR enhanced, GST-Ya gene expression (61)

Mouse VSMCs 3 µmol/L for 24 h ↑ DNA adducts, ↑ aryl hydrocarbon hydroxylase and CYP1B1 activity (38)

3 µmol/L for 1–5 h ↑ CYP1A1, CYP1B1 and reversed by AhR knockout (36)

0.03–3 µmol/L for 24 h ↑ ROS, ARE/EpRE, ↓ c-Ha-ras transcription (62)

0.3–2µmol/L for 1–5 h ↑ c-Ha-ras and oxidative stress; inhibited by P450 or AhR inhibitor ellipticine (63)

10µM for 24 h TGFβ2 and IGF1 are potential candidates signaling pathways of AhR (64)

HAECs, HCSMCs 3µmol/L for 24 h ↓ prolyl-4-hydroxylase, ↓ cellular collagen levels, atherosclerotic cap thickness (65)

Animal models ApoE−/− mice 5 mg/kg/bw daily for 4 d ↑ aorta BPDE-DNA adduct, epsilon A, and HDL level (47)

5 mg/kg/bw, weekly for

2w

↑ aortic tissue MCP1 gene expression (48)

5 mg/kg/bw, weekly for

12–24w

↑ plaques and lipid core size; ↑ T cells and macrophages infiltration; (49)
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the anti-apoptotic effect of BaP on NO-induced VSMCs

apoptosis (57).

Matrix metalloproteinases (MMPs) are a family of over 20

different endopeptidases that each degrades several extracellular

matrix proteins and non-matrix substrates. MMPs play a major

role in cell migration, differentiation, angiogenesis, and host

defense (71). Expression of various MMPs was found to increase

in BaP-induced transcriptional activation of MMPs, especially

MMP3, is not through activator protein 1 (AP-1) or NF-

κB, and the expression of MMPs increased the migration

and invasion ability of VSMCs in rats (58). Besides, when

treated with BaP, the expression level of T-cadherin, an atypical

glycosylphosphatidylinositol-anchored member of the cadherin

superfamily of adhesion molecules, is significantly repressed

(59). However, further investigation of the relationship between

the upregulation of MMPs and T-cadherin degradation still

needs further exploration.

Cyclooxygenase (COX2), also known as prostaglandin-

endoperoxide synthase (PTGS2), is a rate-limiting enzyme

responsible for prostaglandins forming and plays both

physiologic and pathologic roles in vascular function. In BaP-

treated VSMCs, ERK and NF-κB signal pathways are involved

in the expression of COX2, which may participate in the genesis

of AS (60).

Miller and his colleagues observed that treatment of VSMC

with BaP induced reactive oxygen species (ROS) accumulation

which leads to a variety of different outcomes, including

activation of nuclear proteins to bind antioxidant response

element/electrophilic response element (ARE/EpRE), activation

of cytosolic proteins that translocate and bind ARE/EpRE, or

redox sensor that interacts with cellular proteins to activate

binding to ARE/EpRE. As a result, oxidative intermediates of

BaP mediate activation of nuclear protein binding to ARE/EpRE

and contribute to transcriptional de-regulation of c-Ha-ras

(62). Kerzee et al. (63) found the upregulation of oxidative

stress and c-Ha-ras in VSMCs could be reserved by CYPs and

AhR inhibitor ellipticine. Chen et al. (61) observed another

nuclear protein CCAAT/enhancer-binding protein alpha and

beta (C/EBP-α, β) which was activated by AhR signal pathway

and lead to the inhibition of glutathione S-transferase (GST)-

Ya subunit gene expression. In addition, overexpression of

antioxidant enzymes suppressed BaP-accelerated atherosclerosis

in ApoE-deficient mice (66, 72).

BaP and hypertension

Hypertension (HTN), also known as high blood pressure, is

a long-termmedical condition in which the blood pressure in the

arteries is persistently elevated (7). HTN usually does not cause

noticeable symptoms. However, long-term untreated HTN is a

major risk factor for heart attacks, stroke, atrial fibrillation, heart

failure, and peripheral arterial disease. HTN is a major cause
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of premature death worldwide (73, 74). Over 90% of HTN is

classified as a primary type and is usually caused by unhealthy

lifestyles such as a high salt diet, overweight, alcohol drinking,

and smoking. The remaining cases are categorized as secondary

types due to identifiable causes, including chronic kidney

disease, narrowing of the kidney arteries, and an endocrine

disorder (73).

Studies have shown that systolic blood pressure

is significantly increased, and aortic responsiveness to

phenylephrine is enhanced in rats exposed to BaP (Table 2).

Inhibitors of protein kinase C (PKC), MAPK, myosin light-

chain kinase (MLCK) and Rho kinases significantly inhibit

BaP-enhanced vasoconstriction (Table 2). BaP induces ROS

production in vascular smooth muscle cells in a time-dependent

manner (7). Heart rate was not affected in BaP-treated

sprague-dawley rats, however, weight loss, markedly elevated

blood pressure (14). BaP exposure may affecte cardiovascular

development and increased systolic blood pressure. Jules et al.

(76) show that exposure to BaP results in functional deficits in

offspring during cardiovascular development, which may lead

to cardiovascular dysfunction later in life. BaP exposure altered

the circadian pattern of blood pressure, with a reduction in the

normal dipping pattern during sleep. This was associated with

increased neutrophil recruitment in the lungs of BaP-exposed

rats (75). Intraperitoneal injection of BaP up regulated the

expression of CYP1A, CYP1B1, CYP1C1, CYP1C2, and COX1

in zebrafish mesenteric arteries suggesting that BaP is associated

with changes in cardiovascular function (77).

BaP and abdominal aortic aneurysm

Abdominal aortic aneurysm (AAA) is defined as a localized

enlargement of the abdominal aorta more than 50% of its

diameter. The aortic wall continues to weaken and becomes

unable to hold the forces of the luminal blood pressure, resulting

in progressive dilatation and rupture. They usually cause no

symptoms, except during rupture. Smoking and advanced age

are the primary risk factors for AAA; if ruptured, the mortality

is 85−90% (42, 92).

Co-stimulation of male C57BL/6J mice with angiotensin

(Ang) II and BaP induced AAA significantly increased rates

of formation and mean aortic diameter. The samples were

subjected to circRNA expression analysis, and a circRNA-

miRNA co-expression network was established based on six

apoptosis-related circRNAs. Genes regulated by this network

map to multiple pathways, including apoptosis, IL-17 signaling,

and vascular endothelial growth factor signaling, all of which

are involved in AAA formation (78). BaP increases macrophage

infiltration, activates NF-κB, upregulates MMP2, MMP9, and

MMP12 expression, elastic lamina disorder, and VSMCs loss

(79), which increased AAA formation and rupture in C57/B6J

mice (80). Furthermore, the metabolites of BaP such as

7,8-dihydrodiol, 3,6-, and 6,12-dione metabolites are reported

involvement in BaP induced abdominal aortic toxicity via

elevating plasma ROS levels and increased protein expression of

TNFα, CYP1A1, and MMP9 (42).

BaP and myocardial injury

In BaP-treated offspring rats, microarray and quantitative

real-time PCR analysis revealed that the up-regulated gene

expression of AngII, angiotensinogen and, eNOS, which are

associated with the dysregulate cardiovascular development

(76). BaP increased heart-to-body weight ratios, as well as

hypertrophy markers, atrial natriuretic peptide and brain

natriuretic peptide. BaP treatment increased the gene expression

of CYP1A1, CYP1B1, CYP2E1, CYP4F4, CYP4F5 and soluble

epoxide hydrolase. BaP treatment increased the ratios of

dihydroxyeicosatrienoic acid and 20-hydroxyeicosatetraenoic

acid in total epoxyeicosatrienoic acid. Benzo(e)pyrene, an

isomer of BaP and a poor ligand for AhR, did not cause

cardiac hypertrophy in rats, confirming the role of AhR

in the development of cardiac hypertrophy (82). Zebrafish

exposed to solutions containing 5 µmol/L BaP treatment

exhibit cardiovascular malformations. Microarray analysis was

performed to identify heart-specific transcriptomic changes

in BaP/fluoranthene (FL) during early development, with

Ca2+ cycling and muscle contraction genes being the most

differentially expressed class of transcripts (Table 2). BaP/FL

may affect cellular Ca2+ levels, which subsequently affect

myocardial function and may underlie BaP/FL cardiotoxicity

(84). Exposure of zebrafish embryos to BaP for 72 h resulted

in defective cardiac development in zebrafish embryos (85).

BaP co-exposure with alpha-naphthoflavone or resveratrol

resulted in the most dramatic changes in heart and vessel

morphology, with decreased ventricular length and width,

increased ventricular wall thickness, and increased vessel

lumen diameter. In addition, decreased expression of COX2,

which is inversely associated with cardiac malformations and

vasodilation (86). Moreover, BaP-induced NCF1/p47(phox)

expression enhances superoxide anion production in an AhR-

dependent manner in PMA-treated human macrophages;

regulation of NCF1/NADPH oxidase by such PAHs may be

involved in atherosclerotic heart disease associated with vascular

disease such as sclerosis (81).

BaP and angiogenesis

BaP exposure is also associated with angiogenesis both in

vivo and in vitro (Table 2). Evidence shows that BaP reduced

corpus luteum number, disrupted steroid secretion, affected the

corpus luteum vascular network in pregnant female mice, and

significantly decreased angiogenic factors (VEGFR, Ang-1, and
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TABLE 2 E�ects of BaP on HTN and AAA.

Models Treatment Effects Reference

Hypertension Rat aortas and VSMCs 1–10 µmol/L BaP ↑ vasoconstriction and reversed by AhR, PKC, MAPK, MLCK, and Rho-kinase inhibitor; ↑ ROS (7)

Sprague-Dawley rats 20 mg/kg/bw for 8w ↑ systolic blood pressure, ↑ aortic hyperreactivity to phenylephrine (7)

0.01 mg/kg, Intranasal altered rhythm of blood pressure, ↑ lung neutrophil recruitment (75)

0.15–1.2 mg/kg/ bw at E14-17 ↑ blood pressure relative genes NOS, eNOS, NADP oxidoreductase (BH4/BH2) and AngII (76)

10 mg/kg/bw, weekly for 4w ↑ blood pressure (14)

Zebrafish 1 mg/kg/bw for 24 h ↑ CYP1A, CYP1B1, CYP1C1, CYP1C2, and COX-1 in mesenteric artery (77)

Abdominal

Aortic Aneurysm

WTmouse+Ang II 10 mg/kg/bw, weekly for 6w ↑ AAA pathogenesis, ↑ VSMC apoptosis (78)

10 mg/kg/bw, weekly for 5w ↑ AAA incidence, ↑macrophage infiltration, elastic lamella degeneration (79)

10 mg/kg/bw, weekly for 5w ↑ AAA pathogenesis, ↑macrophage infiltration, ↑MMP2, MMP9, MMP12, NF-kB expression (80)

ApoE-/- mouse+Ang II 5 mg/kg/bw, weekly for 7w ↑ AAA pathogenesis, ↑ TNFα, Cyp1A, MMP9 (42)

Myocardial injury Sprague-Dawley rats 0–10 µmol/L BaP for 0–48 h ↑ ROS, ↑ NCF1/p47(phox) in macrophages, and reversed by AhR knock down (81)

20 mg/kg/bw for 7 d ↑ cardiac hypertrophy, ↑ CYP1A1, CYP1B1, CYP2E1, CYP4F4, CYP4F5 and soluble epoxide hydrolase (82)

Zebrafish embryos 5 µmol/L ↑ cardiac abnormalities, ↑ CYP1A1, (83)

100 µg/L for 2–18 h ↑cardiac deformities, Ca2+-cycling gene alteration (84)

0.02–2 µmol /L for 72 h ↑cardiotoxicity, ↑ AhR1B, CYP1C1, CYP1A1, MMP9, ↓ prox1, tbx5, pak2a (85)

5,000 ng/L for 5 d ↑ cardiac deformities, ↑ CYP1A, ↓ COX2b (86)

Angiogenesis HUVECs 0.5 µmol/L (BPDE) ↓ angiogenesis, ↓ Notch1, ↑ Dll4, Jag1, and ↓Hey2 (10)

0–10 µmol/L for 24 h ↓ angiogenesis, ↓ integrin αv/β3, AhR, MAPK phosphorylation, ↑ CYP1A1 (87)

Zebrafish embryos 1 µmol/L for 24–96 h ↑ cardiovascular toxicity, ↓ AhR2, myh6, ↑ CYP1A, atp2a2 (88)

Japanese medaka 0.1–1 µg/L for 6 d ↑ heart hypertrophy, ↑ CYP2J23, Coro2A (89)

WT and AhR-null mice 125 mg/kg/bw weekly for 4w ↑ ischemia-induced angiogenesis, ↑ IL6, VEGF in AhR-null mice (90)

Kunming mice 0.2–20 mg/kg/ bw for 1–8 d ↓ decidual angiogenesis, ↓ CD34, ER, FOXO1, HoxA10, and BMP2 (91)

Sprague-Dawley rats 0.2 mg/kg/bw for 9 d ↓ luteal angiogenesis and vascular maturation, ↓ VEGFR, Ang-1 and Tie2, ↑ THBS1 (10)

“↑” means up-regulation and “↓” means down-regulation.
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TABLE 3 Antagonist and synergistic agents of BaP.

Models Treatment Effects Reference

Antagonist agent Resolvin D1 HUVECs ↓ BaP-induced CYP1A1, PTGS2, COX2, cPGES, ↑ GSTM1 level; and ↑ cPLA2, ↓ CYP1A1 activity (97)

Flavonoids HUVECs ↓ BaP-induced ICAM1 expression in HUVEC (98)

Hesperidin Human EAhy-926 cells ↓ BaP-induced AhR activation, ↑ ABCA1, ↓ IL-1β and TNFα, ↓ LDL accumulation (99)

Ostreococcus tauri and

Phaeodactylum tricornutum

Extracts

Human micro-vascular

endothelial cell

↓ cell apoptosis and extracellular vesicles, ↓ CYP1A1, IL-8 and IL1-β (100)

Budesonide-poly(lactide-co-

glycolide)

A/J mice ↓ BaP-induced oxidative stress, and vascular leakage, ↓ VEGF and c-myc expression (101)

Soluble epoxide hydrolase

inhibitor

Sprague-Dawley rats reversed the BaP-induced CYP1A1, CYP1B1, CYP4F4, and CYP4F5 ↑ (102)

Ginkgo biloba extract Stomach Neoplasms mice ↓ ameliorating cardiotoxic effects of doxorubicin, ↓ serum NO, ↓ liver cytosolic glutathione S-transferase,

G6PDH activity

(103)

Synergistic agent 1,25(OH)2D3 THP-1 and U937 cells ↑ BaP-DNA adduct formation (104)

Carbon black particles Human EAhy-926 cells ↑ cell proliferation, migration and invasion, and metabolism, ↓ PPARγ activity (105)

SiNPs HUVECs ↑ ROS, DNA damage, cell cycle arrest, ↑ bax, caspase-3, and caspase-9, ↓ Cdc25C, cyclin B1, bcl-2 (106)

Zebrafish embryos ↑ inflammation and coagulation, ↑ pAP-1/c-Jun, CD142 (107)

Zebrafish embryos signaling pathway alteration such as MAPK, PI3K-Akt, JAK/STAT (108)

“↑” means up-regulation and “↓” means down-regulation.
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FIGURE 1

Schematic representation of the molecular mechanism of BaP exposure-induced CVDs. Numerous pieces of evidence show that the caveolin-1

can facilitate entry of the BaP into vessel-wall cells. The AhR complex is translocated into nuclear after binding with intracellular BaP. And then

the BaP-AhR complex could activate the AhR/ARNT/XRE, MEK/c-Jun, and MAPK/NF-kB/AP-1 signaling pathway which can up-regulate the

gene of CYPs, cell adhesion molecules, pro-inflammatory factors, and peroxidase. Besides, the activated CYP1A1 actually increased the

metabolism of BaP into BPDE, which can form DNA adducts and induce mutation. As a result, BaP exposure increases the ECs dysfunction and

VSMC phenotypic switch which accelerates the pathological progress of CVDs.

Tie2), and increased the anti-angiogenic factor THBS1. The BaP

metabolite BPDE also interfered with the expression levels of

angiogenesis-related factors, such as Notch signaling molecules

in HUVECs in vitro (10). The expression of several decidua-

related factors was altered, including FOXO1, HoxA10, and

BMP2 (Table 2). BaP reduced CD34 expression, suggesting that

BaP treatment inhibited decidual angiogenesis. Furthermore,

BaP induced the downregulation of vascular endothelial growth

factors suggesting that oral administration of BaP impairs

decidualization and decidual angiogenesis (91).

After exposure to BaP, the expression of metallothionein

was upregulated in the ischemic hindlimb of wild-type mice

and markedly inhibited ischemia-induced angiogenesis. The

mRNA amount of IL6 and VEGF was reduced in the

ischemic hindlimb of wild-type mice (90). BaP-treated HUVECs

reduced endothelial capillary formation, cell migration, MAPK

phosphorylation, and integrin expression when stimulated by

angiogenic factors. Angiogenesis was also inhibited in the

chorionic villus assay (87).

Using zebrafish embryos model, 6H-benzo[cd]pyren-6-

one induced developmental and cardiovascular toxicity at

lower doses, including reduced heart rate and blood flow.

The mixture of PAHs and oxy-PAHs may lead to increased

developmental and cardiovascular toxicity of zebrafish embryos

through an AhR-dependent mechanism (88). Embryonic

teratogenicity and developmental toxicity of BaP in Japanese

medaka, BaP was efficiently incorporated into embryos by

nanosecond pulsed electric field treatment. Embryos containing

BaP exhibited typical teratogenic and developmental effects,

such as cardiovascular abnormalities, dysplasia, and spinal

curvature (89).

BaP and other CVDs

Two blood-testis barrier proteins, Claudin-11 and Connexin

43, were impaired by treatment with a mixture of 1 µg/L

streptozotocin and 1 µg/L BaP (93). The function of blood brain
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barrier was assessed by measuring the transendothelial electrical

resistance of mouse brain microvascular endothelial cells, and

the viability of cells was altered in the presence of BaP (94).

Besides, BaP elicited mouse testicular sertoli cells apoptosis and

blood-testis barrier disruption, which involves mitochondrial

dysfunction and oxidative stress (95). These evidence imply that

BaP can damage vascular barrier which in turn cause other

injury includes neurotoxicity and reproductive toxicity.

Chronic BaP exposure did not alter hepatocellular

carcinoma cell (HCC) growth, but promoted cell migration

and invasion both in vitro and in vivo. There was a negative

correlation between BaP exposure and survival in tumor-

bearing mice. In addition, BaP-treated HCC cells recruited

vascular endothelial cells and promoted tumor angiogenesis,

possibly by increasing the secretion of vascular endothelial

growth factor. The NF-κB pathway may be an adverse outcome

pathway related to the cumulative effect of BaP on HCC

metastasis (96).

Antagonist and synergistic agents of
BaP

Numerous reports examined different types of agents in

interfering BaP metabolism and molecular signing alteration,

which have potential therapeutic implications in BaP induced

CVDs (Table 3). Gdula-Argasińska et al. observed that resolvin

D1, a product of transcellular biosynthesis with leukocytes

and endothelial cells from docosa-hexaenoic acid, reversed the

overexpression of COX2, cPGES and repression of GSTM1

protein after co-cultured with BaP incubated HUVEC. Besides,

an increase of cPLA2 and a decrease of CYP1A1 activity were

also noted in RvD1 and BaP co-treatment (97). These data

suggested that resolvin D1 could contribute to vascular function

and alleviate the harmful effects caused by BaP, which might

potentially aid in repairing the injured endothelium. In addition,

flavonoids that contain a 40 B-ring hydroxyl substitution

and a 2-3 C-ring double bond can decrease proinflammatory

molecular ICAM1 expression in endothelial cells (98). Two

latest reports show that bioactive compounds, hesperidin, and

phaeodactylum tricornutum extracts can also inhibit the pro-

inflammation mediators, including IL1β, TNFα, and IL8 (99,

100). Moreover, Budesonide-poly(lactide-co-glycolide), Soluble

epoxide hydrolase inhibitor, and Ginkgo biloba extract have

been proved to have anti-oxidative effects. In BaP-treated

animals, the repression of ROS, NO, and CYP1A1 level and

multiple cell protection effects were observed (100, 102, 103).

Collectively, the above observations indicate that the anti-

oxidative and anti-inflammation natural extract or inhibitors

have potential protective effects on BaP-induced damage on

vascular wall cells.

Using the zebrafish model, Duan and Asweto et al. found

that co-exposure of silica nanoparticles and BaP activate the

AP-1/c-Jun and MAPK/PI3K signaling pathway, upregulate

the expression of proinflammatory and procoagulant genes.

As a result, silica nanoparticles help trigger the inflammation

response and ROS generation, which could cause cardiac

toxicity and erythrocyte aggregation (106–108). Interestingly,

the protective effects of vitamin D on cardiovascular disease

are principally mediated by the conversion of vitamin D to

the active form, 1α,25-dihydroxy vitamin D3 [1,25(OH)2D3].

However, combined treatment with BaP and 1,25(OH)2D3

enhances BaP toxicity, including BaP-DNA adduct formation

and ROS production (104).

Conclusions

The present review summarizes the molecular mechanisms

underlying the vascular cell toxicity effects of BaP in CVDs as

follows: (1) numerous studies have demonstrated that BaP can

accelerate the pathological progress of AS, and many lines of

evidence show that excessive daily BaP intake is a potent risk

factor which accompanied by AAA, HTN, andMI. (2) BaP binds

to the ligand-activated transcription factor AhR, which evokes

oxidative stress and inflammation response molecules in ECs via

activating the AhR/ARNT/XRE, MEK/c-Jun, and MAPK/NF-

kB/AP-1 signaling pathway. (3) BaP exposures increase the cell

proliferation, migration, and invasion ability of VSMC by a

similar signaling pathway in BaP-treated ECs. (4) The activation

of CYP1A1 actually increased the genetic toxicity on vessel-wall

cells through the metabolism of BaP into BPDE, which can form

DNA adducts and induce mutation (Figure 1). Furthermore,

compounds with AhR activation activity probability exert

synergism effects on BaP vascular toxicity. In contrast, this

toxicity might be alleviated by bioactive materials which process

anti-oxidative and anti-inflammation action.
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