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Design and Synthesis of DDR1 Inhibitors with a Desired
Pharmacophore Using Deep Generative Models
Atsushi Yoshimori,*[a] Yasunobu Asawa,[a] Enzo Kawasaki,[b] Tomohiko Tasaka,[c]

Seiji Matsuda,[d] Toru Sekikawa,[d] Satoshi Tanabe,[d] Masahiro Neya,[d] Hideaki Natsugari,[c]

and Chisato Kanai[b]

Discoidin domain receptor 1 (DDR1) inhibitors with a desired
pharmacophore were designed using deep generative models
(DGMs). DDR1 is a receptor tyrosine kinase activated by matrix
collagens and implicated in diseases such as cancer, fibrosis and
hypoxia. Herein we describe the synthesis and inhibitory activity
of compounds generated from DGMs. Three compounds were
found to have sub-micromolar inhibitory activity. The most
potent of which, compound 3 (N-(4-chloro-3-((pyridin-3-yloxy)
methyl)phenyl)-3-(trifluoromethyl)benzamide), had an IC50 value
of 92.5 nM. Furthermore, these compounds were predicted to
interact with DDR1, which have a desired pharmacophore
derived from a known DDR1 inhibitor. The results of synthesis
and experiments indicated that our de novo design strategy is
practical for hit identification and scaffold hopping.

Deep generative models (DGMs) have been successfully applied
to image generation,[1] language translation,[2] and others.[3] In
recent years, chemical structure generation using DGMs is
receiving a lot of attention in de novo drug design.[4] Successful
examples of hit identification with DGMs have been reported
by several groups.[5,6] Although DGMs are able to generate
molecules with desired properties, most of the properties don’t
have 3D information, such as shape and pharmacophore.[4] It
has been known that properties originating from 3D shape

and/or pharmacophore are very useful in the drug design
process.[7] Thus, we constructed DGMs for generating molecules
with a desired pharmacophore. The procedure for DGM
construction has been published elsewhere.[8] Briefly, the
method has three steps consisting of prior network construc-
tion, agent network construction, and structure sampling (Fig-
ure 1). First, the prior network is trained using SMILES strings[9]

from ChEMBL.[10] After the training, the prior network generates
valid SMILES strings. Next, the agent network is trained using
reinforcement learning. The training shifts the probability
distribution from that of the prior network towards a distribu-
tion modulated by a pharmacophore score. In the third step,
the trained agent network generates SMILES strings, which are
likely to have a desired pharmacophore. The prior and agent
network constructions were implemented using REINVENT[11]

and the pharmacophore score was calculated using LigandSc-
out 4.4.[12]

Discoidin domain receptor 1 (DDR1) is a collagen-activated
receptor tyrosine kinase and a potential therapeutic target for a
wide range of human diseases, such as cancer,[13] fibrosis[14] and
hypoxia.[15]

To construct a desired pharmacophore for DDR1, the crystal
structure of DDR1 kinase domain in complex with ponatinib
(PDB: 3ZOS) is used (Figure 2A).[16] Here, eight pharmacophore
features of the inhibitor were identified as three aromatic (Ar1,
Ar2, Ar3), two hydrophobic (Hy1, Hy2), two hydrogen acceptor
(HA1, HA2) and one hydrogen donor (HD1) features (Figure 2B).
In addition, an ensemble of exclusion volume spheres obtained
from the crystal structure was used. For pharmacophore
scoring, the scoring function was set to ‘Relative Pharmaco-
phore-Fit’; maximum number of omitted features is set to ‘1’
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and the Hy1, Hy2, Ar3 and HD1 features were set as ‘optional
feature’. The Relative Pharmacophore-Fit (rel.SFCR) was defined
in Equation (1).[8,12]

rel:SFCR ¼ SFCR=ð10� ðNMFP þ 1ÞÞ (1)

SFCR ¼ 10� NMFP þ SRMS

SRMS ¼ 9 � 3�Min RMSFP; 3ð Þ

where SFCR is the feature count/RMS distance score, NMFP is the
number of geometrically matched feature pairs, SRMS is the
matched feature pair RMS distance score in the range [0,9], and
RMSFP is the RMS of the matched feature pair distances. The
parameter of conformer generation of generated structures
from agent network was set as ‘iCon Fast’ option for idbgen
tool[17] provided with LigandScout 4.4.

The agent network was trained based on the desired
pharmacophore and prior network. Training of the agent
network was done with a batch size of 64 using the Adam
optimizer for 10,000 steps. All other parameters were set to
default values in REINVENT. After the training, structure
sampling was perfomed. 570,542 valid SMILES were generated
during the structure sampling of 640,000 SMILES strings. In the
same way, 588,240 valid SMILES were generated from the prior
network. The pharmacophore scores of the generated struc-
tures were calculated using LigandScout 4.4. The distribution of
pharmacophore scores is displayed as a histogram in Figure 3.
The 137,790 structures having pharmacophore scores �0.5

were confirmed among the valid SMILES strings from the agent
network. On the other hand, there are only 4,306 structures
having pharmacophore scores �0.5 among the valid SMILES
strings from the prior network. This result indicates that the
agent network can generate structures fulfilling the desired
pharmacophore of DDR1 inhibitor with high frequency. In order
to perform filtering of the generated structures from agent
network which have pharmacophore scores greater than 0.8
(10,694 structures), binding affinity scores were calculated using
iaffinity module implemented in LigandScout 4.4. Compounds
having binding affinity scores less than � 37 kJ/mol were
selected (4731 compounds). The selected compounds were
inspected visually to determine which compounds to synthe-
size, taking into account their pharmacophore scores, binding
scores and synthesis accessibilities. Consequently, 9 compounds
(1–9) were selected which are illustrated in Figure 4. During the
visual inspection, two compounds (7, 8) were modified by
removing halogen atoms, that do not contribute much to
binding interaction with DDR1. Compound 9 was modified by
changing the position of pyridinyl nitrogen from para to meta
to form hydrogen bond with the hinge region of DDR1.
Accordingly, we synthesized 9 compounds (1–6 and 7a, 8a,
9a). Synthesis of the nine compounds is summarized in
Schemes 1–9 (see Supporting Information).

The synthesized compounds were evaluated for their
inhibitory activity against DDR1. The kinase assays were
performed using Off-chip Mobility Shift Assay which were
carried out via a kinase profiling service (Carna Biosciences, Inc.,
Kobe, Japan) (see Supporting Information). The results are
summarized in Table 1. Among the tested compounds, com-
pound 3 exhibited interesting double-digit nanomolar inhib-
itory activity against DDR1 (IC50=92.5 nM). The binding inter-
action of compound 3 derived from pharmacophore matching
is shown in Figure 5A. Compound 3 fulfills all of the
pharmacophore features of a DDR1 inhibitor, although there
are slightly misaligned features.

Compounds 4 and 7a were also found to have potent
inhibitory activities (IC50 values: 186.7 and 171.3 nM, respec-

Figure 2. A) Pharmacophore model for DDR1 inhibitors. B) 2D depiction of
the pharmacophore model for DDR1 inhibitors.

Figure 3. Distribution of Pharmacophore scores generated structures from
the Agent and Prior network. Axis labels of pharmacophore score <0.5 were
omitted because all of hit compounds have pharmacophore score �0.5.

Table 1. DDR1 inhibitory activity of the synthesized compounds.

Compound Pharmacophore
score[a]

Binding affinity
score [kJ/mol][b]

IC50 [nM]
[c]

1 0.96 � 50.51 1005.9
2 0.95 � 52.67 2239.4
3 0.83 � 47.13 92.5
4 0.96 � 51.97 186.7
5 0.86 � 37.29 >30,000
6 0.84 � 40.83 >30,000
7 0.85 � 54.38 NT[d]

8 0.85 � 51.78 NT
9 0.85 � 49.46 NT
7a 0.85 � 53.06 171.3
8a 0.85 � 51.15 1244.3
9a 0.85 � 54.83 1111.0

[a] Calculated using Relative Pharmacophore-Fit score in LigandScout 4.4.
[b] Calculated using iaffnity module in LigandScout 4.4. [c] The compound
concentration required for 50% inhibition (IC50) was determined from
semi-logarithmic dose-response plots, and the results represent the mean
of duplicated samples. [d] NT=not tested.
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tively). Compound 7a was designed by removing a Cl atom
from 1,2,4-trichlorobenzene in compound 7 as illustrated in
Figure 5B. Compounds 1, 2, 8a, 9a were found to moderately
inhibit DDR1 activity (IC50 values: 1005.9, 2239.4, 1244.3 and
1111.0 nM, respectively). Compounds 5 and 6 did not exhibit
any inhibitory activity at all. Binding affinity scores of the two
compounds are high values (� 37.29, and � 40.83 kJ/mol),
indicating low binding affinities. These results indicate that our
strategy of using DGMs has worked efficiently to design DDR1
inhibitors.

To check if the generated structures (compound 1–6, 7a–
9a) have already been registered in certain databases, structure
search was performed in ChEMBL[10] and PubChem.[18] We have
found that compound 3 is registered in PubChem with CID
58614959 and is annotated as Raf kinase and p38 MAP kinase
inhibitor.

In conclusion, we were able to design DDR1 inhibitors with
a desired pharmacophore using DGMs. Compound 3 showed

potent inhibitory activity with an IC50 value of 92.5 nM against
DDR1. In general, in order to predict inhibitory activities of
generated compounds from DGMs, many experimental inhib-
itory data are needed to construct accurate prediction models.
However, our strategy needs only pharmacophore information
to design inhibitors against a target protein. Therefore, our
strategy can be used in the early stage of drug discovery
process. Ponatinib is a drug used to treat chronic myeloid
leukemia and inhibits DDR1 with a Kd value of 1.3 nM.

[16] In this
study, our pharmacophore is derived from the crystal structure
of DDR1 kinase domain in complex with ponatinib. The
scaffolds of the synthesized compounds (Figure 4) were found
to be different from that of ponatinib (Figure 2). Thus, our
strategy can also be used for scaffold hopping.

In order to determine which compounds to synthesize, it is
important to filter generated structures from the agent network
efficiently. We are now trying to construct more practical
filtering methods that include criteria such as drug-likeness
score,[19] ADMET properties[20] and synthesis accessibility.[21] We
believe that this pharmacophore-based DGM strategy can be
applied to various drug discovery campaigns in the future.
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Figure 4. Synthesized compounds evaluated as DDR1 inhibitors.

Figure 5. Binding interactions of A) compound 3 and B) compound 7.
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