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Purpose: ABCA4-associated disease, a recessive retinal dystrophy,
is hallmarked by a large proportion of patients with only one
pathogenic ABCA4 variant, suggestive for missing heritability.

Methods: By locus-specific analysis of ABCA4, combined with
extensive functional studies, we aimed to unravel the missing alleles
in a cohort of 67 patients (p), with one (p= 64) or no (p= 3)
identified coding pathogenic variants of ABCA4.

Results: We identified eight pathogenic (deep-)intronic ABCA4
splice variants, of which five are novel and six structural variants,
four of which are novel, including two duplications. Together, these
variants account for the missing alleles in 40.3% of patients.
Furthermore, two novel variants with a putative cis-regulatory effect
were identified. The common hypomorphic variant c.5603A>T p.
(Asn1868Ile) was found as a candidate second allele in 43.3% of
patients. Overall, we have elucidated the missing heritability in

83.6% of our cohort. In addition, we successfully rescued three
deep-intronic variants using antisense oligonucleotide (AON)-
mediated treatment in HEK 293-T cells and in patient-derived
fibroblast cells.

Conclusion: Noncoding pathogenic variants, novel structural
variants, and a common hypomorphic allele of the ABCA4 gene
explain the majority of unsolved cases with ABCA4-associated
disease, rendering this retinopathy a model for missing heritability
in autosomal recessive disorders.
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INTRODUCTION
Stargardt disease (STGD1, MIM 248200) is one of the most
frequent inherited retinal diseases (IRDs), with an esti-
mated prevalence of 1/8000–1/10,000. The underlying
disease gene for STGD1 is the large ATP-binding cassette
subfamily A member 4 gene (ABCA4, MIM 601691),
consisting of 50 coding exons.1 Apart from STGD1, a
juvenile macular dystrophy, biallelic ABCA4 variants have
been linked to a spectrum of autosomal recessive IRD
phenotypes, varying from cone-rod dystrophy (CRD),
atypical retinitis pigmentosa (RP), fundus flavimaculatus,
generalized choriocapillaris dystrophy (GCCD), to rapid-

onset chorioretinopathy (ROC), jointly named ABCA4-
associated disease.2–5 A genotype–phenotype correlation
model was proposed to explain this large variety of
phenotypes attributed to biallelic pathogenic variants in
ABCA4, linking the amount of residual activity of ABCA4
to the corresponding phenotype. According to this model,
patients with two severe variants (null alleles) present with
atypical RP or ROC while a severe variant in trans to a
moderate variant gives rise to CRD, and a severe and mild
variant or two moderate variants give rise to STGD1
(refs. 6,7). The variant spectrum of ABCA4-associated
disease is characterized by vast allelic heterogeneity, with
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over 800 variants identified (https://databases.lovd.nl/
shared/genes/ABCA4), the majority of which are located
in the coding region of ABCA4. Furthermore, a large
number of intronic noncanonical splice site variants have
been identified, with c.5461–10T>C being the third most
frequent pathogenic variant.8,9 Previous studies indicate
that copy-number variations (CNVs) represent only a
minor fraction of the variant spectrum.3,7,10–18 This large
number of (likely) pathogenic variants in ABCA4 can only
explain 60–75% of STGD1 and other monoallelic ABCA4-
associated disease cases, suggesting missing heritability in
noncoding regions. Indeed, we and others uncovered
noncoding deep-intronic variants as second pathogenic
alleles.10,19–22 Braun et al.19 and Zernant et al.20 identified a
subset of noncoding variants with a presumed effect on
splicing. We found the deep-intronic variant c.4539
+2001G>A (denoted as V4) as the second missing allele
in more than 25% of Belgian monoallelic STGD1 patients,
representing the first noncoding founder pathogenic variant
in ABCA4 (ref.21). Schulz et al.22 analyzed the coding region
of ABCA4 and parts of intron 30 and 36, known to harbor
deep-intronic variants, in a large (p= 335) German STGD1
cohort. They identified rare deep-intronic variants in only
four patients and reported six putative risk-modulating
common variants, one of which is the hypomorphic
recurrent ABCA4 variant c.5603A>T p.(Asn1868Ile) (minor
allele frequency [MAF] 7%, Genome of the Netherlands
database [GoNL]). Zernant et al.23 demonstrated that this
variant contributes to 10% of the ABCA4 disease alleles,
representing the second missing allele in over 50% of
monoallelic STGD1 cases, often displaying a late-onset
phenotype with foveal sparing.
Noncoding deep-intronic splice variants represent

potential therapeutic targets for approaches such as
antisense oligonucleotide (AON)-mediated rescue or
CRISPR/Cas9-mediated correction of deep-intronic patho-
genic variants, as illustrated for CEP290, USH2A, OPA1,
and recently for ABCA4, emphasizing the relevance of this
study.24–27

Taken together, this prompted us to elucidate the missing
heritability in a cohort of 67 Belgian and German patients
diagnosed with ABCA4-associated disease, with only one
heterozygous (p= 64) or no (p= 3) identified ABCA4
pathogenic variant after first-line screening.

MATERIALS AND METHODS
Patient cohort
Patients consented to this study, which adhered to the
tenets of the Declaration of Helsinki (protocols
B670201525349 and B670201734438). All individuals
had a clinical diagnosis of an ABCA4-associated disease,
such as STGD1 (Table S1), and underwent testing of the
coding region of ABCA4, revealing either one pathogenic
variant (p= 64) or no pathogenic variant (p= 3) (Figure S1).
Info on clinical assessments and genotype–phenotype correla-
tions can be found in Supplemental Methods.

Locus enrichment
Using a custom HaloPlex Target Enrichment kit (Agilent,
Santa Clara, CA, USA), a conserved block of synteny
encompassing the ABCA4 gene (chr1:94337885-94703604,
GrCh37/hg19 assembly) was enriched.28 Approximately 98%
of the region could be covered, while gaps often corresponded
with repeat-rich areas (Figure S2). The locus and the entire
ABCA4 gene were sequenced with an average coverage depth
of 263.6× and 343.4×, respectively.

Next-generation sequencing and data analysis
Samples underwent targeted next-generation sequencing
(NGS) (MiSeq, Illumina, CA, USA). Read mapping, single-
nucleotide variant, structural variant, and indel calling and
subsequent variant identification and annotation were
performed using CLC Bio Software (CLC Bio Genomics
Workbench; QIAGEN, Germany). Annotations included
frequencies from a subset of the UK National Institute for
Health Research (NIHR) BioResource Rare Diseases Whole
Genome Sequencing data set containing 7322 individuals
without a known IRD, the Genome Aggregation Database
(gnomAD) and GoNL databases, presence within published
minor exons of ABCA4 or 200 bp of neighbouring sequence
(Table S2), overlap with long noncoding RNAs (lncRNAs)
(Table S2) and published noncoding ABCA4 variants (Table
S3), and presence in candidate regulatory regions, as
determined by ATAC-seq, RNA-seq, H3K27Ac, and
H3K4me2 ChIP-seq data generated on adult human retina
(Table S4; unpublished data: Cherry et al.,doi.org/10.1101/
412361).19–22,29 Further annotation was performed via
Alamut Batch (Interactive Biosoftware, France). A custom
Lua script was used for additional data processing.

ABCA4 variant analysis
First, variants within ABCA4 (NM_00350.2) were investi-
gated. After identifying known pathogenic variants, only
variants with MAF ≤1% in the aforementioned population
databases were selected. Per individual, all remaining rare
noncoding variants within ABCA4 were analyzed for
predicted effects on splice sites, exonic splice enhancers
(ESEs), and splice silencers using splice annotations of
Alamut Batch, Alamut Visual (Interactive Biosoftware,
France), and Human Splicing Finder (http://www.umd.be/
HSF3/). Second, variants located within putative regulatory
regions in the enriched locus were selected and annotated
(unpublished data, Cherry et al., https://doi.org/10.1101/
412361, RegulomeDB). In the absence of candidate variants,
rare ABCA4 variants outside of the regulatory regions were
also investigated. Polymerase chain reaction (PCR) primers
for validation are listed in Table S5. If possible, segregation
results were used for filtering.

In vitro splicing assays
Minigenes
Genomic DNA from patients who are heterozygous carriers of
putative splice variants was used for creating wild-type (WT)
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and mutant minigenes for seven variants (Table S6); minigene
assays were performed as described.30 Primers and conditions
are listed in Table S7.

Midigenes
We used the midigene library and protocol previously
described to create WT and mutant midigenes for six variants
and to perform midigene assays (Tables S6 and S8) (ref. 30).
Transfection was performed in triplicate in HEK 293-T cells.

AON-mediated rescue experiments
AON design
Per variant, AONs with a phosphorothioate backbone with a
2-O-methyl sugar modification (2OME/PS) were designed, as
described (Table S9) (ref. 31). In addition, a sense oligonu-
cleotide (SON) was synthesized. Synthesis was done by
Eurogentec (Belgium). An AON concentration of 0.5 µM was
used.

In vitro rescue studies in transfected HEK 293-T cells
HEK 293-T cells were transfected with 1.5 µg of WT or
mutant midigene construct. After 24 hours, each well was
trypsinized and subdivided in 5 wells of a 24-well plate. After
reattachment, cells were transfected with the AON, the SON,
or not treated (NT) (FuGENE HD Transfection Reagent,
Promega, The Netherlands). After 48 hours, RNA was isolated
(NucleoSpin RNA kit, Macherey-Nagel, Germany) followed
by complementary DNA (cDNA) synthesis (iSCRIPT cDNA
synthesis kit, Bio-Rad, Belgium). A PCR with 50 ng of cDNA
was performed of which 10 µl was loaded on a 2% agarose gel
(primers: Table S10). Rhodopsin was used as transfection and
loading control. Two independent experiments were per-
formed. Quantification of transcript ratios was done via a
Fragment Analyzer Auto Capillary Electrophoresis System
(Advanced Analytical Technologies, Inc., France).

In vitro rescue studies in patient-derived fibroblast cells
Patient’s fibroblasts (c.4539+1106C>T) were seeded and
transfected with either 0.5 µM of AON, SON, or empty
liposomes (NT). Cycloheximide (CHX) was added as a
nonsense-mediated decay (NMD) blocker. Four hours later
RNA was isolated followed by cDNA synthesis (Invitrogen
SuperScript IV VILO Master Mix, Thermo Fisher Scientific,
Belgium). For each PCR, 80 ng of cDNA was used, except for
actin (50 ng) (primers: Table S10). Then, 20 µl of each ABCA4
reaction was loaded onto a 2% agarose gel using 10 µl of the
actin reaction as loading control. Experiments were per-
formed in two independent replicates. Quantification of the
transcripts was performed using the capillary electrophoresis
system described above.

In vitro dual-luciferase assays
Constructs and assays
Inserts were PCR amplified using genomic reference DNA
(Roche) and primers containing restriction sites (Table S11).
After restriction, the insert was cloned into a pgl4.23 or

pgl4.10 vector (Promega, The Netherlands) and mutagenized
(Q5-Site-Directed Mutagenesis Kit, New England Biolabs,
France). hTert RPE-1 cells (ATCC, VA, USA) were
transfected with 1.5 µg WT or mutant luciferase construct
and a Renilla reporter vector (pRL, Promega, The Nether-
lands) (Lipofectamine 3000, Thermo Fisher Scientific, Bel-
gium). Experiments were performed in triplicate, and a
minimum of six independent experiments were performed for
five variants (Table S12 and Figure S3). Assays were
performed using the Dual-Luciferase Reporter Assay system
and Glomax 96 microplate luminometer (Promega, The
Netherlands).

Statistical data analysis
A hierarchical generalized linear mixed model (HGLMM) was
fitted to the normalized relative luminometer unit values
(normalized luciferase/Renilla RLU ratios). Additional infor-
mation can be found in Supplemental Methods.

CNV analysis
Locus resequencing NGS data of all patients was mapped
with Burrows–Wheeler Aligner (BWA) against the hg19
human reference genome, followed by local realignment
of reads with Genome Analysis Toolkit (GATK) and CNV
detection using the R package ExomeDepth.32–34 CNVs
were annotated with ANNOVAR.35 Furthermore, an in-
house developed customized array comparative genomic
hybridization (CGH) platform (arrEYE) was used for high-
resolution CNV analysis of coding and noncoding regions
of ABCA4 and other retinal disease genes in a subset of
ten patients (Figure S4) (ref. 36). Data was analyzed using
the ViVar platform (https://vivar.cmgg.be). CNVs
were confirmed and delineated using (junction) PCRs
(Supplemental Methods).

Assessment of the underlying mechanisms of the identified
CNVs
For each CNV an extensive bioinformatics analysis was
performed as previously described37 (Supplemental Methods).
Microhomology at the breakpoints was assessed using
ClustalW (Figure S5). If both breakpoints of a CNV overlap
with a repetitive element, the consensus sequence was
retrieved from the Dfam database and sequence identity
between the repetitive elements was determined using
BLAST2. The potential for formation of non-B DNA
conformations in the breakpoint regions was examined
using the non-B DNA motif search tool (nBMST); and QGRS
Mapper. Fuzznucc was used to investigate the presence of
40 sequence motifs (Tables S13 and S14).

RESULTS
Enrichment and targeted resequencing of the ABCA4 locus
Targeted resequencing revealed 5840 variants with MAF ≤1%
in 67 patients (87 variants/patient) located within the
sequenced region (365 kb) of which 439 variants are located
within ABCA4 (6.5 variants/patient). Elimination of known
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pathogenic variants and certain variants in cis with these
variants further reduced the number of candidate pathogenic
variants to 121 variants, occurring 169 times (2.5 variants/
patient) (Table S15). Thirteen candidate splice variants were
selected for analysis via splice assays (Table S6).

Identification and functional assessment of novel
noncoding (deep-)intronic splice variants
Summary
Overall, a splice effect was demonstrated by in vitro splice
assays for nine intronic variants (n= 24) found in 21
monoallelic patients and 2 patients without prior identified
pathogenic variants: c.161–23T >G (n= 1), c.769–784C >T
(n= 1), c.859–540C>G (n= 1), c.3191–11T>A (n= 1),
c.4253+43G>A (n= 8), c.4539+1106C>T (n= 2), c.4539
+2001G>A (n= 7), c.4539+2064C>T (n= 2), and
c.5197–557G>T (n= 1) (Fig. 1, Fig. 2, Table 1, and Table S1).
Splice predictions are listed in Table S16. Splice assays for
c.769–784C>T, c.4253+43G>A, and c.4539+2001G>A, also
found in a Dutch cohort using the same resequencing

approach, are reported by Sangermano et al. (this issue) and
Albert et al. (ref. 26,38).

Three variants near coding exons of ABCA4
Three splice variants are located within 50 bp of a canonical
splice site of ABCA4. Both c.161–23T>G (intron 2)
and c.4253+43G>A (intron 28) barely reduce the strength
of the nearest canonical splice site but have a predicted
effect on ESE binding and break silencer motifs.
Splice assays reveal partial exon skipping for both variants
(Fig. 1 and Sangermano et al. this issue), predicted
to induce a frameshift (Table 1). [38] The
c.161–23T>G variant occurs in a patient who carries the
complex allele c.[2588G>C;5603A>T] (p.[Gly863Ala,
Gly863del; Asn1868Ile]) in trans (Table S1) (ref. 8). In 5/8
patients c.4253+43G>A is likely in cis with c.6006–609T>A,
a variant for which no splice effect could be observed
(Sangermano et al. this issue).20,38 Segregation of this
complex allele in trans with the pathogenic allele
c.5461–10T>C in affected siblings (p= 2) as well as in an
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Fig. 1 Minigene and midigene results for intronic ABCA4 splice variants. For each depicted variant (a-f) an agarose gel image is shown on the left,
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unaffected parent in the same family, and in a homozygous
state in an unaffected sibling supports a hypomorphic nature
of this complex allele (Figure S6). The c.3191–11T>A variant
weakens the canonical acceptor splice site (ASS) of exon 22
and creates a strong novel ASS, leading to a 9-bp insertion in

the mutant transcript as observed by minigene assays. This
variant co-occurs with c.6089G>A p.(Arg2030Gln) in a
STGD1 patient.8

Four deep-intronic variants strengthen a cryptic splice site
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The deep-intronic variants c.859–540C>G (intron 7), c.4539
+1106C>T (intron 30), and c.5197–557G>T (intron 36)
create or strengthen cryptic donor splice sites (DSSs) while
c.769–784C>T (intron 6) impacts an ASS.
The DSSs created or strengthened by c.859–540C>G,

c.4539+1106C>T, and c.5197–557G>T are located down-
stream to a strong cryptic ASS, generating pseudo-exons
(PEs) of 141 bp, 68 bp, and 188 bp respectively, as
confirmed via midigene assays (Fig. 1, Table 1). Further-
more, c.4539+1106C>T creates another, less abundant PE
(112 bp) due to the usage of another cryptic ASS (Fig. 1,
Table 1). All included PEs harbor a premature termination
codon (PTC), most likely resulting in the aberrant transcript
undergoing NMD.
Specifically, c.859–540C>G occurs in trans with c.4539

+2001G>A (V4) in a patient without prior identified ABCA4
pathogenic variants. The c.4539+1106C>T variant was
identified in two unrelated STGD1 patients, in trans with
either c.6089G>A; p.(Arg2030Gln) or c.5882G>A; p.
(Gly1961Glu).
The c.5197–557G>T variant is located in known minor

exon 36.2, in which no variants have been yet identified, as
opposed to minor exon 36.1 (Figure S7) (ref. 19). Here it was
found in trans with c.5917del p.(Val1973*).
Variant c.769–784C>T (intron 6) strengthens an ASS,

upstream to a strong cryptic DSS, inducing a PE (162 bp) in
only a minority of messenger RNA (mRNA) from the mutant
construct (Table 1, Sangermano et al. this issue).38 Because
this variant likely occurs in cis with the hypomorphic
c.5603A>T p.(Asn1868Ile) in the genotype c.[1454del];
[769–784C>T;5603A>T], the pathogenicity of this variant is
currently considered unclear.

Two deep-intronic variants affect splice enhancers and/or
silencers
Variant c.4539+2001G>A (V4) (n= 7) is a known Belgian
founder variant leading to a recently described PE inclusion
(345 bp), similar to c.4539+2028C>T (V5) (refs. 21,26).
Variant c.4539+2064C>T (n= 2) is located within the same
PE. Both have a predicted effect on ESE binding but while
V4 is predicted to create ESEs and abolish splice silencers
within this PE, c.4539+2064C>T is predicted to create a
novel silencer within this PE. Splice assays for the latter
revealed several aberrant transcripts, two including the
reported PE.26

AON-mediated rescue in HEK 293-T cells and patient
fibroblasts
AON-mediated rescue was undertaken for c.859–540C>G,
c.4539+1106C>T, and c.5197–557G>T. Three different
AONs were designed per variant, aimed at blocking ESE
motifs and excluding the PE (Fig. 2, Table S9). Rescue
experiments were conducted in transfected HEK 293-T cells
for all three variants, and in patient-derived fibroblasts for
c.4539+1106C>T.
The effect of c.859–540C>G could be fully abolished by

two AONs, and partially by AON3 (43.25%) (Fig. 2). For
c.5197–557G>T, all three AONs were able to restore
normal splicing, with no detection of the mutant band in
the AON1- and AON2-rescue (Fig. 2). AON-mediated
rescue of c.4539+1106C>T was undertaken in transfected
HEK 293-T cells and patient-derived fibroblast cells (c.
[4539+1106C>T];[6089G>A]). In HEK 293-T cells AON1
and AON2 restored the amount of normal transcript,
while AON3 retained PE inclusions in the majority (86.7%)
of the transcripts. In fibroblasts, AON2 showed the highest
efficacy. AON-mediated correction of c.769–784C>T and
c.4253+43G>A, can be found in Sangermano et al.
(this issue), while AON rescue of the aberrant
transcript caused by c.4539+2001G>A (V4) was recently
reported.26,38

Filtering and functional analysis of putative cis-regulatory
variants
After functional analysis of 13 candidate splice variants,
remaining variants were assessed for their presence within or
near candidate regulatory regions within or flanking ABCA4
(Table S4; unpublished data:, Cherry et al., doi.10.1101/
412361). After filtering, eight variants located within candi-
date regulatory regions remained, four of which were
investigated using dual-luciferase reporter assays. Two addi-
tional variants outside of these regions were also selected
because they were the only remaining rare candidate variants
and are within predicted transcription factor binding sites
(TFBSs). An overview of these six variants can be found in
Table S12.
After reporter assays, two variants showed significant

downregulation of luciferase expression of mutant to WT
transfected RPE-1 cells: c.2919–383C>T (n= 1) and c.768
+3223C>T (n= 1), with an average reduction of the
normalized (luciferase/Renilla) relative light unit (RLU)

Fig. 2 Antisense oligonucleotide (AON)-mediated rescue for intronic ABCA4 splice variants. For three deep-intronic ABCA4 variants
(c.859–540C>G, c.5197–557G>T, and c.4539+1106C>T), AON rescue experiments on transfected HEK 293-T cells were undertaken (a–c). AON experi-
ments were also performed on the fibroblasts of a patient with c.[4539+1106C>T];[6089G>A] and control fibroblasts (d). A gel image is shown on the left,
depicting the reverse transcription polymerase chain reaction (RT-PCR) product derived from mutant (MT) and wild-type (WT) midigene construct after
transfection with three different AONs (HEK: untransfected HEK 293-T, MQ: negative control PCR, NT: nontransfected cells, SON: sense oligonucleotide).
Rhodopsin (RHO) and actin (ACTB) were used as loading controls for RT-PCR products derived from experiments on HEK 293-T cells and fibroblasts,
respectively. In fibroblasts, cycloheximide (CHX) was added. On the right, resulting RT-PCR products after AON rescue experiments are semiquantified using
capillary analysis, using the ratio WT transcript/transcript including pseudo-exon (PE). If multiple PE containing transcripts were formed, they are grouped
together in one PE group.
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values of 36.9% (p= 0.004) and 32.3% (p < 0.001) respectively
(Figure S3). Variant c.2919–383C>T is located within a
predicted ZNF143/STAF binding site, 18 bp adjacent to a
predicted regulatory region (OREG0013611, chr1:94510701-
94511661) with CTCF binding. It occurs in the following
genotype c.[5461–10T>C;5603A>T];[2919–383C>T;5603A>
T], sufficient to cause the late-onset phenotype observed
and thus categorized as a potential modifying variant. Variant
c.768+3223C>T is located within a regulatory region that
shows moderate WT activity within adult human retina
(unpublished data, Cherry et al., doi.org/10.1101/412361).
The variant is predicted to overlap with TFBSs such as RBL2
(PAZAR data set) and has predicted binding sites for FOXP2,
POLR2A, and REST proteins (ChIP-Seq data, RegulomeDB).
As the variant occurs in a patient without a coding ABCA4
pathogenic variant, the implication of another disease gene
cannot be ruled out (Figure S6).

Identification and characterization of structural variants
implicating ABCA4
NGS-based CNV analysis was performed for all 67 patients.
Furthermore, customized array-based high-resolution CNV
analysis was used to investigate ten patients without a clear
pathogenic noncoding sequence variant.36 We identified six
CNVs involving ABCA4, four of which are novel (Fig. 3, S4,
and S8; Table 2). A 5305-bp deletion of exon 5 was found in
one monoallelic patient, c.442+799_c.570+541del. Exon 5
deletions have been previously reported in a Dutch STGD1
cohort.3,10 A novel deletion spanning exons 10–11 was
identified in one patient, c.1239+291_1555-5574del (10,140
bp). This predicted in-frame deletion occurs in trans with
c.122G>A; p.(Trp41*). A 4024-bp deletion of exons 20–22
was identified (c.2918+775_3328+640del), revealing a known
recurrent deletion.3,7,10 Another novel deletion (exons 40–50)
was identified and characterized at the nucleotide level,
c.5585–166_*1254del (19,112 bp). It eliminates the 3′UTR of
the mRNA, most likely rendering the resulting transcript
unstable and occurs in trans with the complex allele c.
[2588G>C;5603A>T] (p.[Gly863Ala, Gly863del;Asn1868Ile]).
A duplication of over 26 kb (exons 2–6) was identified,

starting within the first intron of ABCA4, c.67–975_769-
4582dup{insA}. At the junction an information
scar (insertion of an A) could be found. This in-frame
tandem duplication is found in trans with the
missense variant c.5381C>A; p.(Ala1794Asp) in a patient.
Another duplication located within intron 1 was identified in
a STGD1 patient carrying the c.5714+5G>A allele (Table S1).
Characterization of the junction showed a tandem noncoding
duplicated region of 7006 bp, c.66+520_67-389dup.
A bioinformatics analysis reveals microhomology at the

breakpoints of all deletions and the non-coding duplication,
corresponding with a replicative-based CNV mechanism
(Figure S5). Duplication c.67-975_769-4582dup{insA} is likely
due to nonhomologous end joining (NHEJ), as there is both
microhomology and an information scar at the junction
(Tables S13 and S14).Ta
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The hypomorphic ABCA4 allele c.5603A>T as a second
pathogenic variant
After removing patients solved with pathogenic splice or
structural variants (27/67, 40.3%), 40 patients remained
unsolved (Figure S1). The hypomorphic c.5603A>T p.
(Asn1868Ile) variant was recently found to be the potential
second missing allele in over 50% of monoallelic STGD1
cases.23 When in trans to a complete loss-of-function ABCA4
allele, this variant was shown to often lead to a late-onset
phenotype. Here, it occurs as a possible trans allele in 29 of
the remaining 40 patients (72.5%), even in a few cases that do
not strictly meet all three criteria proposed: (1) late age of
onset (>35 years), (2) complete loss-of-function of the first
allele, and (3) foveal sparing. The segregation of this
hypomorphic variant in trans with a pathogenic variant is
clear in 50% of the cases; for the remaining patients this is
undetermined (Table S1). While the average age of onset
(AOO) of the patients solved with pathogenic deep-intronic
splice variants and CNVs is 22.5 years, the average AOO of
these 29 patients is 41 years, with 19/29 patients having an
AOO >35 years. These findings suggest that c.5603A>T can
be considered to be the missing allele in up to 43.3% (29/67)
of the initial cohort.

DISCUSSION
In this study, we aimed to elucidate the missing heritability in
a cohort of molecularly unsolved STGD1 patients using a
locus-specific analysis targeting a syntenic region comprising
ABCA4 and its putative cis-regulatory domain.28 This
approach led to a molecular diagnosis in 83.6% (56/67) of
patients. Noncoding splice variants and distinct CNVs
account for the missing allele in 31.3% (21/67) and 9%

(6/67) respectively, while the hypomorphic variant c.5603A>T
likely contributes to another 43.3% (29/67) of the missing
alleles. Two cis-regulatory variants and one deep-intronic
splice variant with potential modifying effect were identified
in three patients.
In the category of noncoding splice variants, nine distinct

variants were found, six of which were novel (c.161–23T>G,
c.769–784C>T, c.859–540C>G, c.3191–11T>A, c.4539
+1106C>T, and c.5197–557G>T) and three previously
described as (possibly) disease-associated (c.4253+43G>A,
c.4539+2001G>A, or V4, c.4539+2064C>T).19,20,39 For all
nine variants a splice effect was demonstrated via splice assays
either in this study, by Sangermano et al. this issue
(c.769–784C>T, c.4253+43G>A) or by Albert et
al.26,38(c.4539+2001G>A). Six variants lead to PE inclusion
into the transcript, all introducing a PTC; two variants induce
(partial) exon skipping, leading to a frameshift and the
introduction of a PTC; and lastly, one variant creates an in-
frame insertion of three amino acids. Given the minor
amount of aberrantly spliced transcript observed for the
c.769–784C>T variant and its occurrence on the genotype c.
[1454del](;)[5603A>T], its pathogenicity is currently consid-
ered unclear.
One of the spinouts of the identification of noncoding

splicing variants is their potential to function as therapeutic
targets for AON-mediated rescue. AON treatment for inherited
diseases, including Duchenne muscular dystrophy, spinal
muscular atrophy, and more recently Usher syndrome and
Leber congenital amaurosis, has been or is being introduced in
the clinic. Here, we used AON rescue to successfully correct the
aberrant splicing induced by the variants c.859–540C>G,
c.4539+1106C>T, and c.5197–557G>T in HEK 293-T cells
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Fig. 3 Schematic overview of the ABCA4 deletions and duplications identified in this study. ABCA4 exons involved in the deletions (a-d) and duplica-
tions (e, f) identified in this study are visualized in red and blue, respectively. The localization of the primers used to perform a junction polymerase chain
reaction (PCR) and to delineate the copy-number variants (CNVs) are depicted as black arrows; nucleotides on the cartoons represent microhomology at the
boundaries. The orientation of the tandem duplications toward ABCA4 is the most likely one based on (non)amplification of several junction regions (data
not shown). InsA: insertion of an A at a CNV junction.
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and in patient-derived fibroblast cells carrying the
c.4539+1106C>T variant. These results are of interest to
patients, offering the potential to restore the amount of correct
mRNA and subsequently of ABCA4 protein required for
normal function in vivo.
Besides noncoding splice variants, we investigated the

contribution and effect of putative cis-regulatory variants.
Two noncoding deep-intronic variants (c.768+3223C>T and
c.2919–383C>T) showed a significant downregulation using
in vitro reporter studies in RPE-1 cells. It is unclear however if
these assays in RPE-1 cells recapitulate the biological effect on
ABCA4 expression in vivo. Even if the observed reduction is
similar for both variants, the tested regulatory element in
which c.768+3223C>T is located has a stronger basal
expression and might thus have a larger effect on the overall
ABCA4 expression.
Although ABCA4 variants represent one of the most

prevalent causes of inherited retinal disease, its variant
spectrum is characterized by a scarcity of structural variants
(SVs), with only nine deletions and one complex rearrange-
ment reported.3,7,10–18,40 Using a NGS CNV pipeline and
high-resolution array-based CNV analysis, we identified six
distinct CNVs in our cohort of monoallelic patients: four
deletions, two of which are novel and two novel duplications.
Interestingly, one of them is a noncoding tandem duplication
located within the first intron of ABCA4 and encompassing
several TFBSs. Delineation of the identified CNVs allowed an
extensive bioinformatics analysis of their breakpoint regions
revealing replicative-based mechanisms for all deletions and
for the noncoding duplication, while the duplication spanning
exons 2–6 most likely originated due to NHEJ. Next, we
investigated the role of the hypomorphic c.5603A>T variant
in the remaining cohort and identified it as a putative second
allele in >72% of the remaining patients and >43% of the
initial cohort, confirming its enrichment and clinical
significance in monoallelic STGD1 patients, as recently
described.23

Despite our approach, the molecular diagnosis remains
uncertain in 11/67 (16.4%) patients. Some variants remain
to be investigated via additional functional assays while
other, more prevalent variants (MAF >1%) or splice variants
without clear predictions have not been scrutinized in this
study. Finally, it cannot be excluded that a subset of patients
have pathogenic variants in other genes, representing
phenocopies with a phenotype resembling ABCA4-asso-
ciated disease.
To conclude, this study demonstrates that a locus-specific

integrated approach combining genomics with downstream
tailored functional studies is powerful for elucidating a major
portion of missing heritability in ABCA4-associated disease.
The discovery of novel pathogenic variants in noncoding
regions and the development of AONs can be envisaged for
personalized therapies. Overall, this ABCA4-oriented study
can be regarded as a model for missing heritability in other
autosomal recessive diseases with a recognizable phenotype
and with an incomplete molecular diagnosis.Ta
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