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Single cell RNA-seq data, like data from other sequencing technology, contain systematic

technical noise. Such noise results from a combined effect of unequal efficiencies in the

capturing and counting of mRNA molecules, such as extraction/amplification efficiency

and sequencing depth. We show that such technical effects are not only cell-specific,

but also affect genes differently, thus a simple cell-wise size factor adjustment may

not be sufficient. We present a non-linear normalization approach that provides a

cell- and gene-specific normalization factor for each gene in each cell. We show that

the proposed normalization method (implemented in “SC2P" package) reduces more

technical variation than competing methods, without reducing biological variation. When

technical effects such as sequencing depths are not balanced between cell populations,

SC2P normalization also removes the bias due to uneven technical noise. This method

is applicable to scRNA-seq experiments that do not use unique molecular identifier (UMI)

thus retain amplification biases.

Keywords: scRNA sequencing, single cell, normalization, statistical method, gene expression

1. INTRODUCTION

Single Cell RNA-sequencing (scRNA-seq) has become a widely applied tool to study the diverse
and dynamic transcriptional activities among cell populations (Tang et al., 2009). Before the
RNA-sequencing technology was applied to query the transcriptomes of individual cells, scientists
have used it widely to measure mRNA expression from bulk samples (Mortazavi et al., 2008), in
which an average level of RNA expression from a large number (often millions) of cells is obtained.
Methods for data processing, including mapping short reads to the reference transcriptome and
normalization to account for technical variability in the efficiency of RNA extraction, amplification
and counting, evolved along the progress of the sequencing technology. These include simple size
factors to adjust for global effects such as sequencing depth, such as widely used count per million
(CPM) or reads per million per kilobase (RPKM) for their simplicity (Mortazavi et al., 2008), and
more data adaptive trimmed mean of M values (TMM) (Robinson and Oshlack, 2010). Noting
that non-linear and inconsistent biases due to gene length and GC-content exist in RNA-seq data,
more flexible methods have been proposed, such as the conditional quantile normalization (CQN)
(Hansen et al., 2012) and remove unwanted variation (RUV) (Risso et al., 2014).

All normalization methods, explicitly or implicitly, make assumption about characteristics of
the data that are expected. For example, in many bulk RNA-seq data sets, assumptions on the lack
of global shifts of the distribution of expression are often reasonable. As a result, the changes of
the location, scale, or shape of the distribution are attributed to technical effects and removed in
normalization (Robinson and Oshlack, 2010; Hansen et al., 2012). scRNA-seq data share many
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similarities of bulk RNA-seq data, but have their unique
characteristics. These include, but are not limited to, the much
higher percentage of genes with zero count and generally lower
library size (Shapiro et al., 2013). In addition, there is often much
greater variability among cells compared to that among bulk
samples, because bulk samples measure the average expression
from a large population of cells (Wu et al., 2014). Thus, it may no
longer be reasonable to assume the lack of global differences, and
a direct adaptation of bulk RNA-seq normalization is not optimal,
despite its convenience.

The need for specialized normalization is well-recognized.
Since the introduction of scRNA-seq, a handful of normalization
approaches have been proposed (Lun et al., 2016; Bacher et al.,
2017). Most analyses of RNA-seq data at least attempt to address
this bias due to sequencing depth or overall mRNA capture
efficiency by turning the counts data into counts-per-million
(CPM). This practice implicitly assumes a linear relationship
between library size and the observed counts. There are several
problems with this simple practice. One is that the library size
(the total observed count in a sample) may not be a stable statistic
to represent the overall counting efficiency in a cell. In bulk RNA-
seq, each individual gene accounts for a very small fraction of a
sample, thus the library size often captures the overall efficiency
including sequencing depth and mRNA extraction efficiency. In
scRNA-seq, a few top genes can account for a large fraction of
total counts, making the library size sensitive to the variation of
these genes, which are not necessarily stable across cells. This
problem can be alleviated when one uses a more robust estimate
of the size factor, such as using TMM.Another issue with a simple
size factor adjustment is that it assumes the impact of the size
factor is the same to all genes in the same cell. Bacher et al.
(2017) showed that this is not necessarily true, and proposed to
normalize genes in several groups. Recognizing that common
assumptions on an identical distribution of genes expression
may not be reasonable across all cells, normalization based on
internal ERCC controls have also been proposed (Ding et al.,
2015). However, since the control RNAs are spiked in after RNA
extraction, the ERCC controls only capture technical biases in a
portion of the sample preparation procedures. Though 96 RNAs
are included in the ERCC panel, many of them are at levels too
low to be detected, making the number of controls that can be
used to capture the systematic bias much lower, thus the biases
less reliably estimated.

In this manuscript, we describe a simple but effective
normalization procedure that captures the potential non-
linear, systematic biases in scRNA-seq data. We consider that
a gene’s observed count is affected by both its expression
level (the biological factor) and the detection efficiency (the
technical factors). The technical factors include the quality of
cell dissociation, mRNA extraction/amplification efficiency, and
sequencing depth. These factors may have different impact across
genes. The combined effect of these factors on detection efficiency
is the technical bias we aim to estimate and remove. Our
procedure takes into account both gene-specific and cell-specific
contexts in scRNA-seq data, thus borrows information both from
the same gene across cells and from other genes within the same
cell to achieve a robust normalization factor.

2. RESULTS

2.1. Data Sets
We use four scRNA-seq data sets to illustrate the normalization
performance. The first is from a type 2 diabetes study of
pancreatic islet cells, referred to as “T2D" data hereafter. The
T2D data set includes 978 cells, of which 239 are alpha cells
(Lawlor et al., 2017). We use the alpha cells as an example
to illustrate variation within a cell type. This data set is
available at Gene Expression Omnibus (GEO) with accession
number GSE86473. The second data set (GEO accession number
GSE85917) profiles human embryonic stem cells, referred to as
“hESC" data hereafter. There are 92 H1 cells sequenced twice
with very different sequencing depth: approximately one and four
million reads per cell. This data set was originally generated to
evaluate SCnorm normalization method (Bacher et al., 2017).
The third data set (GEO accession number GSE45719) profiles
cells in different early development stages ranging from zygote to
blastocyst and is referred to as the “embryo" data using Smart-seq
(Deng et al., 2014). The fourth data set (GEO accession number
GSE75748) comes from a time course experiment that measured
hESC cells at different time points, including 758 cells, and is
referred to as the “time course" data (Chu et al., 2016).

2.2. The Technical Bias May Not Be a
Constant Linear Effect of Library Size
The impact of overall mRNA extraction efficiency and
sequencing depth is well-known. In single cell data this is
reflected in two ways: cells with higher library size tend to
have higher gene detection rate (the proportion of genes with
non-zero count), and tend to have higher counts on the genes
that are observed. The simplest adjustment for this overall effect
is turning the counts data into counts-per-million (CPM). This
practice inexplicitly assumes a linear relationship between library
size and the observed counts, and makes the same adjustment
for all genes in a given cell. We first demonstrate that technical
bias depends on the gene as well, and is not always a simple
linear effect.

For cell i, denote the library size by Li. Consider gene g in this
cell, denote its gene expression level as θgi, and the observed read
count asYgi.Whenwe assume that E[Ygi] ∝ θgiLi, normalizing by
Ygi/Li is a reasonable practice. This type of normalization, using
a cell-wise size factor, implies log(E[Ygi]) = log(θgi)+ log(Li)+ c.
It means that the log transformed counts are proportional to log
library size with a constant slope 1 for all genes. We explore
these assumptions in real scRNA-seq data as shown in Figure 1,
where we plot the slope of log counts regressing on library size
against the correlation between a gene’s counts and library size
across cells. If we had a constantly expressed gene with θgi ≡ θg
and the gene counts are proportional to Li, we would have a
perfect correlation and slope 1. Here we focus on genes that
are reliably detected and only include those with average log
counts greater than 4. As expected, the counts for many genes
are strongly correlated with library size, confirming that the
library size indeed affects measured expression level, though the
correlation is lower than 1 since there are natural variations of
expression levels even within the same cell type. The correlation
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FIGURE 1 | The relationship between counting efficiency with library size. The log transformed counts are regressed on log library size and the slope is plotted against

the correlation between the gene counts and the library size. A slope of 1 indicates a linear effect of library size on counting efficiency. (A) Data from T2D study. (B)

Data from hESC study. Only genes with average log counts greater than 4 are included.

with Li is lower for genes with high biological variation or genes
with low expression and hence under greater influence of Poisson
counting error. The slopes from genes that are highly correlated
with library size are the most informative of the extent of the
technical bias. We observe that the assumption of a constant
slope of 1 is inaccurate in two senses: (1) the slopes between
log(Ygi) and log(Li) are not necessarily the same for all genes; and
(2) the slope on average is not necessarily 1. In the T2D data, the
slope tends to exceed 1 for genes that show high correlation with
library size, whereas in the hESC data the slope tends to be lower.

2.3. Not All Genes Reflect Technical Bias in
a Cell
Bacher et al. (2017) report similar observations that the need
for normalization differs for different genes and give specific
examples of genes with high, median and even negative slope in
this relationship in the data used in Figure 1B. As a solution, they
divide the genes into multiple bins and estimate their “count-
depth relationship" separately, and normalize accordingly.

We take a different approach here without putting genes into
bins. Instead, we obtain a cell- and gene-specific normalization
factor that depends on the mean expression level, represented
by a smooth function. This is motivated by the fact that most,
if not all, genes are not transcribed in all cells. When a gene
is expressed, we often observe a close-to-linear relationship
between the gene count and the library size, as seen in Figure 2.
This means that a higher count observed could be a result of
higher sequencing depth or higher mRNA extraction success
in certain cells, instead of higher expression level. This is the
motivation behind CPM type of normalization. However, we also
notice that even in cells with very high library size, we often

observe low but non-zero counts, shown in red in Figure 2.
We have introduced a two-phase expression model, SC2P, for
scRNA-seq data that account for these two latent phases (Wu
et al., 2018). Phase I corresponds to a background level of counts
which represent the inactive phase, and Phase II corresponds to
the phase when the gene is actively transcribed. For a cell that has
high extraction/amplification rate and is sequenced deeply, the
active genes in it tend to show higher counts. In the same cell,
genes in Phase I will only have a low, background level of counts,
regardless of the library size.

2.4. Technical Bias Depends on Expression
Level
The variation in gene counts is a combined result of biological
variation, which we desire to retain, systematic technical
variation, which we aim to remove in normalization, and lastly,
random noise, which is not identifiable from the biological
variation. In Figure 3, we illustrate an example of the systematic
bias manifested differently in the two latent phases. This figure
is similar to the “MA plot" commonly used in gene expression
microarray data. Here, each point represents a gene. The x-axis
is the mean expression within a given cell type, and the y-axis
is the log ratio of a gene’s count in this particular cell versus
the mean expression level. This plot shows the overall pattern of
bias as a function of expression level. A symmetrical scatter of
points around the y = 0 line reflects no need for normalization.
A simple linear effect of the library size leads to a constant bias
in the log scale, hence the points shift vertically, and will be
symmetrical around y = log Li − log L0 for sample i, where Li
and L0 are the library sizes for the specific cell and the reference
(typically set to be the median library size in a data set). However,
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FIGURE 2 | Gene counts are positively correlated with library size when the gene is expressed (blue) but appear to have little correlation with library size when they are

in the background phase (red). (A) Data from T2D study. (B) Data from hESC study.

FIGURE 3 | (A) Before normalization MA plot for gene counts before normalization. The log ratio of a gene’s count in one cell over its mean expression level is plotted

against the log mean expression (the alpha cells in the T2D data are used here). Genes in active expression phase are shown in blue and genes in background phase

shown in red. Only the blue genes are used in estimating the systematic bias, shown in purple. (B) After normalization: the log ratio from normalized genes in the

active phase shows no systematic bias.

sometimes the bias depends on the expression level and cannot
be captured by one constant, and a non-linear normalization is
needed. This has been used for diagnosis as well as for estimating
and removing the systematic bias in microarray data (Bolstad
et al., 2003). One key difference is that in scRNA-seq data, not
all genes in a cell are affected by the systematic bias to the same
extent. As shown in Figure 2, a gene’s count is affected only
when it is in the active phase. Thus, counts from genes who
are in the background phase do not contain information about
the sequencing efficiency, and should not be included in the
estimation of the systematic bias.

In Wu et al. (2018) we show that the distribution of
background counts and that of genes in the active phase are cell-
and gene-specific, so a universal cutoff to determine the phase
is not ideal. We describe a mixture model using a zero-inflated
Poisson distribution and a lognormal-Poisson distribution for
the two phases and estimate the conditional probability that a
gene is in the active phase, given its gene identity and the cell
context. This allows us to divide the counts in a cell to the
two phases as shown in Figure 3. The systematic bias due to
inconsistent sequencing efficiency can then be estimated as a
smooth curve using the gene counts in the active phase alone.
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2.5. Removing the Count-Depth
Dependence
The goal of normalization procedures is to remove technical
variability without removing biological variability. One
indication of unwanted technical variability is that gene counts
are positively correlated with library size, referred to as the count-
depth relationship (Supplementary Figure 2A). After adjusting
for size factors, this strong correlation is often reduced toward
zero, as seen in Figure 4 and Supplementary Figures 2B–D,
since many normalization factors directly aim to remove
the library size effect. However, we also notice that negative
correlation is often introduced to genes with lower average
expression levels in simple global normalization approaches,
indicating an over-adjustment for those genes. SCnorm and
SC2P both reach a near 0 correlation overall, with the result
from SC2P closer to zero for genes over a wider range of
mean expression level. Supplementary Figure 3 reveals the
similarity and difference between SC2P and SCnorm more
directly by plotting the raw and normalized counts in the same
cell. We see that both methods adjust the higher counts even
higher, but lower counts to a lesser extent. SCnorm partitions
genes into several groups, each forming a curve, with different
levels of adjustment. SC2P does the adjustment in a smooth
fashion without putting genes in discrete categories, thus lacking
apparent clusters in the figure.

2.6. Removing Technical Variation and
Maintaining Biological Difference
To show the success in removing technical variations, we
first compare the conditional standard deviation of gene
expression levels. Since dropout is a common phenomenon
in scRNA-seq data, even strong cell type marker genes are

not always observed in the corresponding cell type. Thus,
marginal standard deviations often obscure the actual variability
(Supplementary Figure 1). For each gene, we compute the
standard deviation of its expression level when the gene is reliably
detected, based on the posterior probability of a gene in the active
phase. Among cells of the same type, we expect that the variance
has sources of both biological and technical origins, and we
expect that the variance reduces in normalized data. To evaluate
the reduction in variance we compute the ratio of the variance in
the normalized versus raw data. In Figure 5A we compare the
ratio in genes stratified by average expression levels, in Alpha
cells from the T2D data. Several methods (SCnorm, scran, and
SC2P) can reduce the variance in highly expressed genes. Many,
however, lead to an increase of variation for genes with lower
expression levels. SC2P is the only method that can reduce the
variance throughout the entire range of mean expression. In this
particular data set, the normalization in DESeq actually increased
the variance.

We certainly want to make sure that we do not reduce signal
in the process of removing technical variation. To confirm this
we show the difference in average expression between the Alpha
and Beta cells. As shown in Figure 5B, the log fold change
computed in SC2P normalized data maintains the between
cell type differences. Similar results from the embryo data are
included in the Supplementary Figure 4.

2.7. Removing Bias Due to Unbalanced
Technical Bias
When the technical biases are randomly and evenly distributed
in two cell populations, the population mean expression suffers
from much smaller bias than the expression level in individual
cells, since the law of large numbers will make the average

FIGURE 4 | The count-depth relationship, measured as the correlation between the (normalized) gene counts and library size, is reduced after normalization. (A)

Normalized by SC2P normalization. (B) Normalized by SCnorm.
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FIGURE 5 | (A) Reduction of the technical variability among replicate cells. The ratio of gene specific standard deviation in normalized log counts over that in the raw

log counts plotted. Genes are displayed in different groups based on their average expression when they are expressed. (B) The log fold change between Alpha and

Beta cell populations before and after normalization remains at similar levels.

of technical noise converge to zero when the number of cells
increases. However, when two populations of cells in comparison
have different distributions of technical effects, we may have
biased result even in population means. For example, if one
cell population tends to have more deeply sequenced cells than
the other cell population, we will observe a bias in the mean
expression levels, and DE observed across the two groups may
simply reflect the imbalance in sequencing depth in the two
populations. Successful normalization should remove such biases
without introducing new biases.

For illustration purpose, we use the hESC data set that
profiles H1 cells with both high and low sequencing depth
so the systemic bias is obvious. When the sequencing depth
is unbalanced between the two groups, the group with more
highly sequenced cells tend to have average expression biased up,
creating positive log fold change in genes without true DE. Here
we compare the ability of various normalization methods in their
ability to remove this potential bias. Figure 6 shows the boxplots
of log fold changes of normalized gene expression for a two-
group (the same type of cells in high- vs. low-sequencing depth
groups) comparison, where the genes are stratified by average
expressions. Since there is no biological difference between the
two groups, we expect the log fold changes to be around zero.
We see that, for highly expressed genes, all methods appear to
remove the technical bias and show a median at zero. For lower
expressed genes, the normalization methods using a cell-wize
normalization factor (Total, scran, andDESeq) actually introduce
biases to the data. This is because the lower expressed genes are
affected by the library size in a lesser degree, thus they are over-
normalized. SCnorm, by normalizing genes in different groups,
can alleviate this problem to some extent and show smaller bias
after normalization. SC2P is the only normalization that works
well for genes with different average expression levels.

2.8. Impact on Downstream Analysis
The flexibility and single cell resolution of the scRNA-seq
technology lead to a wide variety of applications and a large
number of new analysis methods. To illustrate the consequences
of normalization procedures on downstream analysis, we present
two examples below. The first is differential expression analysis.
Due to the lack of biological ground truth, we do not directly
compare the accuracy of DE magnitude or the sensitivity of
DE detection. Instead, we assess the impact of normalization
on the robustness of DE detection. In scRNA-seq, the number
of cells in each population is often orders of magnitude higher
than the number of samples in most bulk RNA-seq data. A
robust and reproducible analysis should not have results that
are sensitive to the inclusion or removal of a few cells. We
illustrate with the time course data and compare expression
between time points We show that different normalization
methods lead to different reproducibility in the time course
data. When 5 cells, either the ones with the highest library
size, or randomly chosen, are removed from the data set, our
normalization shows much less disruption. In contrast, data
normalized with other alternatives could lead to drastic changes
(Supplementary Figure 5).

We also compare the impact on clustering using the embryo
data. We use log transformed pseudo counts after different
normalization in three widely used scRNA-seq clustering
methods, including SIMLR ((Wang et al., 2017), SHARP
(Wan et al., 2020), and SC3 Kiselev et al. (2017). Figure 7

compares the Adjusted Rand Index (Hubert and Arabie, 1985),
which measures the concordance of pair-wise relationship
between each pair of cells with known developmental
stages, adjusted for the agreement due to coincidence.
The proposed normalization has the highest ARI in all
three methods.

Frontiers in Genetics | www.frontiersin.org 6 April 2021 | Volume 12 | Article 612670

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wu et al. Non-linear Normalization for Non-UMI scRNA-Seq

FIGURE 6 | Box plots of log fold changes of normalized gene expression from different methods. The genes are stratified by average expressions. The log fold

changes are computed based a two-group comparison, where the two groups contains cells with high and low sequencing depths. All cells are H1 hES cells.

FIGURE 7 | The adjusted Rand index (ARI) using three different clustering methods with different normalization. Genes that are detected in at least three cells are used

in clustering.
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3. DISCUSSION

We present a normalization method that provides a cell- and
gene-specific normalization factor that borrows information
across genes and across cells. Both the cell context and gene
context are used in predicting whether a gene appears to
be in the active phase in a given cell, and only the active
ones are used in estimating the technical bias due to RNA
extraction/amplification/sequencing. It is more flexible than
simple size factor normalization, which adjusts all genes in a cell
in a universal manner, but is still robust for the normalization is
estimated from a large number of genes using only a few degrees
of freedom.

scRNA-seq opens the door to many new applications beyond
what is offered by bulk RNA-seq. It allows the query of the
heterogeneity of individual cells, instead of the average of many.
This means higher variability of the direct measurements, since
the quantity measured is no longer a population average which
is stabilized when millions of cells are pooled together. This often
means that we havemanymore cells sequenced in an experiment,
thus many more “samples" to work with. Compared to typical
bulk RNA-seq data, the number of samples in a scRNAseq data
is typically orders of magnitude higher. If differential expression
(DE) between two populations of cells is of interest, and a gene-
specific “count-depth relationship" confounds the DE, one may
argue that we no longer need normalization before analysis. One
could choose to adjust for this confounding in the regression
setting, as is done in MAST (Finak et al., 2015). In a regression
with sample size over several hundred, adding the library size as
a covariate simply means using one degree of freedom to account
for the “count-depth relationship." Since the regression is done
for each gene, this allows gene specific adjustment. The drawback
is that this assumes a linear effect of the library size, which may
not be valid in all cells, and it can be sensitive to which cells are
included in the analysis. This is also limited to the DE analysis,
whereas scRNA-seq is used for many more applications.

This paper addresses normalization for scRNA-seq data in
relatively high library size, without the use of unique molecular
identifiers (UMI). When UMIs are used, the amplification bias is
largely eliminated because multiple amplified copies of the same
transcript is only counted once. These data sets still have a need
for normalization because library size remains an obvious factor
in the observed counts. But it is a different problem and beyond
the scope of this manuscript.

4. METHODS

4.1. Probability Model
We consider each gene in any given cell is either actively
transcribed or not expressed. When it is transcribed (we refer
to this as Phase II or the active phase), its expression level is
represented as a concentration θgi for gene g in cell i. When it
is not transcribed (we referred to this as the background phase),
its count depends on a sample(cell)-specific noise distribution.
As described in Wu et al. (2018), we model a gene’s true
expected concentration as a lognormal random variable, and the
background noise as a zero-inflated Poisson (ZIP) distribution.
The sequencing technology does not directlymeasure θgi, because

the RNA molecules in the cells have to be captured, reversed
transcribed, amplified and eventually counted. To account for the
potentially unequal counting efficiency for the RNAs of different
genes in different cells, we use Sgi to represent the technical
distortion for gene g in cell i.

The observed count thus comes from a mixture distribution
with latent phase Zgi, where Zgi = 1 means the gene is in the
active phase. Thus, we have

Ygi|Zgi = 1, θgi ∼ Poisson(θgiSgi)withθgi ∼ LN(µg , σ
2
g ),

Ygi|Zgi = 0 ∼ ZIP(p0i, λi)

The parameters θgi and Sgi cannot be both uniquely identified.
For identifiability we constraint the average of Sgi for the cell with
themedian sequencing depth to be 1. In Supplementary Figure 4

we show the observed log counts for a few example genes in the
T2D data to illustrate that the normal assumption is a reasonable
one for the active phase.

4.2. Estimating the Parameters
In Wu et al. (2018) we provide the details of the estimating
procedures for obtaining the µ̂g , σ̂ 2

g and p̂0, λ̂. We describe it
briefly here. The ZIP parameters are estimated based on the
properly of a linear relationship in the log frequency of Poisson
counts, with the slope dependent on λ̂. Thus, we can view
the distribution of counts as ZIP contaminated by Phase II
observations. We use a robust regression to down-weight the
influence of high counts to obtain a robust estimate of λ and
then use the amount of excessive zero to estimate p0. The initial
phase indicators Zgi are set based on the point mass from the ZIP
model for each observation. The parameters µg and σg are then
estimated using the counts in the active phase for each gene. This
is iterated using the EM algorithm, which allows us to obtain a
Ẑgi for each gene in each cell as well as µ̂g .

4.3. Estimating the Normalization Factor
With these parameters we obtain residuals ǫ̂gi = logYgi − µ̂g

for the genes deemed in the active phase (we use Ẑgi > 0.99),
which has expectation log Sgi for each gene. Figure 3A shows an
example of the distribution of the residuals against µ̂g . When
there is no need for normalization, ǫ̂gi shall be symmetrically
distributed around the y = 0 line. When there is a consistent
bias for all genes in the same cell, log Sgi ≡ log Si, ǫ̂gi may have
a non-zero expectation but will show a common trend for all
expression levels. However, in general, the bias is often related
to the mean expression level, as shown in Figure 3A. We use
a spline function to estimate a smooth relationship between Sgi

and µg , and obtain f̂i. This allows us to address the unequal need
for normalization for different genes without having to put them
in discrete categories. Then given a gene we estimate log Sgi =

f̂i(logYgi).
A critical step here is to identify the genes in the active

phase in a cell, as only these genes reflect the technical biases
in mRNA extraction and amplification. Thus, in Figure 3A the
smooth line is estimated using only the active phase genes (blue)
only. Note that what we need is a good estimate for this curve,
and thousands of genes in the active phase jointly determine
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this curve. Therefore, even if for any specific gene the phase
determination may not be accurate, its influence on the curve
is trivial.

4.4. Use of the Normalization Factor
The normalization factor has the interpretation of the potential
detection bias for gene g in cell i if gene g is in the active phase.
This value is irrelevant in the case that the gene is not active in
a cell. Directly adjusting the raw counts indiscriminately, such
as in TPM, often leads to inflation of gene counts in cells with
low total counts, which may create misleading large fold changes
across cells. Thus, we provide the normalization factor as an
offset that can be incorporated into analysis pipelines that use
the count data directly. To use the normalization factor for direct
adjustment, we recommend filtering genes to focus on the ones
that are actively expressed.
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