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Abstract

Mass-spring models have been a standard approach in molecular modeling for the last few

decades, such as elastic network models (ENMs) that are widely used for normal mode

analysis. In this work, we present a vastly different elastic solid model (ESM) of macromole-

cules that shares the same simplicity and efficiency as ENMs in producing the equilibrium

dynamics and moreover, offers some significant new features that may greatly benefit the

research community. ESM is different from ENM in that it treats macromolecules as elastic

solids. Our particular version of ESM presented in this work, named αESM, captures the

shape of a given biomolecule most economically using alpha shape, a well-established tech-

nique from the computational geometry community. Consequently, it can produce most eco-

nomical coarse-grained models while faithfully preserving the shape and thus makes

normal mode computations and visualization of extremely large complexes more manage-

able. Secondly, as a solid model, ESM’s close link to finite element analysis renders it ideally

suited for studying mechanical responses of macromolecules under external force. Lastly,

we show that ESM can be applied also to structures without atomic coordinates such as

those from cryo-electron microscopy. The complete MATLAB code of αESM is provided.

Author summary

Mass-spring models have been a standard approach in classical molecular modeling

where atoms are modeled as spheres with a mass and their interactions modeled as

springs. The models have been extremely successful. Thinking ahead, however, as molecu-

lar systems of our interest grow more quickly in size or dimension than what our compu-

tation resources can keep up with, some adjustments in methodology are timely. This

work presents a vastly different elastic solid model (ESM) of macromolecules that shares

the same simplicity and efficiency as mass-spring models in producing the equilibrium

dynamics and moreover, offers some unique features that make it suitable for much larger

systems. ESM is different from ENMs in that it treats macromolecules as elastic solids.

Our particular version of ESM model presented in this work, named αESM, captures the

shape of a given biomolecule most economically using alpha shape, a well-established

technique from the computational geometry community. Consequently, it can produce

most economical coarse-grained models while faithfully preserving the shape. ESM can be
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applied also to structures without atomic coordinates such as those from cryo-electron

microscopy.

Introduction

Great strides have been made in the last few decades in determining the structure and dynam-

ics of macromolecules. They are currently over 160,000 structures deposited in the PDB [1]

and structures of increasingly larger molecular assemblies are becoming available. The cryo-

electron microscopy, as one example, has brought much excitement to the field of structural

biology, being able to not only determine at near-atomic accuracy the structures of extremely

large complexes but also capture their dynamics through the determination of many confor-

mations. Together with insights gained from computational modeling and simulations, the

growing knowledge is transforming the field and will reveal much mechanistic understanding

of many molecular systems.

Normal mode analysis in general and elastic network models in particular have been widely

used in the last several decades for studying the equilibrium dynamics of macromolecules.

Normal modes often reveal insightful clues about functional motions and high overlaps are

often found when interpreting conformation changes using these modes. Elastic network

models (ENMs) (see seminal work in Refs. [2–6]) are extremely simple and easy to use, and yet

are able to accurately reproduce especially the low frequency normal modes. Other notable

milestones in the development of ENMs include the RTB model [7] that extended the applica-

tions of ENMs to larger structure complexes [8], the non-linear block normal modes (NOLB)

model by Grudinin and co-workers [9], the resonance-based BOSE model [10] by Na and

Song and its application to HIV-1 capsid [11] that has nearly 5 million atoms, to name a few.

A few other recent developments significantly increased the accessibility of ENMs and made

them available to a much broader community, such as the ProDy python package [12], the

iMod package for normal mode computations in internal coordinates [13], etc. For a recent

review on elastic network or coarse-grained models of macromolecules, see Refs. [14, 15]. The

success of ENMs was often attributed to its ability to capture the overall shape of macromole-

cules, which was recognized to have a dominant influence over their dynamics [8, 16, 17]. For

symmetric complexes, shape, or symmetry to be more precisely, was shown to be the sole

determinant of their motion patterns [18].

In this work, we present an elastic solid model (ESM) that is as simple and convenient-to-

use as elastic network models such as ANM [5]. Moreover, it offers some additional significant

features that may greatly benefit the research community.

ESM is different from ENM in that it treats macromolecules as solid blocks of certain

shapes and material properties. The most distinct feature of the ESM presented in this work is

that it captures the shape of a given macromolecule intentionally and most economically using

the alpha shape [19], a well-established technique from the computational geometry commu-

nity. We name our model αESM (or alphaESM), short for ESM by alpha shape, to distinguish

it from other ESM models constructed without using alpha shape [20–22]. By employing alpha

shape, αESM can produce most economical coarse-grained models while faithfully preserving

the shape. After capturing the shape, instead of constructing a mass-spring model that consists

of masses and springs, αESM builds an elastic solid model composed of tetrahedra, which are

conveniently available as the output of the alpha shape. Finite element method, a technique

well established in engineering, is then applied to obtain the stiffness matrix, which is the

counterpart of the Hessian matrix in ENMs. It follows that normal modes can be then
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computed from the stiffness and mass matrices. As a solid model that uses finite elements,

ESM should be most suited for studying mechanical responses of biomolecular systems [20].

Lastly, we show that ESM is readily applicable also to structures without atomic coordinates

such as those from cryo-electron microscopy.

Elastic solid models (ESMs) of macromolecules are not entirely new. An elegant elastic

solid model was developed by Bathe [20] over a decade ago. Given a protein structure, the

model first determined the boundary of a protein volume by computing the solvent-excluded

surface using a software called MSMS [23]. The surface is then simplified using another soft-

ware called QSLIM [24]. After obtaining the surface representation in the form of a triangle

mesh, the model converts the triangle surface mesh into a 3-D volume mesh using the com-

mercial program ADINA. The 3-D volume mesh, composed of tetrahedral elements, is then

used to compute the stiffness and mass matrices. The drawbacks of Bathe’s model are several.

First, it does not use coordinates of the given structure as nodes, and consequently, an extra

step of interpolation from generated nodes back to atoms is required in order to obtain normal

modes of the original atoms in the structure. Some nice properties of the modes such as ortho-

normality likely get lost in the process. Secondly, it uses external software such as ADINA that

is not accessible to most readers, which reduces its usability. Third, the usage of multiple soft-

ware makes streamlining the computation difficult. In contrast, αESM uses the given atomic

coordinates as nodes to represent a structure. Our entire program, which has only a few lines

of code, is developed under MATLAB and is included for readers’ convenience. The program

is extremely simple and ready to be deployed. For readers who do not have the MATLAB

license, the included program may serve as a pseudo code, in that the detailed algorithmic

steps described there should be readily translatable to other programming languages. Another

elastic solid, instead of mass-spring, model of macromolecules that is closely related to our

work was developed by Hinsen for computing waves in infinite protein crystals [21]. Our elas-

tic solid model is designed for finite, individual macromolecules or complexes.

Another attractive feature of ESM is that it can be applied directly to electron microscopy

(EM) density data. It is worth noting that ENM as well can be and had been applied to low res-

olution EM density data to compute dynamics and normal modes [25–28]. In order to do so,

the EM density data was pre-processed using techniques such as vector quantization [29, 30].

Vector quantization produces a finite number of Voronoi cells whose centroids are optimally

placed to best approximate the EM density. These centroids or code vectors, obtainable from

software Situs [29], were then used as nodes in ENM to construct an elastic network and to

compute normal modes. Besides code vectors [25–28], the EM density and volumetric data

were approximated also with pseudo atoms [31, 32] or virtual particles [33]. All these models

inevitably approximated the EM volume using a discrete set of points, which were then con-

nected to form a mass-spring model for normal mode computations. Instead of approximating

the density with a discrete set of points, αESM creates an elastic solid representation of the

entire density distribution through the application of alpha shape. It has a unified approach to

structures with or without atomic coordinates.

Methods

The αESM model

Given a macromolecule structure, αESM can be applied in a straight-forward manner as

shown in Fig 1.

As shown in Fig 1, alpha shape [19] can be directly applied to the xyz coordinates (or den-

sity in a like manner). Intuitively, alpha shape works in the following way. Given a set of points

in 3D, Delaunay triangulation [35] creates a tetrahedral mesh of all the points. Alpha shape
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applies a filter to the mesh and keeps only a subset of the tetrahedra that pass the filter. The fil-

ter that alpha shape uses is a sphere of radius alpha: only tetrahedra whose circumspheres’

radii are less than or equal to alpha are kept. For example, if an alpha of 10 Å is used, then the

alpha shape will return a subset of tetrahedra (or quadruples of atoms) whose circumspheres’

radii are less than or equal to 10 Å. In this sense, the alpha value acts in a similar way to the cut-

off distance in elastic network models. It is worth noting that the original alpha shape algo-

rithm [19] actually keeps also edges and triangles (also called 1-simplex and 2-simplex

respectively) that pass the filter, while the alpha shape implementation in MATLAB keeps only

tetrahedra (also called 3-simplex). Alpha shape produces a volumetric representation of the

structure using tetrahedral cells. This can be done in a single line of code in MATLAB (see

Fig 1). The nodes of tetrahedra are the input coordinates. The tetrahedra themselves can be

used as elements for any standard finite element analysis.

Once we have the nodes (say Cα atoms) and the elements (the tetrahedra), the stiffness

matrix K and the mass matrix M can be obtained. The derivation of the stiffness and mass

matrices can be found in most finite element method (FEM) textbooks [36] and will not be

covered here. However, readers can readily use fast MATLAB scripts (kindly contributed by

Rahman and Valdman [34]) to compute K and M, as shown in Fig 1, where λ and μ are Lamé

parameters and can be computed from Young’s modulus E and Poisson ratio ν as follows:

l ¼
nE

ð1þ nÞð1 � 2nÞ
ð1Þ

m ¼
E

2ð1þ nÞ
ð2Þ

Intuitively, Young’s modulus (E) measures the stiffness of a solid material and is defined as

the ratio of stress (or force per unit area) over strain (proportional deformation) under a

Fig 1. The flow chart of αESM (left) and the corresponding MATLAB script (right). alphaShape, kron, and eig are built-in MATLAB functions. The

two scripts for computing stiffness matrix and mass matrix are available at MATLAB file exchange (https://www.mathworks.com/matlabcentral/

fileexchange/27826-fast-fem-assembly-nodal-elements), kindly contributed by Rahman and Valdman [34]. xyz are input coordinates, alpha is the only

parameter of alpha shape, playing a role similar to the cutoff distance in ENM, lambda and mu are Lamé parameters (see text for more info). The above

MATLAB script is available at S1 File.

https://doi.org/10.1371/journal.pcbi.1007855.g001
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uniaxial stretching or compression. Materials with a higher E are harder to stretch or compress

than materials with a lower E, and thus appear stiffer. The K matrix is linearly proportional to

E. In both its definition and its relationship to the stiffness matrix K, E is similar to spring con-

stant γ used in elastic network models. E is an intrinsic material property of solid objects. For

proteins, E is in the order of a few GPa, such as for actin, tubulin, or collagen [37], and is about

5.5 GPa for hydrated lysozyme crystals [38, 39] and 1.8 GPa for the capsid of bacteriophage

ϕ29 [40]. An earlier work estimated that globular proteins should have a Young’s modulus in

the range of 2 to 10 GPa [41]. In this work, E is a parameter that will be calibrated by fitting to

the experimental B-factors, in a similar way to how the spring constant parameter is deter-

mined in some elastic network models [5]. The Poisson ratio is the negative of the ratio of tra-

verse strain over axial strain and measures how much a material expands or shrinks

horizontally when compressed or stretched vertically. The Poisson ratio for most material is in

the range of 0.2 to 0.5. A Poisson ratio of 0.3 or 0.4 has been used for proteins [20, 40, 42, 43].

And it was shown that elastic behaviors of proteins depended only weakly on the exact value of

Poisson ratio used [40]. In this work, a Poisson ratio of 0.3 is used.

It is worth noting that in FEM the mass matrix M is usually not diagonal, unlike the mass

matrix used in ENMs. Additionally, the mass matrix M produced from the MATLAB script

shown in Fig 1 is a N × N matrix, where N is the number of nodes. To match it with K, which

is 3N × 3N, one can simply carry out a kronecker product:

M ¼ kronðM; I3Þ; ð3Þ

where I3 is a 3 × 3 identity matrix.

The stiffness matrix K is similar to Hessian matrices in NMA or ENMs. To obtain normal

modes, one can do:

½V;D� ¼ eigðK;MÞ; ð4Þ

where eig is the standard MATLAB routine for computing eigenvalues and eigenvectors

(modes). The modes are stored in V in columns, while the eigenvalues are returned in D as a

diagonal matrix.

Overlap

To compute an overlap between a conformational change (or displacement) d and a give

mode vi, one can compute their dot product:

Oi ¼
d � vi

jjdjj
: ð5Þ

In case the mass matrix M is not an identity matrix, the modes are first mass-weighted:

qi ¼ viM
1=2 ð6Þ

Mean square fluctuations

B-factor is commonly thought to be related to mean square fluctuation <(ΔRi)
2> as [5],

Bi ¼
8p2

3
< ðDRiÞ

2
>; ð7Þ

though a large portion of it originates from static disorder in crystal lattice. Work by Kurinov
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and Harrison [44] and Hinsen [21] demonstrated that rather than thermal fluctuations, static

disorder was the dominant contributor to B-factors at cryogenic temperature (about 100 K).

At room temperature, it was estimated that thermal fluctuations contributed about equally as

static disorder for Lysozyme [44]. Since the vast majority of crystal structures (about 95% [45])

were determined at low cryogenic temperature, great caution must to be taken when interpret-

ing B-factors. It was suggested that MD-derived atomic fluctuations and cross-correlations

[46] or NMA-derived atomic fluctuations [47] should be used instead.

Now since each mode’s potential energy amounts to 1

2
kBT, the amplitude Ai of mode vi can

be determined from:

1

2
EA2

i v
T
i Kvi ¼

1

2
kBT; ð8Þ

where E is Young’s modulus, kB is Boltzmann constant and T is temperature. Thus, we have,

1

2
EA2

i li ¼
1

2
kBT; ð9Þ

which leads to, A2
i ¼

kBT
Eli

.

Therefore,

hðDRiÞ
2
i ¼

kBT
E

X

k

v2
k;i

lk
¼

kBT
E

traceð½M� 1
2K� 1

m M� 1
2�iiÞ; ð10Þ

where the subscript ii represents the i-th 3-by-3 diagonal block and Km is the mass-weighted

stiffness matrix, i.e., Km = M-1/2KM-1/2. For ANM [5], it is:

< ðDRiÞ
2
>¼

kBT
g

traceð½H� 1�iiÞ; ð11Þ

where E is replaced by γ and K by the Hessian matrix H. Note that there is a slight difference

between Eq (11) and that of GNM [3], which has an extra factor of 3 and H is replaced by

Kirchhoff matrix Γ without applying the trace.

What values to use for parameters alpha and Young’s modulus

Parameter alpha is very similar to the cutoff distance used in ENMs. If no alpha value is given,

the alpha shape script of MATLAB will use the smallest alpha value that produces an alpha

shape enclosing all the points. Based on our experience, an alpha value of 8 to 10 (in Å) is rea-

sonable for coarse-grained Cα-based models (for which ANM uses a cutoff distance of 13 Å
[5]). The alpha value should be adjusted when a finer or coarser grained model is used. The

adjustment can be done consistently by requiring the total volume of tetrahedral cells stays the

same, while the number of cells may vary.

The Young’s modulus E on the other hand corresponds to the γ parameter used in GNM

[3] and ANM [5]. For a given protein, like γ, E can be calibrated by scaling it so that the pre-

dicted B-factors match with the experimental B-factors. Again, this must be done with great

caution since only a fraction of the experimental B-factors is from thermal fluctuations [21,

44].
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Vibrational spectrum

Given the eigenvalues λi’s solved from the eigenvalue problem eig(K, M), the frequencies of

normal modes ωi can be computed as follows [48]:

oi ¼
1

2pc
ffiffiffiffi
li

p
; ð12Þ

The conversion factor 1

2pc is used since it is customary to express ωi in terms of the corre-

sponding inverse wavelength of electromagnetic radiation (measured in cm−1). c is the speed

of light and is 2.997925 × 1010 cm/sec. From ωi’s, the vibrational spectrum can be obtained by

plotting its histogram.

Results

In this section, we first present a comparison between ESM (αESM in particular) and ENM

(ANM [5] in particular). We then look at the mechanical response of macromolecules under

external force as modeled by ESM and ENM respectively. Next, we show that ESM can be eas-

ily applied to extremely large structure complexes for normal mode computations and visuali-

zation. Lastly, ESM is applied to cryo-EM density maps.

A comparison between ESM and ENM

Fig 2 and Table 1 together present a detailed comparison between ESM and ENM, highlighting

their similarities and differences.

There are a number of notable differences between the two models. First, ESM is continu-

ous and volumetric and is composed of solid tetrahedra. ENM on the other hand is a mass-

spring model (see Fig 2) and its interactions are usually just 2-body (see Table 1). The range of

interactions is defined by a parameter called alpha (used by alpha shape) in our ESM model

and a cutoff distance in ENM. As aforementioned, if no alpha value is given, the alpha shape

script of MATLAB will use the smallest alpha value that produces an alpha shape enclosing all

the points. Based on our experience, an alpha value of 8 to 10 (in Å) is reasonable for coarse-

grained Cα-based models (for which ANM uses a cutoff distance of 13 Å).

Both ESM and ENM can predict the B-factors fairly well (see the middle row comparison in

Fig 2). Both have a correlation value of about 0.66/0.67 with experimental B-factors. Such com-

parisons with experimental B-factors allow one to calibrate the force constant: γ factor in

ANM and the Young’s modulus E in ESM. In the particular example given in Table 1, fitting

with experimental B-factors (assuming 100% contribution from thermal fluctuations) shows

that the Young’s modulus is about 0.47 Kcal/mol/Å3, or 3.2 GPa, which is reasonable for glob-

ular proteins (the Young’s moduli of actin, tubulin, or collagen [37] and hydrated lysozyme

crystals [38, 39] are similar). The value may be higher or even doubled since the actual contri-

bution of thermal fluctuations in the B-factors of this structure (pdb-id: 1aqb), determined at

room temperature, is probably less than 100%. To put Young’s modulus of this protein into

perspective, such a material is comparable to nylon, whose Young’s modulus is 2 to 4 GPa, but

softer than wood, whose Young’s modulus is about 10 GPa (https://en.wikipedia.org/wiki/

Young%27s_modulus).

Given the force constant, the vibrational spectrum can be obtained (see the bottom row

comparison in Fig 2). Both models have one dominant peak. For ESM, the first vibrational

mode has a frequency of 5.6 cm−1, and for ENM, it is as high as 40.8 cm−1. Interestingly, the

spectrum of ESM model (Fig 2) peaks at around 50-60 cm−1, matching fairly well in location

with the first peak observed in experiments [50] that is at around 80 cm−1. The location of the
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Fig 2. A contrast between ESM (here αESM) and ENM (here ANM [5]), which model proteins differently as shown in the top row, followed by a

comparison of their predictions on mean-square displacements (the middle row) and on vibrational spectra (the bottom row). The protein

example shown is pig plasma retinol binding protein (183 residues, PDB-id: 1aqb) [49].

https://doi.org/10.1371/journal.pcbi.1007855.g002
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second peak in the universal vibrational spectrum of all globular proteins [48] is at around 300

cm−1. This second peak is completely missing in ESM and might correspond to the dominant

peak in ENM, in which the first peak is hardly present. Since here we have the spectrum result

of only one protein, it is hard to draw any solid conclusion. It would be interesting to do a

spectrum study on a large set of proteins of various sizes and/or classifications using these two

models. Since this is not the main focus here, such a study is left for future work. However, the

spectrum comparison does suggest that perhaps ESM may be better suited than ENM for com-

puting the low frequency normal modes. Future studies will validate or invalidate this

hypothesis.

It was noted that density of modes, or g(ω) (where ω denotes frequency), of globular pro-

teins near the low frequency end increased linearly with the frequency [2, 51]. ben-Avraham

[51] observed that the integration of g(ω), denoted as G(ω), or the fraction of modes below fre-

quency ω, was related to ω by a simple power law, i.e., G(ω)/ ω2, from which it follows that, g
(ω)/ ω. It is thus interesting to check if the normal modes of ESM proposed here also follow a

simple power law. To this end, we plot G(ω) of ESM vs. ω in Fig 3. We fit the data with a

power function and find that the best exponent is about 1.7, which is similar to what ben-Avra-

ham and Tirion found [2, 51].

The normal modes of the two models are included in SI (see S1, S2, S3 and S4 Videos). The

two sets of modes share significant similarities. Their differences also are apparent, probably

since one is a mass-spring model and the other is an elastic solid model.

Another major application of normal mode analysis using either ESM or ENM is to inter-

pret conformational changes. Apparently, both models can be easily applied to compute over-

laps between a given conformation transition, say from an open form to a closed form, and the

normal modes. In Table 2 we compare αESM and ANM [5] with one of the state-of-art models

iMOD [13] regarding their performance in interpreting conformational changes. To this end,

we use the same benchmark dataset of 23 pairs of proteins as used by iMOD [13] and the same

metrics such as α1, α2, α3: the top three best overlap values, δ3, δ5, δ10: cumulative overlaps of

the top 3, 5, 10 modes, Nα1: the index of the mode that gives the best overlap, and Nσ90, the

number of modes required to cover 90% of the modal variance [13]. From the table it is seen

that the three models are mostly on par to one another. One noticeable difference, however, is

Table 1. A comparison between ESM (here αESM) and ENM (here ANM [5]) on model details.

ESM

(Elastic Solid Model)

ENM

(Elastic Network Model)

Model input coordinates of Cα’s or all-atoms the same

Representation elastic solid point masses connected by springs

Model unit tetrahedron point mass, spring

Interactions continuous solid mostly 2-body

Range of inter. alpha rcutoff
force constant E = 0.47 Kcal/mol/Å3 (3.2 GPa) γ = 0.39 Kcal/mol/Å2

lowest freq. 5.6 cm−1 40.8 cm−1

Normal modes see S1 and S2 Videos see S3 and S4 Videos

Conf. change yes (see Table 2) yes (see Table 2)

Convenience to use easy easy

Structure with xyz yes yes

EM density maps directly requires pre-processing

Deformation more realistic less realistic

https://doi.org/10.1371/journal.pcbi.1007855.t001

PLOS COMPUTATIONAL BIOLOGY Shape-preserving elastic solid models of macromolecules

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007855 May 14, 2020 9 / 24

https://doi.org/10.1371/journal.pcbi.1007855.t001
https://doi.org/10.1371/journal.pcbi.1007855


that αESM requires significantly fewer modes to cover 90% of the modal variance (low Nσ90).

This perhaps correlates with the fact that the first peak of the vibrational spectrum of αESM is

reproduced more accurately (Fig 2). In all these computations, ANM uses a cutoff distance of

13 Å. αESM uses an alpha value of 8 Å, except for one protein (1bnc.pdb) a slightly larger

Fig 3. The fraction of modes up to frequency ω, G(ω), as a function of ω, as computed by ESM. The data is fitted

with a power function with an exponent of 1.7.

https://doi.org/10.1371/journal.pcbi.1007855.g003

Table 2. A comparison between αESM, ANM [5], and iMOD [13] in interpreting conformational changes using the same benchmark protein dataset and metrics as

used in the iMOD work by Chacon and coworkers [13].

α1 α2 α3 δ3 δ5 δ10 Nα1 Nσ90%

Open to closed

iMod 0.77 0.30 0.23 0.86 0.89 0.92 1.3 90

ANM 0.76 0.37 0.22 0.84 0.89 0.92 1.6 69

αESM 0.75 0.37 0.24 0.85 0.91 0.94 1.3 28

Closed to open

iMod 0.63 0.38 0.28 0.71 0.80 0.86 2.2 125

ANM 0.61 0.37 0.28 0.68 0.76 0.86 2.5 184

αESM 0.64 0.37 0.30 0.74 0.82 0.89 2.0 54

All results represent average values over the 23 pairs of proteins in the dataset. Results of individual protein pairs can be found in S1 and S2 Tables. The three models are

mostly on par to one another. One notable difference, however, is that αESM requires significantly fewer modes (low Nσ90, highlighted in bold) to cover 90% of the

modal variance. α1, α2, α3: top three best overlap values, δ3, δ5, δ10: cumulative overlaps of top 3, 5, 10 modes, Nα1: the index of the mode that gives the best overlap, and

Nσ90, the number of modes required to cover 90% of the modal variance [13].

https://doi.org/10.1371/journal.pcbi.1007855.t002
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value (8.43 Å) is used in order to form a single connected shape. Results of individual protein

pairs are included in S1 and S2 Tables.

Up to this point ESM and ENM are fairly comparable. By trying them out, one should be

able to easily find out that both models are extremely easy to use and can be applied directly to

structures with coordinates, say those from the Protein Data Bank.

So why ESM? Besides offering an interesting alternative to ENM by employing a solid

model, ESM does offer some additional features that researchers in the community may find

attractive. First, since ESM is solid-based and uses tetrahedra as basic units or elements, a well-

established technique widely used in engineering called finite element method (FEM) can be

readily applied. FEM is a mature technique for studying mechanical responses of systems due

to external forces. By adopting an elastic solid model of macromolecules, techniques developed

in the field of FEM can be transplanted here to study the mechanical responses of macromole-

cules [20]. Secondly, as aforementioned, ESM can capture the shape of a given macromolecule

intentionally and economically. Moreover, mature techniques exist in the field of computa-

tional geometry and computer graphics for simplifying a representation while preserving the

shape. As a result, ESM can accurately represent large structure assemblies using much fewer

variables/nodes than ENM. Since the computational efficiency of both ESM and ENM involves

mostly solving an eigenvalue problem of a matrix whose cost is proportional to the number of

variables/nodes used, the fewer-nodes-required solid representation of ESM should be more

efficient than ENM, especially for very large complexes. Lastly, the cryo-EM data are becoming

prevalent. Other low resolution data also are becoming increasingly more available. Another

desirable feature of ESM is that it can extract a shape out of the low resolution density data.

The rest of ESM can then be applied to obtain their normal mode dynamics.

In the remaining sections, we will attempt to illustrate these advantages.

Deformation under external forces

Finite element method (FEM) is a mature, well-established technique for studying the

mechanical response of systems under external force. It has been successfully applied to pro-

duce highly realistic simulations of processes such as bending, buckling, indentation, etc. over

countless types of materials, including even the deformations of a viral capsid model [43].

Consequently, elastic solid models are expected to be better suited for reproducing the

mechanical response of proteins and other biomolecules than elastic network models [20].

However, to the best of our knowledge, no direct comparison between elastic solid models and

mass-spring models regarding structural deformation under external forces has been done

before.

HIV-1 capsid proteins form closed conic structures or tubular capsid assembly [52]. Fig 4A

shows a hexa-hexamer assembly of HIV-1 capsid proteins (pdb-id: 4xfx) [53], obtained by

applying the crystallographic symmetry. Each hexamer is compose of six capsid protein chains

of 231 residues long. For the particular capsid protein considered here (PDB-id: 4xfx [53]),

only 216 residues are present in the solved crystal structure, out of which 6 residues on the N-

terminal hairpin are further excluded since they are disconnected from the rest of the protein

chain. As a result, each hexamer has 210�6 = 1260 residues.

The mechanical response of the HIV-1 capsid assembly under external force had been stud-

ied experimentally using atomic force microscopy (AFM) [54]. In our computational setup,

we have only a hexa-hexamer (Fig 4A) and moreover, only the central hexamer is free to

move, with all the surrounding hexamers fixed in space. We choose this much simplified setup

since our purpose here is to compare between ENM and ESM, to see how different their

mechanical responses are.
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The extents of deformation are shown in Fig 4B. The ESM results are in red and ENM [5]

in black. A constant force is exerted along the negative-Z direction on the Cα’s of residues 83-

91 and 115-117 since these residues are on the top. Fig 4B shows that, for ESM, the deforma-

tion has two peaks and is mostly along Z-axis (with a much smaller displacement horizontally)

as one would expect. For ENM, the extent of deformation along the horizontal plane is as big

as that along the vertical axis. The whole deformation process is captured in movies (see S5

and S6 Videos). Though the results here from one single example are not conclusive, it does

suggest that the less realistic deformation by ENM may be attributed to its intrinsic mass-

spring model, which is not best suited for simulating the deformation of materials. On the

other hand, ESM captures the material property of the biomolecule and its deformation more

accurately.

It is worth noting that mechanical responses computed through ESM and ENM as shown

above or by other authors [55, 56] are limited since they are linear responses and theoretically,

are valid only for infinitesimal displacements and forces. As an elastic solid model, ESM has

another significant advantage over ENM: its tight connection with finite element analysis

(FEA) allows commercial FEA software such to ABAQUS (Dassault Systèmes, USA) to be readily

applied to produce highly accurate and realistic mechanical responses over a broad range of

structural deformations. This is demonstrated in the following example.

A tight connection between ESM and finite element analysis (FEA)

One significant advantage of a solid model of proteins over a mass-spring model is its tight

connection to finite element analysis. The solid model of macromolecules produced by ESM

naturally partitions a whole macromolecular structure into tetrahedra cells, which can be con-

veniently used as finite elements in finite element analysis. The tight connection between ESM

and FEA allows commercial FEA software such to ABAQUS (Dassault Systèmes, USA) to be

Fig 4. The structural deformation of a hexa-hexamer under external force. (A) A hexa-hexamer assembly of the HIV-1 capsid proteins (pdb-id: 4xfx)

[53], obtained by applying the crystallographic symmetry. (B) The extents of deformation along Z (thick lines) or XY direction (thin lines) of the central

hexamer under external force as computed by ANM (in black) and ESM (in red).

https://doi.org/10.1371/journal.pcbi.1007855.g004
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readily applied to produce highly accurate and realistic structure deformations and mechanical

responses.

Michel et al. [43] applied FEA to study the mechanical response and stiffness of the capsid

of cowpea chlorotic mottle virus (or CCMV, pdb-id: 1cwp [57]). The computed stiffness was

then compared with experimental results obtained from an atomic force microscope (AFM)

[43]. However, in Michel et al. [43]’s computation, the virus capsid was roughly approximated

with a uniform spherical shell of a given radius and thickness. In the following, ESM is applied

to CCMV capsid first to generate a tetrahedral volume mesh model (see Fig 5A). The model is

built with every third Cα of the protein chains in the capsid and an alpha value of 12.91 Å. This

particular alpha value is used so that the resulting model has the same volume as the model

built with every Cα atom and an alpha value of 10 Å, a recommended alpha value for Cα-based

models. The model (Fig 5A) has 9,540 nodes and 52,296 tetrahedral elements. The mesh

model is then fed into a FEA program ABAQUS. In addition to the capsid, the AFM spherical tip

is modeled as a rigid sphere of 14 nm as in Ref. [43]. The indentation process is modeled by

pressing the spherical tip downward onto the capsid (see Fig 5B) (with the bottom of the capsid

held fixed in space). The mechanical response of the capsid is captured in the movie file S7

Video. Specifically, the correlation between the vertical response force and the indentation dis-

tance is plotted out in Fig 5C, from the slope of which the stiffness of the capsid per unit of E,

or κcal can be computed. Note that the stiffness of the capsid is linearly proportional to the cap-

sid’s Young’s modulus E. Next, by comparing κcal with the stiffness of capsid measured by

AFM (kexp), which is 0.15 nN/nm [43], we obtain the Young’s modulus of the capsid. The

slope κcal is 0.65 nm per unit of E (which is nN/nm2 or GPa). To find out the Young’s modulus

E of the capsid, we write,

Ekcal ¼ kexp; ð13Þ

Fig 5. The mechanical response of a virus capsid under indentation. (A) A solid model of CCMV (cowpea chlorotic mottle virus) capsid (pdb-id:

1cwp) [57]. (B) The indentation setup: the spherical tip of AFM, which is modeled as a sphere (in blue), is placed on top of the capsid. (C) A plot of the

vertical response force as a function of the indentation distance.

https://doi.org/10.1371/journal.pcbi.1007855.g005
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from which we have,

E ¼
kexp
kcal
¼

0:15

0:65
¼ 0:23 GPa ¼ 230 MPa: ð14Þ

This number is comparable to the 140 MPa predicted by Michel et al. [43]. Michel et al.’s

predicted value is lower than ours probably due to the fact that they modeled the capsid as a

perfect spherical shell with uniform thickness, while in reality, the capsid surface is not smooth

at all but has significant ups and downs (see Fig 5B). To compensate this, the Young’s modulus

predicted from our model has to be higher in order to have the same appearing stiffness.

The Young’s modulus thus calibrated by experimental AFM measurement can in turn be

used in ESM to reproduce the normal modes of the capsid, specifically the magnitudes.

It is worth noting that the Young’s modulus predicted by our αESM model depends on the

alpha value used. Further studies are needed to remove the somewhat arbitrariness in the

choice of alpha value in αESM.

Non-uniform coarse-graining and applications to extremely large

complexes

The most common coarse-graining used in ENM is from all-atom to Cα only. If further

coarse-graining is needed, uniform coarse-graining is usually applied, such as every 10th, 20th,

or 40th Cα’s [58]. Uniform coarse-graining does not intentionally preserve shape and may lose

some important structure features.

An advantage of the solid representation of structures employed in ESM is that it allows

convenient, non-uniform coarse-graining while intentionally attempting to preserve the over-

all shape.

In our ESM, a structure is represented by its alpha shape, a solid model of the structure. The

surface of the model, which is represented by a surface mesh of triangles, is conveniently avail-

able from the resulting alpha shape. To coarse-grain a solid model, one can first simplify its

surface mesh. A number of algorithms/tools exist for such a task, such as QSLIM [24], triangu-

lated surface mesh simplification (https://doc.cgal.org/latest/Surface_mesh_simplification/

index.html) [59, 60] in CGAL [61], or edge-collapse decimation on manifold meshes using

libigl [62], etc. In our work, the MATLAB built-in function reducepatch is used. reducepatch
reduces the number of surface triangles down to a user-specified percentage while attempting

to preserve the shape of the original object.

The next obvious question is: how to reconstruct a new tetrahedral volume mesh after the

surface mesh is simplified? What to do with the internal nodes below the surface? This turns

out to be a non-trivial task, since a volumetric reconstruction may not always maintain the sur-

face mesh. There are several alternatives. One is to discard the internal nodes altogether (i.e.,

keep only the surface mesh) and apply tools such as TetGen [63] or GMSH [64] to convert the

surface mesh into a tetrahedral volume mesh. These programs however either create sharp

long skinny tetrahedra or have to regenerate some internal nodes. Instead of regenerating

internal nodes from scratch, another option is to use the existing internal nodes but reduce

them to the same percentage as surface nodes. This can be done by applying a 3-D point cloud

down sample algorithm [65], such as the pcdownsample function [65] available in MATLAB.

In this work, we use the scheme given in Fig 6 to coarse-grain a given structure layer by layer

while preserving its shape. The coarse-grained structure is then fed into ESM (Fig 1) to con-

struct a volume mesh and to compute normal modes and eigen-frequencies. Note that internal

nodes are reduced to the same percentage as surface nodes in the scheme given in Fig 6. This is
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intentionally done so that re-applying alphaShape using the ESM script (Fig 1) will produce a

proper surface. If a different approach is employed to reconstruct the volume mesh, the inter-

nal representation of the structure can be coarser than that of the surface and fewer internal

nodes may be used, as they matter only for numerical precision.

Fig 7 shows the all-atom representation of HIV-1 capsid (PDB-id: 3j3q [52]). Because of the

vast size of the structure, with over 2 millions heavy atoms present, the details are

Fig 6. A MATLAB script for coarse-graining a structure represented by a point set by simplifying its surface mesh layer by layer. The script is

available at S2 File.

https://doi.org/10.1371/journal.pcbi.1007855.g006

Fig 7. Structural models of HIV-1 capsid. (A) in all-atom representation, with over 2 million heavy atoms, and (B) in a simplified solid model, which

has 13,747 nodes and consists of 67,023 tetrahedra. Even using Cα’s only, the capsid would still have nearly 300,000 atoms.

https://doi.org/10.1371/journal.pcbi.1007855.g007
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overwhelmingly too many and too small. Fig 7B shows the same structure in a simplified solid

model and as a result, visualization of the structure becomes much more manageable (the

holes on the surface are the locations of the pentamers, which are intentionally left out).

Using this solid model (about 13k nodes and 67k tetrahedra), not only the shape of the

whole capsid is accurately preserved, the normal modes of the whole capsid can be easily

obtained using the rest of ESM. A number of these modes (modes 7 and 8, the first two non-

trivial modes, as well as mode 50) are included in S8, S9 and S10 Videos. The first few modes

show breathing motions of the capsid, which appears to some extent like the breathing of a

fish!

Application to EM models

Another attractive feature of ESM is that it can be readily applied to study the dynamics of

structures represented by cryo-EM density data. EM map files are available from the EM data-

bank [66] and contain density values on a 3-D grid. For those who do not want to write their

own program, one convenient way to extract the density information is to use program Situs

[29], which has a vol2pdb command that extracts the density information (as well the corre-

sponding coordinates) into a PDB format like file that contains a list of points in space and

associated densities. In the process of running vol2pdb, a density threshold is required, and

only densities above the threshold are exported.

Now to obtain dynamics from the cryo-EM density map, one needs a way to first represent

the structure and its shape. To use all the points from the EM map is cumbersome and for

some cases, infeasible. An established approach that uses a limited number of points to approx-

imate the density distribution is called vector quantization [29, 30]. When applied to EM den-

sity, vector quantization produces a finite number of Voronoi cells whose centroids are placed

to best approximate the EM density. These centroids, also called code vectors, were then used

in constructing coarse-grained representations of structures [25]. The quality of these repre-

sentations, however, depends on the number of code vectors used. One potential drawback of

this approach is that it is not obvious how many code vectors are needed to represent the over-

all shape of a given structure: the number of code vectors needed may be rather arbitrary and

depends on the particular structure under consideration and the user’s visual assessment,

which often tends to be subjective. Another drawback is that vector quantization was not

designed to preserve shape, but to best approximate the EM density distribution. The approach

by nature employs a uniform coarse-graining.

Alpha shape [19] presents a better solution to this problem as it was designed to capture the

shape of a given collection of points. For the EM structure shown in Fig 8 (EM-1706 [67]),

Fig 9A shows a solid model obtained by using alpha shape. It uses all the density data points

(above a given threshold) as input. The shape captures all the details shown in the original EM

map (Fig 8). Additionally, it partitions the structure into a collection of small tetrahedra,

which can be readily used in ESM (Fig 1) as finite elements and to compute the stiffness and

mass matrices and then normal modes. The algorithm for computing such an alpha shape is

highly efficient (nearly linear time to the number of nodes) and the solid model shown in

Fig 9A can be obtained in a few seconds on a regular desktop computer.

Moreover, since the number of density data points may be overwhelmingly large for

dynamics computations as aforementioned, one often desires to find a simplified representa-

tion of the original structure while maintaining the shape. Thankfully, as aforementioned,

such problems have been well studied in the computational geometry community and there

exist well established algorithms for such a task. For example, take the surface mesh from

Fig 9A as input, the MATLAB script given in Fig 6 can be applied to coarse grain the structure
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Fig 8. The volumetric rending of cryo-EM structure EM-1706 [67]. Image generated by Chimera [68].

https://doi.org/10.1371/journal.pcbi.1007855.g008

Fig 9. Solid models of the EM structure given in Fig 8 (EM-1706) [67]. (A) A solid model constructed from the original density map using alpha

shape. It has 44,561 nodes and 233,564 tetrahedra). (B) A simplified solid model (4,427 nodes, 23,561 tetrahedra).

https://doi.org/10.1371/journal.pcbi.1007855.g009
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while preserving its shape. Fig 9B shows the simplified representation that has only about one-

tenth of points on the surface and inside. The new alpha shape again is a collection of many

small tetrahedra, a solid model of the original structure.

Given the solid models, ESM can be readily applied to obtain the normal modes. Movies of

the first two normal modes (modes 7 and 8) of both the original alpha shape (Fig 9A and the

simplified one (Fig 9B) are included in SI (S11, S12, S13 and S14 Videos). Not surprisingly, the

two representations, having nearly the identical shape, have similar motion patterns. The com-

putation of the original alpha shape, which contains over 44 thousands nodes, is possible

because sparse matrix is used to compute the first few modes.

Major drawbacks of ESM in this context include its dependence on a density cutoff and

structure quality (resolution) when generating a surface representation. The solid uniform

representation of ESM is limited also in faithfully representing scattered cryo-EM electron

density fragments. Lastly, as pointed by one reviewer, the applicability of volumetric models in

the field of cryo-EM is much reduced. ESM is no exception.

Discussion

In this work, we have presented an elastic solid model of macromolecules. The idea should be

especially appealing for large structure assemblies, and might be extended to model the struc-

ture and dynamics of even larger systems such as organelles or cells, systems at the mesoscopic

scale. At that scale, it is probably most appropriate to model a given structure assembly with

continuous “protein” or “nucleic acid” materials with certain material properties such as

Young’s modulus, or density and elastic tensors that were used in Kinsen’s work on waves in

infinite protein crystals [21].

Another appealing feature of ESM is shape-preserving. Shape has long been recognized as a

key determinant of dynamics. By employing alpha shape [19], shape is intentionally captured

and preserved even during the process of structural coarse-graining. Alpha shape can be used

also to compute molecular volume and identify cavities inside a macromolecule [69, 70]. It is

foreseeable that ESM can be extended to study the effects of packing density and voids on pro-

tein dynamics and function.

Established algorithms exist for simplifying surface/volume while preserving shape in the

computational geometry and computer graphics communities. Points on surface are selected

strategically instead of uniformly to maintain the surface (or volume) of a structure. Such algo-

rithms developed in these research communities should find useful applications in the field of

computational structural biology, for example, in designing non-uniform shape-preserving

coarse-graining methods.

ESM by design partitions a given structure into small cells or finite elements and thus natu-

rally inherits and benefits from the much fruit already attained in the field of finite element

analysis. For example, ESM should be naturally suited for studying the mechanical response of

a system under external force. Experimentally, atomic force microscopy (AFM) has been used

to measure the stiffness of viral capsids such as those of bacteriophage ϕ29 [40], cowpea chlo-

rotic mottle virus [43], HIV-1 [54], etc. All these studies can be repeated computationally

using ESM to better caliber the material properties of the capsids, and in turn, after careful cali-

bration, ESM can be applied to better understand the dynamics of capsids, such as the uncoat-

ing of HIV-1 capsids [54].

Another attractive feature of ESM is that it can be applied at ease to cryo-EM density maps

and perhaps also some other low-resolution density data.

From its vibrational spectrum (Fig 2), it is seen that ESM modes are significantly different

from those of ENM/NMA: they are confined to the low frequency region. High frequency
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modes in the range up to 3,000 cm−1 that were observed in experiments and reproduced in

ENM models such as sbNMA [48, 71] are completely missing here. In contrast, one major

strength of mass-spring models such as ENM/NMA is that they can accurately capture the

vibrations of individual bonds in the high frequency range. Indeed, even small differences

between α and β-rich proteins near the range of amide vibration frequencies were reproduced

by ENM models [48], to which ESM might be completely insensitive, as it cares only about the

overall shape and material property of a given system.

Computer modeling and simulations at the atomic level have contributed much insight to

structural biology in the last few decades. Techniques developed for understanding the mecha-

nistic details of molecular systems during this time, such as molecular dynamics (MD) [72]

and normal mode analysis (NMA) [73–75], have been instrumental to the field. Thinking

ahead, however, as molecule systems of our interest grow more quickly in size/dimension than

what our computation resources can keep up with, some adjustments in our methodology

may be necessary. To model and simulate vastly larger systems, we would have to give up

atomic modeling in some places, while realizing that it is essential in others. As was allegedly

said by Einstein, “Everything should be made as simple as possible, but no simpler.” So the key

question is, what should be the most appropriate model for a given system, so that there are

enough details for producing meaningful results but not too many to be handled?

If we would ever realize the dream of simulating vastly large systems such as organelles and

even cells in a meaningful way, on the modeling side we might have to use hybrid models with

both continuous solid components and discrete atomic components. As there are many vari-

ants of NMA/ENM, it is foreseeable that better and variants of elastic solid models will be

developed. On the analysis side, methods developed for or applied in the microscopic world

such as molecular dynamics (MD) and normal mode analysis (NMA) and those developed for

the macroscopic world such as finite element analysis (FEA) or computational fluid dynamics

(CFD) may need to be integrated somehow to best study systems at the mesoscopic scale, such

as cells.

Supporting information

S1 File. The MATLAB script for the ESM model. The file needs to be renamed as ESM.m

before use.

(TXT)

S2 File. The MATLAB script for coarse-graining a structure represented by a point set.

The file needs to be renamed as reduceByLayers.m before use.

(TXT)

S1 Table. Detailed results of αESM in interpreting conformational changes using the same

benchmark protein dataset and metrics as used in the iMOD work by Chacon and cowork-

ers [13].

(PDF)

S2 Table. Detailed results of ANM [5] in interpreting conformational changes using the

same benchmark protein dataset and metrics as used in the iMOD work by Chacon and

coworkers [13].

(PDF)

S1 Video. The first normal mode of ANM of the pig plasma retinol binding protein (183

residues, PDB-id: 1aqb) shown in Table 1.

(AVI)
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S2 Video. The second normal mode of ANM of the pig plasma retinol binding protein (183

residues, PDB-id: 1aqb) shown in Table 1.

(AVI)

S3 Video. The first normal mode of αESM of the pig plasma retinol binding protein (183

residues, PDB-id: 1aqb) shown in Table 1.

(AVI)

S4 Video. The second normal mode of αESM of the pig plasma retinol binding protein

(183 residues, PDB-id: 1aqb) shown in Table 1.

(AVI)

S5 Video. The mechanical response of the hexa-hexamer shown in Fig 4 under external

force as predicted by ANM.

(AVI)

S6 Video. The mechanical response of the hexa-hexamer shown in Fig 4 under external

force as predicted by αESM.

(AVI)

S7 Video. The indentation of CCMV capsid by an AFM spherical tip.
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S8 Video. The first αESM mode of HIV-1 capsid.

(AVI)

S9 Video. The second αESM mode of HIV-1 capsid.

(AVI)

S10 Video. The 50th αESM mode of HIV-1 capsid.

(AVI)

S11 Video. The first αESM mode of structure EM-1706.

(AVI)

S12 Video. The second αESM mode of structure EM-1706.

(AVI)

S13 Video. The first αESM mode of a simplified representation of structure EM-1706.

(AVI)

S14 Video. The second αESM mode of a simplified representation of structure EM-1706.

(AVI)
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