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Running practice could generate musculoskeletal adaptations that modify the body
mechanics and generate different biomechanical patterns for individuals with distinct
levels of experience. Therefore, the aim of this study was to investigate whether
foot-ankle kinetic and kinematic patterns can be used to discriminate different levels
of experience in running practice of recreational runners using a machine learning
approach. Seventy-eight long-distance runners (40.7 ± 7.0 years) were classified into
less experienced (n = 24), moderately experienced (n = 23), or experienced (n = 31)
runners using a fuzzy classification system, based on training frequency, volume,
competitions and practice time. Three-dimensional kinematics of the foot-ankle and
ground reaction forces (GRF) were acquired while the subjects ran on an instrumented
treadmill at a self-selected speed (9.5–10.5 km/h). The foot-ankle kinematic and kinetic
time series underwent a principal component analysis for data reduction, and combined
with the discrete GRF variables to serve as inputs in a support vector machine
(SVM), to determine if the groups could be distinguished between them in a one-
vs.-all approach. The SVM models successfully classified all experience groups with
significant crossvalidated accuracy rates and strong to very strong Matthew’s correlation
coefficients, based on features from the input data. Overall, foot mechanics was different
according to running experience level. The main distinguishing kinematic factors for the
less experienced group were a greater dorsiflexion of the first metatarsophalangeal joint
and a larger plantarflexion angles between the calcaneus and metatarsals, whereas
the experienced runners displayed the opposite pattern for the same joints. As for
the moderately experienced runners, although they were successfully classified, they
did not present a visually identifiable running pattern, and seem to be an intermediate
group between the less and more experienced runners. The results of this study have
the potential to assist the development of training programs targeting improvement in
performance and rehabilitation protocols for preventing injuries.
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INTRODUCTION

Running is a very popular activity and its practice has been
increasing in the last decades because of its accessibility and
several benefits (Lee et al., 2017). It is a repetitive activity which
results in minor load variations at each step (Davis and Futrell,
2016). These repeated loads that occur during running have
beneficial effects over the foot musculoskeletal structures, such as
increases in foot muscle volume and cross-sectional area, and in
bone density (Garofolini and Taylor, 2019). However, repetitive
loading can also make musculoskeletal tissues from the lower
limbs more susceptible to cumulative overload and, therefore,
overuse injuries (Davis and Futrell, 2016).

Notably, the foot-ankle forms a dynamic link between
the body and the ground (Rodgers, 1988), being the first
segment to provide this interaction and being responsible for
the accommodation for the irregularities of the supporting
surfaces. Additionally, the foot-ankle complex contributes to
the dissipation of energy returned from the ground and to
the attenuation of high impact forces during foot strike in
running by having many kinematic adjustments in its more than
33 joints, participating in propulsion generation during push-
off (Holowka and Lieberman, 2018), and storing and releasing
elastic energy during stance phase (Holowka and Lieberman,
2018; Kelly et al., 2018). Altogether, these features make the
structure and function of the foot-ankle complex extremely
important for running practice. There are evidences that
barefoot running, which enhances strength of the plantarflexors
and foot intrinsic muscles (Lieberman, 2012), might serve as
protection against knee injuries (Altman and Davis, 2016),
one of the most common running-related injury (van Gent
et al., 2007). Therefore, the study of possible changes that
might occur in foot-ankle biomechanics with running practice
gains importance.

Running experience appears to be protective against injuries
(Macera, 1992; Nielsen et al., 2012; van der Worp et al., 2015;
Hulme et al., 2017; Linton and Valentin, 2018). Videbæk et al.
(2015) showed that novice runners have a significantly greater
risk of injury than recreational runners, who run regularly and
participate in short races (less than 10 km), showing an incidence
of 17.8 per 1000 h of running against 7.7, respectively. Besides
that, novice runners have the majority of injuries in the lower leg
(34.7%), 3.5% in the foot and 8.2% in the ankle, while recreational
runners present the majority of injuries in the knee (26.3%),
10.1% in the foot and 7.8% in the ankle (Kluitenberg et al.,
2015). Those differences in injury incidence and distribution
point out that these might be distinct populations, who could
present different running mechanics that can be related to
experience level and could be a protective factor for running-
related injuries.

However, most studies classify experience based solely
on years of practice, or just classify the subjects between
“novice” or “experienced,” leaving the reasons behind this
possible protective effect unknown. Although development of
expertise can be achieved through deliberate practice, i.e.,
by performing a task in a way that provides effective skill
acquisition (Ericsson et al., 1993), defining running experience

just as years of practice does not take into account the
structure of the deliberate practice (Iglesias et al., 2010).
In this context, Roveri et al. (2017) developed a decision
support system to classify experience in the deliberate practice
of running that takes into account the structure of the
practice, including training frequency, training volume, years of
practice, and participation in races as inputs in the algorithm.
Therefore, using this classification approach could provide a
more complete and objective measure of experience levels,
allowing the study of how the biomechanical adaptations in
running might be transitioning across the experience acquisition
process. Furthermore, future studies could take advantage
of these findings to investigate what are the implications
of the potential differences in biomechanics to running
performance and injuries.

Some studies suggest that running experience does not
influence running biomechanics. Agresta et al. (2018) did not
find any influence of years of running experience in trunk
and lower limb kinematics, spatiotemporal variables, nor GRF
variables during running. Similarly, Schmitz et al. (2014) did
not find differences between novice and experienced runners in
impact peak, loading rate, nor peak hip adduction angle during
running. However, Clermont et al. (2017) compared 3D running
kinematics of the pelvis, hip, knee and ankle of recreational and
competitive runners by means of a combination of principal
component analysis and a SVM classifier and determined that it
is possible to distinguish both groups based on the differences
in pelvic tilt, knee flexion and ankle eversion. Hence, there
is evidence that multivariate analysis combined with machine
learning approaches can be an effective analysis method for
identifying mechanical patterns of running. Nevertheless, there
is still a lack of understanding of how the different segments
of the foot-ankle complex participate in these biomechanical
adaptations, given that there is a functional importance of
this multi-joint complex during running regarding energy
dissipation, attenuation of forces, energy storage and release
during stance, and propulsion generation.

In this context, studying the effects of experience on the
mechanical behavior of the foot-ankle can contribute to the better
understanding of how it is influenced by the skill acquisition.
This understanding could give insights on what type of training
or rehabilitation protocol could enhance performance or prevent
and treat injuries. Therefore, the main purpose of this study
is to determine if it is possible to separate and classify groups
with distinct levels of experience, determined by a system
that takes into account different aspects of running practice,
based on foot-ankle kinematics and kinetic patterns, and impact
variables. We hypothesize that there will be different foot-
ankle mechanical patterns that can distinguish between levels of
running experience, identified by a machine learning approach.

MATERIALS AND METHODS

This study was a retrospective secondary analysis of a subset
of data from a larger randomized clinical trial approved by
the Research and Ethics Committee of the School of Medicine,
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University of São Paulo (Protocol no. 031/15) and registered at
ClinicalTrials.gov (Identifier NCT02306148).

Participants
Data from 78 recreational long-distance runners were selected
based on the availability for this analysis, since this study is
a secondary analysis from a larger randomized clinical trial.
All runners consented to participate after receiving information
on all details of the study. Participants were between 18 and
55 years of age, ran between 20 and 100 km per week, and
had no lower limb injury or pain in the 3 months prior to
assessment. Participants were excluded if they were under any
physical therapy treatment at baseline, had a history of using
minimalist shoes or barefoot running, presented any orthopedic
or neurologic impairment or major vascular complication, had
previous lower-limb surgery, or had diabetes mellitus.

Running experience was classified by a fuzzy decision-support
system developed by Roveri et al. (2017), that is composed by
two Mamdani subsystems based on expert running coaches’
knowledge. The first subsystem uses the training frequency and
volume as inputs, which are transformed into linguistic variables:
(i) too low, (ii) low, (iii) medium, or (iv) high for each one of the
inputs. These linguistic variables are combined to generate a score
(0–10) of quality of practice. In the second subsystem, the quality
of practice serves as input, along with the number of competitions
and practice time, also transformed in linguistic variables: (i) very
bad, (ii) bad, (iii) medium, (iv) good, or (v) very good for quality
of practice; (i) few, (ii) medium or (iii) many for number of
competitions; (i) very short, (ii) short, (iii) moderate, or (iv) long
for practice time. The second subsystem generates, then, the final
score of running experience. The running experience score (x)
for was used to classify the subjects as less experienced (x < 5.0),
moderately experienced (5.0 ≤ x ≤ 7.0), or experienced (x > 7.0).
The characteristics of the subjects according to the experience
level and anthropometry are shown in Table 1.

Data Collection
Foot biomechanics were assessed during barefoot running at
a self-selected speed on an instrumented treadmill, which was
leveled with the ground and embedded with two force plates
in tandem position (AMTI Force-Sensing treadmill AMTI,
Watertown, EUA; force plates at 1000 Hz). Foot kinematics
were acquired using eight infrared cameras (Vicon R© VERO,
Vicon Motion System, Ltd., Oxford Metrics, United Kingdom; at
200 Hz) and 16 retroreflective markers (10 mm in diameter) were
placed on the dominant foot according to the Rizzoli Orthopedics
Institute Foot Model (Leardini et al., 2007; Portinaro et al., 2014).
Subjects underwent a warmup period for habituation to the
treadmill and laboratory environment, after which, kinematic
data was recorded for 30 s in order to acquire at least 10 step
cycles of the assessed limb. There was no statistically significant
difference for running velocity across groups (Table 1).

Data Processing
The origin of the laboratory coordinate system was defined as
one corner of the force plate and all segments were modeled as
rigid bodies with the local coordinate system coinciding with the

anatomical axes. All joints were considered to have a spherical
shape (three rotational degrees of freedom), with rotations of
each segment reported relative to the neutral positions defined
during the initial static standing trial. All joint rotations were
calculated based on the International Society of Biomechanics
recommendations (Wu et al., 2002).

Kinematic and GRF data were analyzed and processed using
a zero-lag, fourth-order Butterworth low-pass filter with cutoff
frequencies of 15 and 100 Hz, respectively, based on residual
analysis (Winter and Patla, 1997).

We extracted the eight kinematic time series from the
following joints: ankle in all three movement planes; medial
longitudinal arch in sagittal plane (Caravaggi et al., 2019);
1st metatarsophalangeal joint in sagittal plane (Met-Hal); the
angle between the calcaneus and metatarsal bones (Cal-
Met) in all planes.

Calculation of joint kinematics and kinetics were performed
using Visual3D software (C-motion, Kingston, ON, Canada).
A bottom–up inverse dynamics method was used to calculate
the net ankle moment and power in the sagittal plane, with
the human body modeled as 2 linked segments (foot and
shank) and the inertial properties were based on Dempster’s
standard regression equations. Net ankle moment and power
were calculated for the stance phase.

All nine analyzed GRF variables were normalized by each
runner’s body weight. From the vertical component, it was
extracted the first and second peaks, calculated the loading rate
(the force rate between 20 and 80% of the magnitude between
the foot contact and the first peak), and the impulses from the
beginning of the stance phase to the second peak, and from the
second peak to the end of stance phase (Figure 1). From the
anteroposterior component, it was extracted the negative and
positive peaks and calculated the impulses from the decelerating
and accelerating phases (Figure 1).

Machine Learning Analysis
Feature Extraction
The stance phase of all kinematic (eight variables) and kinetic
(ankle sagittal moment and power) time series were determined
by means of the vertical GRF using a 10 N threshold and
normalized in time to 101 points. Then, the data waveforms (10
waveforms) were averaged across 10 consecutive stance phases
of the dominant limb (101 data points per axis direction for
each joint kinematics and kinetic waveform), combined into a
78 × 1010 matrix (78 runners X 1010 waveform data point),
and standardized to a mean of 0 and a standard deviation of
1 (Kettaneh et al., 2005). Given the large number of dependent
variables and potential for redundancy of data, this data matrix
underwent a principal component analysis (PCA), resulting
in 77 principal components (PCs). PCA is an orthogonal
transformation technique used to convert a set of variables into
a set of linearly uncorrelated variables by determining new bases
(PCs) that maximize the variability in the original data set (Abdi
and Williams, 2010). These PC scores were combined with nine
standardized discrete GRF variables, resulting in a total set of 86
potential predictor variables.
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TABLE 1 | Mean and standard deviation of participants’ characteristics from the studied groups.

Less Experienced (n = 24) Moderately experienced (n = 23) Experienced (n = 31) P

Age (years) 40.1 ± 5.3 40.6 ± 7.1 41.8 ± 7.0 0.614†

Height (m) 1.66 ± 0.09 1.71 ± 0.09 1.69 ± 0.09 0.097†

Body mass (kg) 71.1 ± 15.4 74.7 ± 10.4 67.1 ± 11.6 0.136†

Body mass index (kg/cm2) 25.6 ± 3.5a 25.2 ± 3.1 23.3 ± 2.5a 0.017†*

Sex (% women) 41.7 60.9 48.4 0.409‡

Training frequency (times/week) 3.1 ± 0.6bc 3.9 ± 1.0b 4.2 ± 1.6c <0.001†*U

Training volume (km/week) 20.0 ± 5.6d 29.1 ± 10.3e 54.1 ± 38.0de <0.001†*U

Quality of practice (fuzzy system score) 3.4 ± 0.9 4.6 ± 1.2 6.7 ± 1.6 <0.001†*U

Years of practice (years) 2.8 ± 2.9f 7.7 ± 11.0 9.0 ± 5.8f 0.006†*

Participation in races 18.8 ± 26.0g 31.1 ± 29.4 53.1 ± 56.9g 0.012†*

Running experience level (fuzzy system score) 3.2 ± 0.8 5.9 ± 0.7 7.9 ± 0.6 <0.001†*U

Running velocity at data collection (km/h) 9.4 ± 1.4 9.8 ± 1.5 9.7 ± 1.0 0.639†

†ANOVA followed by Bonferroni post hoc tests. ‡Chi-square test. *Statistically significant differences. UStatistically significant differences between all studied groups.
a,b,c,d,e,f,gStatistically significant differences between the groups.

Classification Procedures
The potential predictors were used as inputs for creating
SVM models to classify the runners into each experience level
group, using a one-vs.-all approach. The SVM approach was
chosen because of its capability of overcoming the problem of
high dimensionality with high discriminative power for group
classification, even in cases with small sample sizes (Verplancke
et al., 2008; Son et al., 2010). The SVM algorithm (Noble, 2006)
defines an optimal separating hyperplane, creating a maximum-
margin of separation between binary classes in a dataset. For
that, the SVM projects the input feature’s data into a higher
dimensional space using kernel functions, and then, based on the
data points located closest to the separating hyperplane (support
vectors), constructs a linear hyperplane in this transformed space,
which can be projected back to the original data space. In order
to deal with possible misclassifications (datapoints in the wrong
side of the separating hyperplane), SVM uses the soft margin
concept, which allows these errors without affecting the final
result. The trade-off between margin width and misclassification
rate is defined by the C-parameter, wherein different values for
C (0.1, 1, 10, 100, 1000) were used in the evaluation to test
the dependence of the approach on the C-parameter. A linear
kernel function was applied to the SVM algorithm, since it is less
prone to overfitting to the dataset, and the current study has a
limited sample size.

A sequential forward selection algorithm was applied for the
identification of relevant features, in which a subset of potential
predictor variables was defined by sequentially adding one new
feature at a time to the SVM model, and the feature subset
that rendered the best classification performance was selected. In
order to assess the generalization performance of the classifier
in identifying the label of unknown data and to avoid data
overfitting, a 10-fold cross-validation was performed (Fukuchi
et al., 2011), wherein the runners were randomly divided into
10 subsets, stratified proportionally by the experience level class.
The SVM algorithm was trained by removing one subset at a
time and the resulting model was applied to the holdout subset
to determine the cross-validation performance. The evaluation

function selected the feature that provided the highest Matthew’s
correlation coefficient (MCC) as the first criteria, because the
group distribution becomes unequal in a one-vs.-all approach
(Chicco and Jurman, 2020). When it was not possible to calculate
the MCC, because of absence of predicted cases in one class, the
feature with highest Cohen’s d effect size and highest performance
accuracy was selected. This process was repeated for all input
variables in a greedy search approach, applying each C-parameter
value, and the model with the highest MCC was chosen as the
final classification model.

Classifier Performance and Interpretation
In order to assess the performance of the SVM models, the cross-
validated classification results were used to calculate the MCC,
accuracy, precision, recall, and F1-score. A critical binomial test
indicated the minimum significant accuracy level for each model,
considering a distribution probability equal to the ratio of cases
in each experience level class and a confidence level of 0.95.

The squared coefficients of correlation between the PC scores
and the joint kinematic and kinetic waveforms was calculated as a
measure of proportion of variance of the data that was explained
by the selected PCs (Abdi and Williams, 2010), and the relative
proportion in each joint and axis was used to help with the
interpretation of the selected PC features. The data waveforms
were reconstructed based on the selected PCs for each model and
the Cohen’s d effect size between each group and the remaining
runners was calculated. The regions of the waveforms with at
least a medium effect size in the one-vs.-all comparison were
also considered for interpretation of the distinguishing profile
for each experience level class. All data analyses and variable
calculations were performed using a custom-written MATLAB
script (MathWorks, Natick, MA, United States).

For a better understanding of the discrete GRF variables
that were included as possible inputs to the model they
were compared between the experience groups using ANOVAs
followed by Bonferroni post hoc tests (P < 0.05). The significance
level was set at 5%. All the univariate analyses were performed
with SPSS Statistics 23.0 (IBM, Armonk, NY, United States).
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FIGURE 1 | Vertical and anteroposterior (AP) ground reaction forces (GRF) showing the extracted variables: force peaks for both vertical and AP forces, and loading
rate for the vertical component. Loading rate was determined as the slope of the line between 20 and 80% of the first vertical peak. The colored areas correspond to
the calculated impulses: 1 – from the beginning of the stance phase to the valley after the first vertical peak (light blue area, upper graph); 2 – from the valley after the
first vertical peak to the end of the stance phase (blue area, upper graph); 3 – decelerating phase (light blue area, bottom graph); 4 – accelerating phase (blue area,
bottom graph).
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RESULTS

Performance of SVM Classification
Models
All classification performance measures are presented in Table 2.
The C-parameter values influenced the SVM performance, and
the best model for classifying the less experienced group used
C = 100, while the best classifiers for the other groups used C = 1.
The SVM models for the classification of all experience groups
presented a cross-validated accuracy that surpassed the minimum
significant accuracy indicated by the critical binomial test. The
best classification model for the less experienced group obtained
the highest MCC value and the best balance between precision
and recall rates, rendering an F1-score of 0.80. The best model
for the moderately experienced presented a perfect precision rate,
wherein all the runners identified as a member of this group were
correctly classified, but almost half of the moderately experienced
runners were misclassified, resulting in low recall rate (56.5%).
The model for the experienced group presented a lower accuracy
rate, but precision and recall rates reached 82.1 and 76.7%,
respectively. Overall, the best classification models achieved an
MCC score of strong to very strong relationships.

Discriminating Running Patterns
The SVM model for the less experienced group selected 81
variables as the input features, from which 72 of them were PCs
from the foot-ankle kinematic and kinetic (ankle sagittal moment
and power) time series, with a total variance explained of 99.9%
The other nine features were GRF variables, which included the
loading rate, 1st and 2nd vertical peaks, both vertical impulses, the
anteroposterior negative and positive peaks, and impulses from
decelerating and accelerating phases. However, between-group
comparisons of the GRF variables did not find any significant
differences across experience levels (Table 3). The reconstructed
waveforms indicated that the kinematic features considered
important for the identification of the less experienced runners
were mainly related to greater Cal-Met plantar flexion, and
greater Met-Hal dorsiflexion (Figures 2, 3). Both of these joint
movements are related to PC2, which was the first feature
included in the forward feature selection process and represents
15.5% of variance explained of the total foot-ankle data, wherein
the relative proportion of representation is highly loaded on
Cal-Met (44.1% of PC2) and Met-Hal (28.1%) sagittal planes.

The classification model for the moderately experienced group
selected eight PCs that were responsible for only 0.4% of variance
explained, and two GRF variables, which were the loading rate
and anteroposterior negative peak. The foot-ankle mechanics
features distinguishing the moderately experienced runners
were not as evident, since they were only PCs representing
very low variance explained and did not present a visually
identifiable pattern.

For the experienced group the best model selected six
foot-ankle kinematic/kinetic waveform PCs representing 21.7%
of variance explained, along with the 1st vertical GRF peak
and the anteroposterior impulse from the acceleration phase.
The experienced runners presented the opposite distinguishing

features from the less experienced group, which were mainly
related to smaller CalMet plantar flexion and smaller Met-Hal
dorsiflexion (Figures 2, 3). These differences were also related
to PC2, which was the only selected with a relatively high
variance explained.

DISCUSSION

The main purpose of the study was to determine if running
experience level could be classified based on foot-ankle
kinematic and kinetic patterns, and GRF variables. The
results of this study showed that this classification is possible
since the SVM models successfully separated all experience
groups, with the less experienced and experienced runners
presenting discriminating features with opposing motor patterns
in the metatarsophalangeal and calcaneus-metatarsal joints,
while the moderately experienced group did not present an
explicitly visible pattern, although they were classified with
significant accuracy.

One of the distinguishing kinematic features for the less
experienced runners was a larger toe dorsiflexion angle
throughout the whole stance phase. It is possible that the
lack of experience is related to a greater use of hallux and
toe extensor muscles in combination with tibialis anterior
muscle as ankle dorsiflexors, in order to guarantee toe
clearance and dorsiflexion throughout the running stance phase,
especially during the weight acceptance phase, which could
result in the observed greater toe dorsiflexion. Interestingly,
the experienced group presented smaller toe dorsiflexion angles
than the other runners, suggesting that there is a change
in motor strategy with skill acquisition, possibly reducing
muscle activation that are unnecessary and causing less energy
consumption. There is evidence that runners with more years
of running experience show different lower-limb coordination
patterns, more specifically, in the variability of coordination,
as measured by non-linear analysis (Agresta et al., 2019;
Hafer et al., 2019; Mo and Chow, 2019), showing that
deliberate practice seems to cause motor strategy adaptations
that modifies biomechanical patterns. Unfortunately, to our
knowledge there are no studies comparing muscular activation
patterns in runners with different experience levels showing
evidences of that. A study in cyclists showed that novice
cyclists present longer periods of primary activity in leg
muscles and more extensive coactivation between muscles, as
opposed to trained cyclists, who display shorter bursts with
consistent timing of muscle activity (Chapman et al., 2008).
Although cycling is a different motor task, this finding suggests
that deliberate practice of a motor task seems to change
muscle coordination.

The metatarsophalangeal joints function as a dissipater
of large amounts of energy during running and sprinting,
particularly when a passive dorsiflexion occurs at the foot
contact transition from the metatarsal heads onto the toes,
but fail to generate any energy at push off by remaining
in that position (Stefanyshyn and Nigg, 1997). Since the less
experienced runners displayed larger angles of hallux dorsiflexion
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TABLE 2 | Performance measures of the SVM models.

Less experienced vs. all Moderately experienced vs. all Experienced vs. all

Minimum significant accuracy
Cross-validation performance

76.9% 78.2% 70.5%

Accuracy 88.5% 87.2% 84.6%

Recall 72% 56.5% 76.7%

Precision 90% 100% 82.1%

F1-score 0.80 0.72 0.79

MCCa 0.73 0.69 0.67

aMatthew’s correlation coefficient.

TABLE 3 | Mean and standard deviation of ground reaction force variables extracted from the stance phase of running and results from the between-group comparisons
and correlation analysis.

Discrete variable Less experienced (n = 24) Moderately experienced (n = 23) Experienced (n = 31) ANOVA F P

Vertical component

Loading rate (N/s) 78.86 ± 43.45 61.94 ± 25.95 69.00 ± 36.79 1.295 0.28

First peak (BW) 1.19 ± 0.40 1.09 ± 0.37 1.08 ± 0.39 0.598 0.55

Second peak (BW) 2.15 ± 0.29 2.26 ± 0.30 2.21 ± 0.28 0.990 0.38

Impulse 1 (N.s) 0.033 ± 0.020 0.027 ± 0.016 0.031 ± 0.019 0.590 0.56

Impulse 2 (N.s) 0.318 ± 0.028 0.327 ± 0.024 0.311 ± 0.030 1.898 0.16

Anteroposterior component

Positive peak (BW) 0.226 ± 0.050 0.238 ± 0.045 0.239 ± 0.053 0.502 0.61

Negative peak (BW) −0.230 ± 0.080 −0.226 ± 0.614 −0.236 ± 0.053 0.160 0.85

Impulse 3 (N.s) −0.017 ± 0.006 −0.018 ± 0.005 −0.016 ± 0.005 1.027 0.36

Impulse 4 (N.s) 0.016 ± 0.004 0.016 ± 0.004 0.017 ± 0.005 0.254 0.78

BW, body weight.

during this transition between midstance to push off, they
would be expected to have greater soft tissue tension, such
as in the toe flexor muscles and tendons, and plantar fascia
(Bruening et al., 2018). However, since there was little or no
metatarsophalangeal plantar flexion, there was more energy
dissipated by the passive structures, leading to less efficient
propulsion in the following phase.

There was also an opposing behavior between the less
experienced and experienced groups regarding the calcaneus-
metatarsal, with the former displaying greater plantar flexion.
This higher plantar flexion in less experienced runners could
be associated to the greater toe dorsiflexion angles, because of
the windlass mechanism, in which the dorsiflexion moments
at the metatarsophalangeal joints cause tension to the plantar
aponeurosis, pulling the calcaneus toward the metatarsal heads
(Holowka and Lieberman, 2018).

Evidence shows that the passive structures of the foot arch
have an important role in the metabolic energy-saving of the
foot by the reduction of the mechanical work that would be
needed from muscle activation (Stearne et al., 2016). One of
the exclusion criteria for the current study was the use of
minimalist shoes, which are known to be associated with higher
intrinsic foot muscle volume after a running training regime
(Miller et al., 2014; Chen et al., 2016). Since the subjects
of this study all ran with traditional shoes, the function of
the foot intrinsic muscles is probably reduced due to the
support given to the medial longitudinal arch and the stiffness

of the midsole in the traditional running footwear, possibly
causing a higher reliance on the passive properties of the
plantar tissues. Therefore, it is expected that there would
be no disparity in the function of these muscles between
groups. The fact that the experienced runners presented a less
plantar flexed calcaneus-metatarsal joint potentially indicate the
presence of a higher tension in the plantar structures, such
as the plantar fascia, and intrinsic and extrinsic foot muscles,
since this higher angle would correspond to a greater distance
between the rearfoot and the forefoot. Although the arch
compression/recoil property is not changed due to experience
level, since the calcaneus-metatarsal range of motion is similar
between all experience groups (Figure 2), the foot plantar
structures would be working in a position with higher strain in
the experienced runners. If experienced runners rely more on
the passive structures, less muscle activation is needed, and less
energy is spent (Stearne et al., 2016), showing that experienced
runners might have a more efficient foot-ankle biomechanical
pattern. The question remains whether this pattern could be
related to protective factors against injuries in runners with
more experience.

Moderately experienced runners did not show a clearly
distinct biomechanical pattern since the SVM model selected
only higher order PCs with low explained variance (0.4%)
as discriminating factors, indicating that differences were very
subtle and complicated to be visualized. Still, these complex
patterns were able to successfully distinguish this particular
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FIGURE 2 | Angle between calcaneus and metatarsal bones in the sagittal plane during stance phase of running for all three running experience level groups. The
foot schematics in the left represent the calculated angles.

group from the other runners. It is possible that this is a
transitioning group that is composed of a more heterogeneous
sample, which would hinder the identification of a specific
movement pattern. This model presented a perfect precision
rate, i.e., all the subjects identified as moderately experienced
runners were correctly classified. However, it had a low recall
rate (56.5%), meaning that it fails to detect almost half of
the runners from the moderately experienced group. Therefore,
there is a specific mechanical pattern for this group, which
is probably responsible for the high precision rate of the
model, but the high rate of false negatives supports the
assumption of a heterogeneous and intermediate group, with a
great portion of runners possibly behaving similarly to either
experienced or less experienced runners. It is possible that a
further stratification of the experience levels could improve the
discrimination among these subjects, but that would not be
possible with the current sample size, which is a limitation
of this analysis.

Although there were no significant differences between
experience levels for the GRF variables, they were still crucial
for the performance of the classification models, since they were
selected as discriminating features by the SVM models. This
shows that the combination of different biomechanical features
is a better representation of the motor behavior and necessary
for an improved identification of the mechanical patterns.
Unfortunately, it was not possible to identify how these GRF
factors are specifically related to the distinguishing mechanical
pattern within each group.

The identified mechanical patterns should be considered with
caution, since the participants were asked to run barefoot because
it was needed for the multi-segment foot model implementation
(Leardini et al., 2007; Portinaro et al., 2014), which could
have altered the runners’ habitual movement. Nevertheless,
they still reflect distinct motor strategies across experience
levels, highlighting the importance of foot-ankle mechanics to
discriminate the experimental groups. On a similar matter, we
did not define a fixed running velocity for the subjects, which
could lead to mechanical differences that are due to speed effects.
However, there were no significant differences in running velocity
across experience levels, thus we do not expect that such effects
influenced our results.

A PCA was applied to the foot-ankle kinematic and
kinetic data for dimensionality reduction and feature extraction
purposes, and this strategy allows the identification of patterns
across the foot joints. However, all the PCs were included as
possible features in the SVM, even though the movement patterns
are only visible in the low-order PCs and the high-order PCs
could be including noise and signal artifacts. This approach was
chosen because there are studies that were not able to identify
differences between experience levels, indicating that the changes
due to running experience could be more complex and subtle,
and such differences have been shown to be identified only by the
high-order PCs (Phinyomark et al., 2015). Although it is possible
that a portion of the PCs are representing noise in the data, the
SVM models still successfully classified the different experience
levels by including these high-order PCs, and presented an
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FIGURE 3 | First metatarsophalangeal joint sagittal plane angle during stance phase of running for all three running experience level groups. The foot schematics in
the left represent the calculated angles.

accuracy rate that surpassed the minimal threshold determined
by a critical binomial test.

Another limitation of this study is its relatively small sample
size, since the training data set for a machine learning classifier
approach should increase exponentially in size for each added
input dimension (Altman and Krzywinski, 2018). For that reason,
the SVM was chosen for the analysis, because it considers the data
points in the margins of each class to determine the separating
hyperplane, thus it is not influenced by the distribution of the
data points and can effectively separate binary classes even with
limited sample size (Noble, 2006). In addition, the use of SVM
has shown very high classification performance in clinical settings
(Golub et al., 1999; Son et al., 2010) and with biomechanical data
(Lai et al., 2009; Fukuchi et al., 2011).

Another problem that a reduced sample size can encounter
is data overfitting, which causes the classifying function to
be too specific to the training dataset and not generalizable.
Although it would be ideal to have a test dataset to ensure
the generalizability of the analysis, it was not possible to use
this strategy because of the limited sample size coming from
the major randomized clinical trial. Thus, in order to avoid
overfitting, a 10-fold cross-validation was applied in the feature
selection process and the performance measurement, increasing
the robustness of the results, and a linear kernel was applied
to the algorithm, again to prevent overfitting by not adapting
the hyperplanes to irregular margins. Still, the current results

should be considered with caution since extrapolation for general
population may not be suitable. Furthermore, since SVM is
intended for binary classifications, it was necessary to use
a one-vs.-all approach, which causes the group sizes to be
unequal and interferes in the classifier performance measures.
Nevertheless, this issue was dealt by applying the MCC as
the main performance measure because it is more reliable and
informative when evaluating binary classifications, especially on
imbalanced datasets (Chicco and Jurman, 2020).

This is the first study to apply a machine learning
approach to investigate how running experience affects foot-
ankle biomechanics. The results indicate that using foot-ankle
kinematic and kinetic waveforms associated with GRF variables
as inputs in an SVM classifier can successfully separate and
classify runners with different levels of experience. The main
identifiable features that are important for the discrimination
were the toe dorsiflexion and calcaneus-metatarsal plantar
flexion angles. The less experienced group presented greater
metatarsophalangeal dorsiflexion throughout the whole stance
phase, which could cause higher energy dissipation and
a less efficient propulsion. The more experienced group
displayed smaller calcaneus-metatarsal plantar flexion that
might be related to a more efficient biomechanical pattern
regarding energy expenditure. As for the moderately experienced
runners, although they were successfully classified, they did
not present a visually identifiable running pattern, and seem
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to be an intermediate group between the less and more
experienced runners. The current findings can potentially
guide the development of training programs and rehabilitation
protocols aimed at foot-ankle mechanics for different levels
of experience in running. Furthermore, future studies could
investigate what are the implications of those different
biomechanical patterns according to the experience level in
running performance and injuries.
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