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Summary

Software-aided identification facilitates the handling of large sets of bat call

recordings, which is particularly useful in extensive acoustic surveys with several

collaborators. Species lists are generated by “objective” automated classification.

Subsequent validation consists of removing any species not believed to be pres-

ent. So far, very little is known about the identification bias introduced by indi-

vidual validation of operators with varying degrees of experience. Effects on the

quality of the resulting data may be considerable, especially for bat species that

are difficult to identify acoustically. Using the batcorder system as an example,

we compared validation results from 21 volunteer operators with 1–26 years of

experience of working on bats. All of them validated identical recordings of bats

from eastern Austria. The final outcomes were individual validated lists of plau-

sible species. A questionnaire was used to enquire about individual experience

and validation procedures. In the course of species validation, the operators

reduced the software’s estimate of species richness. The most experienced oper-

ators accepted the smallest percentage of species from the software’s output and

validated conservatively with low interoperator variability. Operators with inter-

mediate experience accepted the largest percentage, with larger variability.

Sixty-six percent of the operators, mainly with intermediate and low levels of

experience, reintroduced species to their validated lists which had been identi-

fied by the automated classification, but were finally excluded from the unvali-

dated lists. These were, in many cases, rare and infrequently recorded species.

The average dissimilarity of the validated species lists dropped with increasing

numbers of recordings, tending toward a level of ~20%. Our results suggest

that the operators succeeded in removing false positives and that they detected

species that had been wrongly excluded during automated classification. Thus,

manual validation of the software’s unvalidated output is indispensable for rea-

sonable results. However, although application seems easy, software-aided bat

call identification requires an advanced level of operator experience. Identifica-

tion bias during validation is a major issue, particularly in studies with more

than one participant. Measures should be taken to standardize the validation

process and harmonize the results of different operators.

Introduction

Identification of species is a crucial step in many ecological

studies; its accuracy may heavily influence the quality of

the data. Accuracy and consistency are especially critical if

results from several people are compiled into the same

data set, for example, in extensive surveys and monitoring.

For various plant and animal groups, identification results

can vary considerably, even among acknowledged experts,

due to so-called observer or operator bias (e.g., McClin-

tock et al. 2010; Farmer et al. 2012; Miller et al. 2012). In

research on bias in identification from acoustic records

(mostly of anurans, birds, and insects), false positives

(species not present, but wrongly censused or identified)

are distinguished from false negatives (species present, but

not censused or misidentified). In summarizing other

studies, Farmer et al. (2012) and Miller et al. (2012) con-

clude that false positives have so far largely been ignored

in ecological studies, but may significantly influence results

and conclusions. For anuran call surveys, Lotz and Allen

(2007) found that false positives contribute much more to

the observer bias than false negatives.
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The frequency, duration, and modulation of bat calls

can be used to distinguish among species. In recent years,

a number of largely automated tools for recording and

identifying bat calls have been developed that combine

hardware and software components, for example, the bat-

corder (Ecoobs, Nuremberg, Germany, www.ecoobs.de),

Batlogger (Elekon AG, Luzern, Switzerland, www.batlog

ger.ch; Obrist et al. 2004), and iBatID (https://sites.go

ogle.com/site/ibatsresources/iBatsID; Walters et al. 2012).

They speed up and facilitate the complex task of acoustic

identification and have become increasingly popular

(Runkel 2008; M€uller et al. 2012; Plank et al. 2012; Frey-

Ehrenbold et al. 2013). Automated tools are expected to

reduce workloads considerably and, because their software

incorporates expert knowledge, to deliver a standardized

or “objective” approach to identification (Obrist et al.

2004; Acevedo et al. 2009; Marckmann and Runkel

2010b). However, as a proportion of the calls may be

misidentified, the output of the automated classification

requires validation. Validation consists of removing from

species lists any species not believed to be present and, in

some cases, of adding species to the list. Operators may

not be consistent in their validation, so that bias may be

introduced into “objectively” classified data. This may be

especially severe for species that are difficult or almost

impossible to discriminate acoustically (e.g., several Myo-

tis species, Russo and Jones 2002; Obrist et al. 2004).

We quantified operator bias within a volunteer group

of 21 bat specialists who were individually assigned 12

identical sets of bat recordings for validation. The global

research question we asked was as follows: How large is

the variability between the validated results of the special-

ists? Specifically, we asked: Are validated results influ-

enced by operator experience? Does the number of

recordings influence the variability of validated results?

What is the significance for the identification of individ-

ual species? What is the practical implication of the (dis)

similarity of the validated species assemblages?

Materials and Methods

Field recordings

From a batcorder survey of 105 sites in eastern Austria in

summer 2010 (Fritsch G. & Kubista C., unpubl. data), we

selected 12 sites randomly, so that the entire data set (3459

call sequences) could be processed by an operator with

approximately 1 day’s work. At each site, recordings were

made automatically by one batcorder over one night

(7 pm–6 am). We used batcorder models V1 (three sites)

and V2 (nine sites), with the manufacturer’s default settings

(quality 20, threshold �27db, posttrigger 600 ms, critical

frequency 16 kHz). In accordance with the manufacturer’s

recommendations (Ecoobs 2010), the batcorders were

mounted on tent poles approximately 2 m above ground

and at a minimum distance of 2 m from vegetation.

The recordings covered a range of bat activity and spe-

cies. The number of call sequences recorded per site ran-

ged from 11 to 1429 (median: 73.5). The number of

species identified by batIdent ranged from 2 to 14 (med-

ian: 7) per site.

Batcorder and software-aided identification

The “batcorder system” consists of three components that

operate as a working unit: the recording device “batcord-

er,” the administration/visualization software “bcAdmin,”

and the identification software “batIdent”. bcAdmin

(Marckmann and Runkel 2010a) discerns individual bat

calls within the recorded sound and measures their vari-

ous acoustical properties (call length, maximum and min-

imum frequency, etc.; Runkel 2010). The measurements

are fed into batIdent where the individual calls are identi-

fied using Random Forest classifications by R statistical

software (Marckmann and Runkel 2010b). Ideally, this

procedure continues to the terminal category of the deci-

sion tree, that is, to species level. Finally, based on the

classifications of its constituent calls, each call sequence is

assigned an overall classification. For long sequences con-

taining many calls, a second and even a third classifica-

tion may be assigned. Thus, the output of the automated

classification is an unvalidated list of call sequences, each

assigned one to three taxa.

Currently, batIdent is able to discriminate 22 European

species (Runkel 2010). Two additional terminal classifica-

tions, “Plecotus” and “Mbart,” each comprise more than

one species (Plecotus spp., and Myotis mystacinus/brandtii,

respectively) that cannot be discriminated reliably. They

are treated as operational taxonomic units (OTU) at the

same level as species. As a third OTU, we introduced

“Pmid” (Pipistrellus middle frequency; P. nathusii/kuhlii).

Although batIdent can discriminate these two species, we

followed here the approach of the majority of the opera-

tors (17 of 21).

Below, we use the term “species” to refer to all terminal

categories of batIdent’s decision tree: proper species as well

as the OTUs Plecotus, Mbart, and Pmid. Intermediate

classifications (nodes of the decision tree) have not been

included in the analysis of the validation results. They have

no practical significance and, according to our experience,

are not commonly listed in validated outputs.

Operators and questionnaire

In 2011, we contacted all persons and organizations in

Germany, Austria, and Switzerland we knew to use the

2704 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Bias in Software-Aided Bat Call Identification G. Fritsch & A. Bruckner



batcorder system, asking them to participate in our study

and to suggest further candidates. This way we compiled

a list of 63 potential volunteer operators. We are confi-

dent that we reached most of the “batcorder community”

in German-speaking Central Europe.

Every operator validated the same batcorder recordings

(.raw files) from the 12 sites. Before validation, the opera-

tors executed initial classifications using bcAdmin and

batIdent (v1.0 or higher), generating unvalidated species

lists for each site. These were identical for all 21 opera-

tors. After validation, the output was a list of plausible

validated species for each site, plus a completed question-

naire comprising information about the operator and his/

her validation procedure (details below).

In addition to the recordings, operators were provided

with supplements for site characterization to aid in assess-

ing the occurrence probability of species: an aerial photo-

graph, a detail from a geographic map (scale 1:50,000),

site photographs, field notes on site characteristics (e.g.,

coverage and spatial structure of vegetation, proximity to

human settlements), and records of ambient temperature

taken every 15 min throughout the night in which the

calls were recorded.

The questionnaire consisted of two parts (see Appendix

S1). In Part 1, operators were asked about their experi-

ence: (1) number of years spent working on bats; (2)

experience of acoustic analysis of bat calls in general

(measured as the number of nights analyzed); (3) experi-

ence of the batcorder system previous to this study (num-

ber of nights validated). In Part 2, operators detailed their

validation procedure: (1) how important they felt the

supplements for site characterization were; (2) how fre-

quently they used the various functions of batIdent and

bcAdmin (e.g., graphical representation of single calls,

decision tree diagram); (3) which other resources were

consulted (e.g., other sound analysis software, personal

records, and literature); and (4) the software versions of

bcAdmin, batIdent, and R they used (including potential

modifications of the default settings). Answers to ques-

tions (1) to (3) in Part 2 were given on an ordinal scale

from 1 (not important) to 5 (very important).

All responses were anonymized by a person not

involved in the study; operators’ names were replaced

with identifiers O1 to O21.

Analysis

Univariate analyses to describe the operators, validation

results, and correlations were performed basically with

graphical methods, using R v2.15 (R Core Team 2012).

To differentiate experience levels, we subjected the

three experience-related operator traits to a correlation-

based principal components analysis (PCA).

Multivariate analysis of the relative variability of the

resulting species lists was based on Sørensen’s similarity

of the individual operator’s results at each recording site.

On that we ran nonmetric multidimensional scaling

(NMDS) to see from the scatter at each recording site if

species lists could be differentiated.

The variability can also be formally described as hetero-

geneity in the multivariate dispersion of the 21 validated

species lists of each site. We used PERMANOVA’s PERM-

DISP routine to measure this heterogeneity. PERMDISP

calculates in multivariate space the distances zij of the

species list of each operator i and site j to the respective

site centroid (i.e., the centroid of the 21 species lists the

operators produced for that site; see Anderson 2006;

Anderson et al. 2008, 87ff). Hence, sites for which very

different validated lists were submitted by the operators

scored high distance values.

Subsequently, we used this distance as a univariate

measure for dissimilarity and checked for correlation with

the number of call sequences. The multivariate analysis

was carried out in PRIMER v6.1.12 (Clarke and Gorley

2006) and the add-on PERMANOVA v1.0.2 (Anderson

et al. 2008).

Results

Results from 21 people were returned by the end of 2011.

All had previous experience with acoustic analysis of bats

as graduate students, researchers, or environmental con-

sultants.

Operator’s experience in bat work

Operators had worked on bats for 1 to 26 years (median:

3). Their level of experience in analyzing bat calls with

generic acoustical methods ranged from 15 to 800 nights

(median: 215). Previous experience with the batcorder

system ranged from 0 to 600 validated nights (median:

96). The PCA performed with these three traits produced

a ranking of experience. As the first PC comprised 82%

of total variability, we used the operators’ scores on PC1

as a summarizing variable for “operator experience” in

subsequent analyses. PC1 represented a gradient from

least experienced to most experienced operators (Fig. 1,

left to right). Although the PCA revealed no distinct

separation between groups, we adopted tripartite, descrip-

tive categories, as widely used in the literature (e.g.,

Farmer et al. 2012). Operators classed as “intermediate”

in experience had 2–18 years of experience of working on

bats and had analyzed calls with generic acoustical meth-

ods recorded on 200–400 nights. Least experienced and

most experienced operators had less and more working

experience, respectively.
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Operator’s individual validation procedure

The time operators spent for validation of all 12 sites

together ranged from 108–650 min (median 376). Valida-

tion times for single sites ranged from 1–20 min (median

5, site 6) to 12–190 min (median 45, site 12). There was

no correlation between validation time and experience

(PC1 scores). Validation time and resulting number of

species were only weakly correlated (Pearson’s r = 0.50;

P < 2.2e–16).

No supplement provided for site characterization, soft-

ware function, or other resource was considered unim-

portant (rank 1) for species validation by all of the

operators (Fig. 2).

Of the supplements provided for site characterization,

site photographs (9a) were considered the most impor-

tant, followed by aerial photographs (9b) and geographic

maps (9c). Of least importance were geographic coordi-

nates and elevation, and the climate and night tempera-

ture data.

Of the software functions, three achieved a rating dis-

tinctly above average: graphical display of single calls

(10g), number of calls per call sequence (10c), and classi-

fication probability of calls (10f). Features of bcAdmin

which provided overviews of identifications and activity

for each site (10h, i, j) or gave low-level access to the bat-

Ident classification procedure (10a, b) were rarely used

(Fig. 2).

Of the other resources used by the operators, sound

analysis software other than bcAdmin/batIdent (11b) and

bat call literature (11f) stood out as most important. The

intermediate and most experienced operators also used

their own records (11c). Collections of call samples (11a)

and distribution maps (11d) scored high, mainly among

the least experienced operators (Fig. 2).

The versions of batIdent used ranged from v1.01 to

v1.03, so that the batIdent outputs used as the basis for

subsequent validation were identical for all operators.

Validation results and number of recordings

The number of species listed in the unvalidated output

from batIdent increased monotonically and significantly

with the number of call sequences (Pearson’s r = 0.76,

P = 0.004; diamonds in Fig. 3). But we did not find a

Figure 1. Principal component analysis of three working experience

traits in a study on operator bias in bat call identification. Experience

traits: (i) number of years working on bats; (ii) experience in analyzing

bat calls, regardless of method used; and (iii) experience with the

batcorder system before this study. Operators are labeled O1–O21.

The gradient of experience ranges along PC1 from least experienced

(left) to most experienced (right).

11g − Literature batcorder
11f − Literature calls & call analysis

11e − General literature
11d − Distribution maps
11c − Personal records

11b − Call analysis software
11a − Collection bat call samples

10j − Diagram identification quality
10i − Diagram identification tree

10h − Diagram nightly activity
10g − Graphs of single calls

10f − % class. prob. single calls
10e − % class. prob. sequence

10d − Duration call sequence
10c − Numbers of calls/sequences

10b − Console
10a − History

9h − Site descriptions
9g − Climate data

9f − Ambient temperature
9e − Recording date

9d − Coordinates & elevation
9c − Map 1:50,000

9b − Areal photo
9a − Site photos

0 5 10 15 20

Number of operators

Ranks na r1 r2 r3 r4 r5

Figure 2. Questionnaire ratings of supporting

resources used in the individual validation

procedure of 21 operators in a study on

operator bias in bat call analysis. Ratings were

from r1 (light blue, not important) to r5 (dark

blue, very important), “na”: no answer given.

Three sets of questions dealt with:

supplements provided for site characterization

(9a–h), functions of the identification software

bcAdmin and batIdent (10a–j), and other

resources used by the operators (11a–g).
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similar correlation between the number of call sequences

and the median number of validated species. While the

accumulation curve of the number of unvalidated species

(diamonds) did not seem to reach an asymptote even

after 1500 call sequences, the number of validated species

(circles) increased less steadily above ~100 call sequences.

Generally, for each site, the number of unvalidated spe-

cies in the batIdent output was higher than the number

of validated species (Fig. 3). The difference between un-

validated and validated species lists was smaller in sites

with low bat activity (few call sequences) than in sites

with high bat activity. Only some of the least and inter-

mediate experienced operators produced a validated

species list that was longer than the unvalidated list (sites

1–4).

Validation results and experience

The most experienced operators accepted on average the

smallest percentage of species from the unvalidated list

produced by batIdent (median: 43%). Their validation

behavior was consistent: It exhibited the smallest variation

among operators (Fig. 4). They rarely identified addi-

tional species.

The large group of operators with intermediate experi-

ence accepted on average the highest proportion (median:

71%) of species from the unvalidated list and were also

most likely to identify additional species (Table 1). There

was higher within-group variability in their validation

behavior than in that of the most experienced operators

(Fig. 4).

Among the least experienced operators, we observed

the most variable validation behavior: Some were extre-

mely cautious in their validation (listing only 1–3 species

per site in their validated lists); some were very confident

(listing up to 11 species per site; Fig. 4).

Validation of additional species

For long sequences containing many calls, for which a

second and sometimes a third species classification had

been assigned by batIdent, the operators did not include

these species in their validated lists. Rather, they always

ignored these second and third classifications.

However, 14 operators (66%) added species to their

validated lists that were not included in the unvalidated

species list produced by batIdent. These operators scruti-

nized the automated identifications of individual calls and

validated species assigned to calls interspersed within the

sequences. They extended the species list of at least one

S6/S10 S2/S5S4 S8 S1 S3 S9S7 S11 S12
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Number of call sequences (logarithmic)

N
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Figure 3. Relationship between the number of recorded call

sequences per study site and (1) the number of unvalidated species

from bat call identification software (diamonds), (2) the number of

validated species produced by 21 operators (circles), in a study on

operator bias in bat call identification. Each vertical strip represents a

site (S1 to S12). Note the logarithmic scale of the abscissa. On two

occasions, the same number of call sequences were recorded in two

sites (S6/S10, S2/S5; 11 and 21 sequences).

O17 O2 O19 O18 O14 O6O12 O20 O7 O15  O1 O4
O21 O5   O16 O8 O13 O11 O10 O9
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Figure 4. Variability in validation of species lists by 21 operators in a

study on operator bias in bat call identification. Each vertical strip

represents an operator (O1 to O21), each circle one of 12 sites.

Operators were ranked along the abscissa from left (least

experienced) to right (most experienced), using principal component

analysis scores for a synthetic experience variable (Fig. 1).
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site by adding these, subsequently called, “additional spe-

cies” (Table 1, bold font).

Validation of individual species

Pipistrellus pipistrellus and Barbastella barbastellus were

accepted in 100% and 80% of all cases, respectively

(medians, % of acceptance of the batIdent classifications,

Table 1), independent of operator experience. This simi-

larly applied to Nyctalus noctula, P. pygmaeus, and

M. daubentonii (medians 78%, 100%, 67%), although for

these species there was more variability among the opera-

tors. The operators validated all of them with high confi-

dence, even when only a few call sequences of the species

were recorded. This corresponds well with Hammer et al.

(2009) and partly with Jennings et al. (2008), who rated

the identification of these species as straightforward.

Acceptance of Mbart (M. mystacinus/brandtii) was

equally high (median 80% of all batIdent identifications),

but with a much larger variability among the operators.

Myotis myotis, M. emarginatus, M. bechsteinii, M. natter-

eri, Eptesicus nilssonii, E. serotinus, and Hypsugo savii were

less frequently and less unanimously accepted during vali-

dation (medians ranged 14% Mbec –68% Eser). For sites

with numerous recordings, they were accepted by the

majority of operators, for sites with lower bat activity only

by a few. In the latter case, they mostly emerged as addi-

tional species (predominantly M. emarginatus, M. myotis,

and E. nilssonii). The most and the least experienced opera-

tors were less likely to accept these species during validation

than operators with intermediate experience (Table 1).

M. alcathoe, M. dasycneme, V. murinus, P. nathusii,

P. kuhlii, Plecotus spp., and N. leisleri were accepted only

a few times by single operators.

For P. nathusii/kuhlii, we found a diverging pattern:

The majority of operators (17 of 21) did not trust the

discrimination of these acoustically similar species by bat-

Ident and pooled them into the generic OTU Pmid in

their validated lists. In contrast, some operators listed

P. nathusii several times as an additional species

(Table 1).

Vespertilio murinus and Plecotus spp. were listed several

times, although they were not in the unvalidated batIdent

output of any site.

Occasionally, species listed in the batIdent output were

unanimously rejected by all operators. All three classifica-

tions of Miniopterus schreibersi and one of Tadarida tenio-

tis probably because they were considered to be

misclassifications by the software and outside their distri-

bution area.

H. savii, M. alcathoe, and M. bechsteinii were also

rejected by all operators at sites where they were repre-

sented by only a few, doubtful call sequences.

(Dis)similarity of validated species lists

Nonmetric multidimensional scaling (NMDS) of the 252

validated species lists (produced by 21 operators for each

of the 12 sites) revealed considerable variability among

the species lists of a site (the scatter in Fig. 5). That is,

the species lists produced by the operators differed widely.

Nevertheless, and despite much overlap of the dots in

Fig. 5, it was possible to distinguish almost all sites

clearly.

The average heterogeneity of the species lists (median

of the zij distances, Table 2) and the number of call

sequences recorded at each site were related to each other

in a nonlinear fashion: The zij declined with increasing

sequences up to approximately 200 call sequences and

then remained constant in the range of zij ~20% dissimi-

larity (Fig. 6).

Discussion

Our results suggest that the operator bias introduced dur-

ing the validation of results from software-aided bat call

identification can be considerable and should be acknowl-

edged especially in studies in which more than one per-

son carries out validation. The operator-related

differences in the final validated species lists were influ-

enced by the amount of recorded material, operators’

experience, and the difficulty of identifying the respective

species.

Although we did not know the actual identity of the

species in the empirical data set, our results indicate that

the operators generally felt able to remove possible false

Figure 5. Nonmetric multidimensional scaling (NMDS, stress 0.19) of

species lists for 12 study sites produced by 21 operators in a study on

operator bias in bat call analysis. Each dot represents a validated

species list produced by an operator. Not all dots are visible, due to

manifold overplotting.
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positives and furthermore detected additional species that

had been rejected in the automated process.

It is inherent to the batIdent algorithm that with

increasing numbers of call sequences, the likelihood to

produce false positives increases as well (see rates in the

confusion table, Marckmann and Runkel 2010b). In the

present study, unvalidated species lists showed a steady

ascent in number of identified species and did not seem

to reach an asymptote. At the same time, the curve of

the validated species lists flattened out (Fig. 3). This was

supported by comparing the homogeneity of assemblages

as a whole. The dissimilarity of species lists decreased

with increasing numbers of call sequences indicating that

in general, similar species have been eliminated as possi-

ble artefacts from automated classification (Fig. 6,

Table 2).

As a result of the software’s systematic overestimation

of species richness, the validated species lists produced by

the operators were, in most cases, shorter than the unvali-

dated species list.

We concluded that validation of the raw data can suc-

cessfully reduce excessive numbers of species, and thus,

manual validation of the software output is indispensable.

All operators were volunteers who were aware that

their work was part of a comparative study on biases in

call analysis, so they were probably motivated. We cannot

simply extrapolate from this to their everyday routine.

However, it is reassuring that the operators in general

questioned the output of the software and regarded the

species lists produced by batIdent just as a baseline.

As we were not able to investigate individual false posi-

tives resulting from validation, other studies suggest that

they do exist. Farmer et al. (2012) found at least one

identification error in 73% of their testing scenarios,

regardless of the observer’s skill level, although overall

proportions of false positives significantly increased as

skill level decreased. The majority of these false positives

were rare species. Miller et al. (2011) state that biases

resulting from false positive errors are greatest when spe-

cies are rare.

Royle and Link (2006) emphasized that even low false

positive error rates can introduce extreme bias in esti-

mates of site occupancy and can lead to substantial over-

estimation of occupancy probability.

We were surprised that many operators put additional

species on their lists, most frequently M. emarginatus,

M. myotis, E. serotinus, P. nathusii, V. murinus, and Pleco-

tus spp. (Table 1). Operators discovered these species after

in-depth examination of the recordings. Many of them are

rare and had been identified by batIdent for only a few call

sequences. Species were most frequently added to the lists

by operators with intermediate and least experience. Add-

ing species means scrutinizing the original data closely,

and perhaps investigating individual calls using sound

analysis software, so we conclude that operators who

added species invested much effort in their analysis.

In apparent contrast to this, we could not find con-

vincing evidence that investing more time generally

increased species richness. This may be because additional

Table 2. PERMDISP analysis as a measure of the average variance of assemblages (% dissimilarity) for each site in a study on operator biases in

bat call identification. Medians are calculated from the operators’ individual PERMDISP values. The sites (S1–S12) are ranked by ascending number

of call sequences (Fig 3). “batIdent” gives the unvalidated number of species from automated classification.

Sites S6 S10 S2 S5 S4 S8 S1 S3 S9 S7 S11 S12

Dissimilarity (median, %) 1.4 29.0 30.2 27.0 19.7 22.4 21.7 21.1 16.0 18.0 19.0 18.1

batIdent (number spec.) 2 7 6 5 5 9 10 7 10 7 14 12

Call sequences 11 11 21 21 27 62 85 93 164 197 1338 1429
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Figure 6. Percent dissimilarity (PERMDISP values) of the validated

species lists for 12 sites produced by 21 operators (circles) in relation

to the number of call sequences recorded in a study on operator bias

in bat call identification. Each vertical strip represents a site (S1 to

S12). Note the logarithmic scale of the abscissa. On two occasions,

the same number of call sequences were recorded in two sites (S6/

S10, S2/S5; 11 and 21 sequences).
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effort can also be spent to eliminate doubtful species

more confidently. Besides, manually checking for wrongly

measured calls, that is, species wrongly classified, is not

practicable for all species equally.

The OTUs Pmid and Mbart were frequently accepted

by many operators with all levels of experience, although

the species included are by no means straightforward to

identify (cf. Hammer et al. 2009). For Pmid, the majority

of operators did not trust the discriminative ability of the

software and thus chose to accept only the upper-level

epitheton. On the other hand, some other operators (of

all experience levels) did identify P. nathusii and P. kuhlii

as separate entities. Either these operators did believe that

the batIdent’s identifications were correct (the algorithm’s

false positive rate of P. nathusii is only 0, 21%) or they

gave weight to biogeographical data: P. nathusii is found

in a wider region than P. kuhlii (Dietz et al. 2009).

The high acceptance rate of Mbart (M. mystacinus/

brandtii), the other “difficult” epitheton, was probably an

effect of its high frequency in the unvalidated batIdent spe-

cies lists. These species are part of an aggregate of small-

and medium-sized species of the genus Myotis that produce

extremely similar echolocation calls. In our experience, they

are highly active in almost all forest or near-forest habitats

and are rarely satisfactorily differentiated. Mbart is fre-

quently the taxon recorded with highest dominance and

therefore usually preferred by batIdent, while others (most

notably, the rare M. bechsteinii) are dismissed in doubt.

All in all we could confirm the results of Miller et al.

(2012), who suggest incorporating operator ability as a

predictor of among-observer error rates. Validation pat-

terns for operators with intermediate and most experience

were distinctly different. The former produced longer spe-

cies lists with large within-site variability, while the latter

assessed conservatively producing short species lists.

In contrast to the considerable variability in the valida-

tion of species lists, caused predominantly by additional

species, the dissimilarity of the species lists the operators

produced for each site was around 20%. Most species lists

could be well differentiated, irrespective of which operator

had validated the data. Thus, if the characterization of bat

assemblages is the goal of a study, operator bias is less of a

concern than in species-specific investigations. However,

this might not be true for sites where very few call

sequences were recorded, as we found a negative correla-

tion between the number of sequences and assemblage het-

erogeneity. At sites with little activity, batIdent can

nevertheless produce rather long species lists, causing diver-

gent validation behavior by operators. Vice versa, the more

activity we recorded at a site, the less divergent were the

operators’ species lists, hence, the lower the operator bias.

The questionnaire results revealed that the operators

rated the tools and resources we asked about very differ-

ently. There was no single item that operators unani-

mously ranked very high or very low (the most notable

exception is the much appreciated graphical display of

individual calls in bcAdmin, question 10g).

Of the supplements provided for site characterization

(questions 9a to h), the aerial and site photographs and

the large-scale (1:50,000) geographic map scored highest.

This makes sense, as these resources inform the operator

about the habitats at the site. Given the pronounced pref-

erences of many Central European bat species, habitat

information may provide valuable clues for accepting or

declining species on the unvalidated lists.

Regarding software functions (questions 10a to j), the

operators focused on the many “quality indicators” the

software offers, for example, the displays of time–fre-
quency diagrams of individual calls, the classification

probability of calls within a sequence (higher probabilities

are more trustworthy), and the number of calls per

sequence (identification of long sequences with many calls

is more reliable than identification of sequences with few,

potentially distorted, calls). Many operators also consulted

sound analysis software outside the batcorder system to

verify classifications independently (11b) and call analysis

literature (e.g., Russo and Jones 2002; Skiba 2003; Obrist

et al. 2004; Hammer et al. 2009).

Thus, for validation, the “average operator” relied on

the various software functions indicative of identification

quality, used external software and literature, and checked

species against supplements provided for site characteriza-

tion. Bearing in mind the diversity among the operators,

they took a very reasonable approach.

The identification bias demonstrated in this study is a

major issue for broadscale and long-term studies in which

more than one operator carries out validation. Thus, many

inventories, surveys, and monitoring programs face this

problem, and measures should be taken to standardize the

validation process and calibrate the operators involved.

This confirms the conclusions of Fitzpatrick et al. (2009)

and Farmer et al. (2012), who showed that a heterogeneous

mixture of operator skill levels can lead to biased results.

Elaborate quality control concepts used for other

organisms (e.g., Sykes and Lane 1996; Wilkie et al. 2003;

Sachteleben and Behrens 2010) may well be adopted for

bat investigations: for instance, preparative joint work-

shops to agree on protocols/standard procedures/tools; a

priori identification of possible error sources; preparation

of identification guidelines and examples; procedures for

dealing with difficult species/doubtful classifications; con-

sistent documentation on decision criteria; regular meet-

ings to discuss for example doubtful classifications; and

peer review of doubtful identifications.

We found considerable differences in validation behav-

ior between operators with different levels of expertise.
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From this and from our own experience, we suggest that

only experienced operators (that is, people with experi-

ence of analyzing recordings made over a few hundred

nights) validate bat calls in a consistent, invariant way.

Jennings et al. (2008) found that operators with <1 years’

experience performed worse than those with more experi-

ence. We suspect that validation behavior, especially of

the least experienced operators, evolves in the course of

an investigation. So, observer bias may occur even in

investigations in which validation is carried out only by

one person, as that person’s level of experience increases

over time. If the amount of recorded material is substan-

tial, this may introduce bias. We therefore strongly rec-

ommend controlling for this in the experimental design,

for instance by validating recordings in random or alter-

nating order instead of sequentially or by validating the

same subset of recordings several times in the course of

the study and comparing the outcome.

Automated call analysis naturally lends itself to broad-

scale studies, but is also very useful for short-term investi-

gations with limited resources, such as environmental

impact assessments. However, the convenience and speed

of automatic identification may result in underestimation

of the importance of critical and informed validation, so

that few resources are allocated to this part of the project.

The relation between operator bias and experience in this

study should act as a warning in this respect: Inexperi-

enced biology students and other unskilled workers may

be inexpensive, but they are very unlikely to deliver unbi-

ased results. This study suggests that the validation of

automatically analyzed bat calls, like the identification of

other animals, is a job for experts.
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