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Abstract
Several studies have reported separate roles of adenosine receptors and circadian clockwork in major depressive disorder. 
While less evidence exists for regulation of the circadian clock by adenosine signaling, a small number of studies have linked 
the adenosinergic system, the molecular circadian clock, and mood regulation. In this article, we review relevant advances 
and propose that adenosine receptor signaling, including canonical and other alternative downstream cellular pathways, 
regulates circadian gene expression, which in turn may underlie the pathogenesis of mood disorders. Moreover, we sum-
marize the convergent point of these signaling pathways and put forward a pattern by which Homer1a expression, regulated 
by both cAMP-response element binding protein (CREB) and circadian clock genes, may be the final common pathogenetic 
mechanism in depression.
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Introduction

Major depressive disorder (MDD) is one of the most preva-
lent forms of mental illness. It is a complex and heteroge-
neous disorder associated with high individual suffering, 

increased risk of suicide, and a severe economic burden 
for society [1]. Several lines of evidence from animal and 
human studies have shown that disturbances of circadian 
clockwork are associated with the development of depres-
sion. Moreover, different chronotherapies, a variety of 
strategies that modulate biological clock, such as sleep 
deprivation and light therapy, are considered as alternative 
treatments for depression [2]. However, how the circadian 
clock influences pathophysiology of mood disorders, as well 
as the molecular and cellular mechanisms of action of the 
therapeutic interventions targeting circadian rhythm, is not 
well understood. The identification of the neurobiological 
substrates mediating the crosstalk between the circadian 
clock and mood regulation may lead to the development of 
new strategies for prevention and treatment of depression.

Numerous studies have demonstrated a role of adenosine 
receptors in the development of depression and antidepres-
sant therapies [3–5]. Moreover, adenosinergic signaling is 
implicated in the regulation of different aspects of the cir-
cadian clock [6, 7]. However, the detailed mechanism has 
not been completely clarified. Recently, we found that the 
canonical circadian clock genes Per1 and Per2 were involved 
in the antidepressant action of an adenosine  A1 recep-
tor  (A1R) agonist [8]. In addition, it has been shown that 
the expression of the synaptic plasticity protein Homer1a, 
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proposed by our group as an important element mediating 
antidepressant effects and also a downstream target of aden-
osine receptor signaling [9–12], is directly regulated by the 
circadian clock [13].

In the present article, we review relevant recent advances 
linking adenosine receptors, circadian clock, and mood and 
propose that adenosine signaling regulates circadian clock-
work and Homer1a, which may be a potential final common 
mechanism involved in the neurobiology and treatment of 
depression.

Adenosine Signaling and Mood

There are numerous studies on adenosine signaling and 
depression, which have been recently reviewed extensively 
by others [3–5]. The cellular effects of adenosine are medi-
ated by four subtypes of G-protein coupled receptors:  A1R, 
 A2AR,  A2BR, and  A3R. In general, it was proposed that  A1Rs 
promote antidepressant-like effects, while  A2ARs’ activation 
enhances depression-like behaviors in rodents [3]. As for 
the  A2B and  A3 receptors, at present, we could not find any 
reports on their role in mood disorders [14, 15].

Several non-pharmacological antidepressant treatments 
including sleep deprivation (SD), electroconvulsive therapy 
(ECT), and deep brain stimulation (DBS) enhance  A1R sign-
aling [9]. Hines et al. was first to demonstrate that  A1Rs 
are necessary for the antidepressant action of SD and that 
their activation leads to rapid antidepressant-like effects 
[16]. Our group utilized a line of transgenic mice condition-
ally overexpressing  A1R in calcium/calmodulin-dependent 
protein kinase type II (CaMKII) forebrain neurons [9, 11, 
17]. Upregulating  A1R led to pronounced acute and chronic 
resilience toward depressive-like behavior in various tests, 
while  A1R knockout mice displayed an increased depres-
sive-like behavior and were resistant to the antidepressant 
effects of SD [9]. Furthermore, we have shown that the 
antidepressant effects of  A1R activation are mediated by the 
synaptic plasticity protein Homer1a, which is upregulated 
by various antidepressant treatments such as SD, imipra-
mine, ketamine, and  A1R activation [9, 12]. Using a different 
transgenic mouse lines with overexpression of  A1R in the 
cortex and hippocampus, we found that depending on the 
brain region of  A1R upregulation, the mice show different 
resistance to depression-like behavior, and that enhanced 
Homer1a expression in the hippocampus increases stress 
vulnerability [11].

However, activation of  A1R may elicit also manic or 
hypomanic episodes in patients with bipolar disorder [18]. 
It has been reported that peripheral adenosine levels were 
negatively correlated to the severity of depressive symp-
toms of bipolar disorder patients [19]. Therefore, periph-
eral adenosine levels may have a positive relationship with 

mood, demonstrating the pivotal role of adenosine in mood 
regulation.

In contrast, it has been reported that rats with  A2AR 
overexpression in hippocampus, cortex, and striatum show 
increased depression-like behavior [20]. Vice versa,  A2AR 
KO mice exhibit reduced depression-like behaviors, such as 
decreases in the immobility time in forced swimming test 
and tail suspension test [21, 22]. The  A2AR antagonist istra-
defylline (KW6002) showed an antidepressant-like action on 
learned helplessness model rats [23]. However, some con-
tradictory results of relationship between  A2AR and mood 
have also been released. Tsai et al. reported that they did 
not find any association of  A2AR (1976C > T) genetic poly-
morphism with mood disorders [24]. However, this does 
preclude the possibility of a role of  A2AR in the pathogenesis 
of mood disorders; rather, other  A2AR variants must also be 
extensively studied. Moreover,  A2ARs have also been linked 
with depression, suicidal behavior, and impulsivity based 
on indirect evidence at a statistical association level [25]. 
For instance, Lucas et al. reported a negative association 
between caffeine consumption and risk of suicide based on 
cohort studies [26]. The actions of adenosine receptors on 
depression are summarized below (Table 1).

Circadian Clock and Mood Regulation

Circadian clocks govern a wide range of biochemical, physi-
ological, and behavioral processes. In mammals, the circa-
dian master pacemaker is located in the suprachiasmatic 
nucleus (SCN) [27]. The circadian oscillation of the intracel-
lular clock is driven by transcription/translation-based feed-
back/feedforward loops, consisting of a set of clock genes. 
Positive regulatory elements are brain and muscle ARNT-
like 1 (BMAL1) and circadian locomotor output cycles 
kaput (CLOCK), which form heterodimers and induce the 
rhythmic transcription of Period (Per1 & Per2) and Cryp-
tochrome (Cry1 & Cry2) genes. The PER and CRY proteins 
interact and translocate to the nucleus, where they act as 
negative regulators inhibiting CLOCK/BMAL1 transcrip-
tion [28]. An additional loop including both activating and 
repressing regulatory elements is formed by retinoic acid 
receptor-related orphan receptors (ROR α, β, and γ) and 
nuclear receptors REV-ERB (α & β) [29, 30].

Table 1  Effects of adenosine receptors on depression or depression-
like behavior

Receptors Effect of activation References

A1R Antidepressant like effect [3, 8, 9, 11, 16, 139]
A2AR Pro-depressive like effect [3, 20–23, 25, 26, 139, 140]
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A large number of studies have demonstrated the relation-
ship between the circadian clock and depression [31–39], 
with a great many reviews to refer to [31, 32, 34, 36, 40–45]. 
Most of these reports have shown correlation between genes, 
RNAs, proteins, and single nucleotide polymorphisms with 
the symptoms of MDD or depression-like behaviors [33, 
38, 39, 46–48]. For example, variants of circadian genes, 
such as CLOCK, BMAL1, NPAS2, Per3, and NR1D1, play 
a role in mood disorders, mainly based on statistical analy-
ses [49–53]. In addition, transgenic mice with mutations in 
certain clock genes have been characterized with depressive-
like behavior. However, each mouse model shows a distinct 
mood/rhythm combination phenotype: similar mood char-
acteristics occur with opposite changes of circadian period, 
and reduced circadian amplitude leads to different changes 
in mood behavior, which hinders a clear conclusion/hypoth-
esis [54].

Several brain regions relevant to psychopathology of 
depression, including the prefrontal cortex, hippocampus, 
amygdala, lateral habenula (LHb), and nucleus accumbens 
(NAc), possess an oscillating molecular clock [55–57]. 
Increasing evidence from human and rodents suggests that 
these region-specific oscillators in limbic areas are instru-
mental regulators of mood. Indeed, a microarray study dem-
onstrated that the circadian patterns of gene expression in six 
brain regions (including amygdala, prefrontal cortex, hip-
pocampus, and NAc) are significantly altered in human post-
mortem subjects with MDD [48]. Moreover, many chronic 
stress-based animal models of depression show dysregulated 
circadian rhythms of locomotor activity, body temperature, 
and corticosterone levels [58], as well as reduced circadian 
expression amplitude of several canonical circadian clock 
genes in the SCN and amygdala, but increased amplitude 
in the NAc [55, 56, 59]. For instance, Christiansen et al. 
demonstrate effects of chronic mild stress on core circadian 
genes in rats [46]—the mean peak times of Per2 and Bmal1 
expressions in SCN were either phase-delayed or phase-
advanced in the chronic stress group. Taken together, these 
reports suggest that stress and/or MDD might differently 
affect the circadian clockwork in particular brain areas and 
that further investigation on region-specific circadian mecha-
nisms are needed.

A potential role has been recently proposed for the circa-
dian clock in the mechanism of rapid antidepressant treat-
ments, like SD and ketamine [60]. Duncan et al. revealed 
an association between ketamine’s clinical antidepressant 
response and circadian-related wrist-activity parameters 
[39], finding that responders showed a phase-advanced 
activity rhythm and a decreased measure compared with 
nonresponders at baseline. Orozco-Solis et  al. showed 
downregulation of several canonical clock genes, including 
Per1, Per2 and Cry2, by rapid antidepressant therapies SD 
and low-dose ketamine, using comparative transcriptomics 

analyses [38]. Furthermore, ketamine usually takes its most 
robust effect on the next day of its treatment [61], a phenom-
enon probably related to the effect of ketamine on circadian 
system [43]. Preclinical studies reveal that both SD and 
ketamine downregulate circadian genes, probably through 
NMDAR, AMPAR, TrkB, MAPK, mTOR, GSK3β, and 
CREB [38, 62–65], but the exact cellular pathway has not 
been confirmed and needs to be further investigated. Until 
now, only a few studies have revealed signaling pathways 
that act directly on the molecular circadian clock and medi-
ate the pathogenesis of major depression or depression-like 
behaviors [8, 66].

The role of circadian rhythm in mood regulation is bidi-
rectional, affecting both depression and mania [67–75]. For 
example, phase advance during manic episodes and phase 
delay during depressive episodes were found in the patients 
with bipolar disorder [76–79]. The CLOCKΔ19 and Per2Brdm1 
mice exhibit hyperdopaminergic state and mania-like pheno-
types [80–82], while in contrast, Per1 knockout mice show 
depression-like behavior in forced swim test [83], directly 
demonstrating that the circadian clock influences mono-
amine oxidase A and mood. In addition, Olejniczak et al. 
revealed that light affects depression-like behavior through 
Per1 in the LHb [83]. Therefore, our focus should not be 
restricted to only one axis of investigation. For instance, 
while  A1R agonism shows antidepressant-like effects, it may 
potentially induce manic or hypomanic episodes and vice 
versa [18, 84]. As a result, this side effect must be avoided 
when exploring novel antidepressants or mood stabilizers. 
Recently, Hinton et al. reported that administration of caf-
feine during adolescence in mice could induce circadian-
dependent changes in mood fluctuations in adulthood, 
including depression and mania [85]. However, the exact 
cellular pathway underlying this phenomenon needs to be 
investigated further. In future, elucidation of the pathogen-
esis of trans-phase may be an important research field.

Taken together, these reports support a causal relationship 
between the circadian system and mood. However, alterna-
tive hypotheses have been proposed, and whether the disrup-
tion of circadian clocks are causes or consequences of mood 
disorders remains undetermined. Accordingly, Lazzerini 
Ospri et al. provide a model suggesting that mood may be 
an output of circadian rhythm by probability [86]. However, 
this hypothesis also needs to be further verified.

The Role of Adenosine Receptors 
in Circadian Clock Modulation

Light is the most potent resetting stimuli of the circadian 
clock. In addition to glutamate, adenosine appears to be a 
strong candidate for modulating SCN activity [87]. Indeed, 
application of adenosine attenuates light-induced phase 
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shifts, while  A1R antagonism can reverse this effect [88, 
89]. Adenosine is known to increase during SD [90] and 
accordingly it has been shown in rodents and humans that 
SD also reduces the photic resetting of circadian activity [91, 
92]. Likewise, in response to acute SD, a subset of circadian 
clock genes behave as immediate early genes and are tran-
scriptionally responsive within hours of treatment [93, 94]. 
Conversely, longer SD suppresses 80% of rhythmic genes in 
the mouse brain [95, 96]. Moreover, the adenosine receptor 
antagonist caffeine modulates different aspects of the circa-
dian rhythms including behavioral rhythm and the molecular 
clock [87, 97, 98]. It increases the light-entraining activity 
rhythm and lengthens the period of hPer2 and mBmal1 [97, 
99]. In human-cultured cells, caffeine produced its effect 
on the circadian clock through adenosine receptor-cAMP 
signaling [100].

Adenosine  A1 R and  A2AR Signaling Pathways 
as Regulators of the Molecular Circadian 
Clock and Mood

In the following chapter, we will review and discuss  A1R and 
 A2AR downstream signaling, including classical pathways 
and some alternative cascades, implicated in the regula-
tion of the cellular circadian system and mood. Moreover, 
transcriptional factor CREB phosphorylation and induction 
of the synaptic protein Homer1a appear to be a convergent 
point of various pathways [101], and play a critical role both 
in the regulation of circadian rhythm [102, 103] and in the 
pathogenesis of depression [101].

Canonical Adenosine Signaling

ERK MAPK Pathway

A1R activates the phospholipase C (PLC)β—inositol 
triphosphate  (IP3) pathway in order to induce the release 
of calcium from endoplasmic reticulum and subsequently 
activates extracellular regulated protein kinase (ERK) [10, 
104]. After ERK is activated, it can consequently activate 
the downstream part of the MAPK signaling pathway. 
CREB is the endpoint of the pathway, which can enter the 
nucleus and bind to the CRE sites in the promoter regions 
of Homer1a, Per1, and Per2 genes to regulate their tran-
scription (Fig. 1) [10, 38, 44, 103, 105–107]. Moreover, it 
has been reported that adenosine  A1R-ERK1/2 signaling 
pathway in the prefrontal cortex and hippocampus region 
of mice was involved in the anti-menopausal depressant-
like effect of Jiao-Tai-Wan [108]. Additionally, there have 
been numerous references showing that the ERK MAPK 
pathway plays a critical role in MDD [109–113]. Moreover, 
ERK-CREB signaling in the hippocampus and prefrontal 

cortex was revealed as the downstream pathway of inosine to 
produce its antidepressant-like effect [114]. Thus, the ERK 
MAPK pathway is both important in circadian systems and 
mood regulation.

cAMP Signaling Pathway

cAMP is also a classical downstream signaling pathway of 
both  A1R and  A2AR and plays a key role in the mammalian 
circadian clock [100, 105, 115]. The  A1R can suppress the 
cAMP pathway through inhibiting adenylate cyclase (AC) 
via its  Gi; contrarily, the adenosine  A2A receptor can stimu-
late cAMP pathway through activating AC via its  Gs (Fig. 1) 
[3]. Burke et al. found that the intracellular mechanism of 
caffeine-induced regulation of the circadian rhythm is via the 
adenosine  A1 receptor-cAMP signaling pathway in human 
cells in vitro [100]. In addition, it was revealed that the 
cAMP-protein kinase A (PKA)-CREB pathway in rat hip-
pocampal neurons was involved in the antidepressant-like 
effect of serum [116]. However, no interaction was identi-
fied of this pathway with circadian genes. As CREB is the 
endpoint of various cellular pathways, including the cAMP 
pathway, it has been suggested that CRE sites on the Per1 
or Per2 genes might be the potential target (Fig. 1) [103, 
105, 106]. Therefore, cAMP is another downstream signal-
ing pathway that plays critical roles in both regulation of 
circadian genes and mood.

Ca2+ Signaling Pathway

Studies have revealed that both L-type calcium channels and 
calcium-induced calcium release can induce post-synaptic 
adenosine elevation [117] and that calcium signaling acts 
upon Per1/2 genes directly via CREB in mammalian cells 
[103, 115, 118]. In addition,  A1R can also inhibit L-type cal-
cium channels via its  Gi [3]. Besides this, the ERK/MAPK 
signaling pathway is calcium-dependent. It has also been 
reported that the  Gq-Ca2+ axis controls the circadian clock 
in the SCN [119], involved in both input and output of circa-
dian systems [115, 120]. Furthermore, the cAMP/Ca2+ sign-
aling pathway determines properties of the circadian system, 
including phase, amplitude, and period; in turn, cAMP/Ca2+ 
signaling is regulated by circadian system and rhythmically 
expressed [115].

In conclusion, ERK MAPK, cAMP, and  Ca2+ signaling 
pathways are the major downstream pathways of adenosine, 
which in parallel can regulate circadian molecular clock 
(Fig. 1). Pertinently, it has been demonstrated that levels of 
cAMP,  Ca2+, ERK, and CREB were decreased in postmor-
tem patients with MDD [121]. Moreover, levels of these 
molecules were oppositely altered in patients with bipolar 
disorder treated with mood stabilizers compared to MDD 
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patients administered antidepressants [121], demonstrating 
their roles in mood regulation.

Other Potential Alternative Downstream Cellular 
Pathways of Adenosine Receptors

In addition to the canonical cellular pathways, there are also 
some recently explored downstream signaling pathways of 
 A1R, which have not been demonstrated to be involved 
in mood regulation but may suggest new further research 
directions.

Recently, Jagannath et al. revealed that adenosine could 
regulate the circadian clock through activating the adeno-
sine  A1/A2A receptor, and their downstream  Ca2+-ERK-AP-1 
and CREB/cAMP-regulated transcriptional coactivators 
(CRTC1)-CRE signaling pathways to modulate the expres-
sion of Per1 and Per2 genes in mice [122]. They found that 
these signaling pathways were also stimulated by light [122]. 
Thus, adenosine can alter the circadian time by integrating 

signals from light and sleep. Furthermore, Trautmann et al. 
showed that caffeine acts on mood through the elevation 
of phosphorylated Thr75-DARPP-32, which can bind to 
CLOCK and inhibit the CLOCK/BMAL1 complex interac-
tion, consequently modulating the expression of circadian 
genes and potentially linking adenosine, circadian systems, 
and mood [66].

Adenosine receptors are also involved in the modula-
tion of other neurotransmitter systems. For example, the 
 A2AR is colocalized postsynaptically in dopamine areas, 
including the striatum and NAc [123]. Indeed, it has been 
demonstrated that there is a functional interaction between 
dopamine D2Rs and A2ARs, which converge on the same 
signal transduction pathways in an antagonistic way [124]. 
Likewise, A1R and D1Rs antagonistically interact [125]. 
The dopaminergic system plays an important role in the 
control of reward and motivation-oriented behavior, which 
is severely affected in MDD. Since dopamine synthesis and 
particularly its limiting enzyme tyrosine hydroxylase (TH) 

Fig. 1  Pattern of a potential final common mechanism of antidepres-
sant action. Acute or chronic SD increases the adenosine levels in the 
brain and activates  A1Rs and  A2ARs. Subsequently, ARs act on vari-
ous signaling pathways, including cAMP, PKA, Ca2 + , and MAPK in 
the cytoplasm, and converge on the phosphorylation of the transcrip-
tional factor CREB. The phosphorylated CREB enters the nucleus 
and binds with the CRE sites on Homer1 and Per1/2 promoters to 
regulate their transcription. Simultaneously, these genes are transcrip-
tionally regulated by CLOCK/BMAL1 via E-box elements on their 
promoters. Concurrently, PER form complexes with CRY in the cyto-

plasm, which in turn compete with CLOCK/BMAL1 complexes and 
block their transcription, as well as Homer1a expression. SD, sleep 
deprivation; AC, adenylate cyclase; PLCb, phospholipase C beta; 
ATP, adenosine triphosphate; cAMP, cyclic adenosine monophos-
phate; IP3, inositol triphosphate; PKA, protein kinase A; ER, endo-
plasmic reticulum. Arrows indicate activation: the thicker arrow indi-
cates that adenosine may have a preferential activation effect on  A1R 
during acute SD. In parallel, the red lines indicate inhibition, where 
the thicker line indicates greater inhibition of  A2AR by caffeine
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are under circadian regulation, this interaction between 
adenosinergic and dopaminergic system represents another 
potential signaling pathway involved in mood regulation 
[126].

Convergent Points of Adenosine Receptor Signaling

CREB

CREB is a convergent point of various pathways in the 
pathogenesis of MDD and is the downstream effector mol-
ecule of adenosine signaling [101]. The role of CREB in 
MDD varies with different brain regions [101]. For exam-
ple, overexpression of CREB in the dentate gyrus of the 
hippocampus produced an antidepressant-like effect in rats 
[127], while overexpression of CREB in either the CA1 
pyramidal cell layer of the hippocampus or the prefrontal 
cortex did not show this effect [127]. Conversely, overex-
pression of CREB in the basolateral amygdala or in the NAc 
produced a pro-depressive-like effect [128, 129]. Mean-
while, the acting points of CREB on the circadian genes 
Per1/2 have been elucidated (Fig. 1) [8, 106, 122]. Phospho-
rylated CREB is one of the transcriptional factors regulating 
Per1/2. Besides this, AP-1 is another transcriptional factor 
that can also bind with AP-1 sites in the promoter regions 
of Per genes. In the Per2 gene, AP-1 REs are putative and 
conserved, while in contrast are not well conserved in Per1 
[122]. Moreover, it has been reported that the sequences 
of CRE (TGA CGT CA) and 12–0-tetradecanoylphorbol-
13-acetate-responsive element (TRE) (TGA CTC A) are 
very similar, and that the nuclear factors of CREB, CRE 
modulator (CREM), and Jun were also very similar in struc-
ture [130, 131]. This may lead to transcriptional cross-talk 
and potential competitive effects. Therefore, we deduce that 
this physiological process may be involved in the interaction 
between Per1, Per2, and Homer1a genes, and may play a key 
role in supplement to the traditional feedback loops of the 
molecular circadian clock.

CREB conduction signals can also be regarded as an 
intrinsic part of clock oscillations, modulating acute altera-
tions in the circadian clock and transcription-translation 
feedback loops [118, 132].

Apart from circadian genes Per1/2, there are hundreds 
of genes that have CRE sequences in their promoter regions 
that can be bound with pCREB/CREB. Therefore, Per1/2 
might not be the only final common targets of antidepres-
sants and other genes, such as Homer1a, might have an inter-
action with these circadian genes (see below).

Homer1a

Homer1a is a member of the Homer family of postsynaptic 
scaffolding proteins, which is rhythmically expressed and 

acts as neuronal activity-inducible modulator of glutamater-
gic signaling [10, 13, 133]. It has been shown that Homer1a 
induction, as a downstream effect of  A1R signaling, may be 
a convergent point of several non-pharmaceutical treatments 
of MDD [9–11, 133]. Homer1a has been subsequently pro-
posed as a final common pathway of various antidepressant 
therapies, including ECT, TMS, SD, and ketamine, as well 
as for classical treatments, such as imipramine and fluox-
etine [10]. In addition, it has been shown that metabotropic 
glutamate receptor 5 (mGlu5) and α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionicacid receptor (AMPAR) might 
be the potential targets for Homer1a to act and exhibit its 
antidepressant effect [12]. Recently, Sato et al. revealed that 
the Homer1 gene is bimodally regulated by CREB via the 
CRE site and by the CLOCK/BMAL1 complex via E-box, 
demonstrating an important crosstalk between CREB and 
the circadian clock, and thus showing a pivotal role of 
Homer1a in integrating signals from both adenosine signal-
ing and circadian rhythms [13]. Therefore, this may be the 
most promising final common pattern in the pathogenesis of 
depression and the mechanism of antidepressants. Thus, we 
propose that Homer1 and Per genes, receiving signals from 
both CREB and the CLOCK/BMAL1 complex, which is 
inhibited by PERs, may be a potential common mechanism 
of various antidepressant therapies (Fig. 1).

Conclusions and Future Directions

Acute SD is known to elicit rapid antidepressant effects, 
while chronic sleep restriction is considered as a risk factor 
for depression [134]. However, adenosine is accumulated in 
the brain after both acute and chronic sleep loss and acts as 
modulatory neurotransmitter regulating brain homeostasis 
via modulation of sleep and homeostatic plasticity, circadian 
clockwork, and mood [3, 9, 135–138].

We deduce that, on one hand, this conflicting effect of 
adenosine might be due to the preferential activation of its 
receptors, since  A1R and  A2AR signaling have contrasting 
effects on mood. Perhaps during the acute SD phase, adeno-
sine has a greater effect on A1R [9], whereas, during chronic 
sleep loss, there may be a counterbalancing effect and pos-
sibly more action on the  A2AR with an opposing effect on 
downstream signaling (Serchov et. 2020). At the same time, 
caffeine, an antagonist of adenosine receptors, may have a 
stronger antagonistic effect on A2AR than A1R, resulting 
in an antidepressant effect [21, 22, 139]. On the other hand, 
pCREB may also have a biased or counterbalancing effect 
on Homer1 and Per genes, and the final Homer1a protein 
expression level may depend on the probability of circadian 
output, which may match the alternative hypothesis model 
provided by Lazzerini Ospri et al. [86].
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As discussed above, circadian gene expression is dif-
ferentially affected by chronic stress, depression, or anti-
depressant treatments in different brain regions. Thus, the 
different effects of adenosine signaling on the circadian 
clock, Homer1a expression, and mood might also be brain 
region-specific [11, 133].

Taken together, we summarize that adenosine  A1R/
A2AR signaling converges on the transcriptional factor 
CREB. After CREB is activated, it can bind to both CRE/
AP-1 sites on Per1/2 gene promoters, or the CRE site on 
the Homer1 promoter, thus modulating their expression. 
In turn, Per/Cry complexes translocate to the nucleus 
and inhibit BMAL1 activity. Since Homer1 expression is 
bimodally regulated by BMAL1 and CREB, we deduce 
that Homer1a expression might be inhibited by Per indi-
rectly (Fig. 1). Thus, Homer1a is potentially a final com-
mon pathway in the pathogenesis and treatment of depres-
sion, which links adenosine signaling, circadian clock, and 
neuro-plasticity together, mediating both the antidepres-
sant effects of acute SD and the detrimental action on 
mood of chronic sleep loss.

Additionally, the synthesis of dopamine is also regu-
lated in a circadian manner, through the time-dependent 
expression of TH by promoter occupancy of CLOCK, 
NAD + -dependent sirtuin 1 (SIRT1), and CREB [107]. This 
pathway links the metabolic system, circadian rhythms, and 
neurotransmitter system together, important in the regulation 
of many physiological processes and psychiatric diseases. 
In the future, we shall investigate this common mechanism 
from several other perspectives: neuro-inflammation, sys-
tems of monoamine and glutamatergic signaling, the hypo-
thalamic–pituitary–adrenal (HPA) axis, brain-gut axis, 
metabolic peptide signal transduction, and mitochondrial 
function, with the aim of exploring the common pathophysi-
ology of depression from a cellular to systemic level.

Above all, identification of the common pathogenesis 
of MDD will help us to better understand the underlying 
pathogenesis of mood disorders and to explore novel anti-
depressants or mood stabilizers with fewer side effects.
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