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Age-related macular degeneration (AMD) is a devastating neurodegenerative disease 
affecting millions worldwide. Complement activation, inflammation, and the loss of cho-
roidal endothelial cells have been established as key factors in both normal aging and 
AMD; however, the exact mechanisms for these events have yet to be fully uncovered. 
Herein, we provide evidence that the prototypic acute phase reactant, C-reactive protein 
(CRP), contributes to AMD pathogenesis. We discuss serum CRP levels as a risk factor 
for disease, immunolocalization of distinct forms of CRP in the at-risk and diseased ret-
ina, and direct effects of CRP on ocular tissue. Furthermore, we discuss the complement 
system as it relates to AMD pathophysiology, provide a model for the role of CRP in this 
disease, and outline current therapies being developed and tested to treat AMD patients.

Keywords: C-reactive protein, age-related macular degeneration, inflammation, complement, complement  
factor H, membrane attack complex

inTRODUCTiOn

Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting  
more than 8% of the global population (1), with roughly 11 million cases in the United States alone 
(2). Inflammation and complement activation are recognized as prominent events in the manifes-
tation and progression of AMD, with C-reactive protein (CRP) as a potential mediator in these 
processes. Here, we review AMD pathophysiology, the complement system, and the current evidence 
supporting CRP as a contributor to complement activation and inflammation in the context of  
AMD. Finally, we will present a model for the role of CRP in this disease and provide insight into 
future therapies for AMD patients.

AMD PATHOPHYSiOLOGY

Early AMD is clinically identified by the presence of extracellular deposits, called drusen, and/or 
pigmentary changes within the macula, the central 6 mm of the retina. If the disease progresses, 
vision loss can occur either from atrophy of the retina (termed advanced dry AMD or atrophic 
AMD) or aberrant growth of vessels beneath the retina (termed wet AMD or neovascular AMD). The 
primary pathology in AMD includes dysfunction and/or loss of (1) the photoreceptor cells, which 
are the light-sensing cells of the retina, (2) the retinal pigment epithelium (RPE), which forms the 
outer blood–retinal barrier and consists of a single layer of epithelial cells that support photoreceptor 
cell function, and (3) the choriocapillaris, the capillary bed that lies just outside the RPE (and forms 
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the innermost layer of the choroid) and provides oxygen and 
nutrients to both the RPE and photoreceptor cells.

While the pathologic changes that occur within the macula 
during AMD are incompletely understood, evidence supports 
complement-mediated changes and the loss of choroidal endo-
thelial cells (CECs) as early events in both normal aging and 
disease (3, 4). CECs are believed to be lost early in disease pro-
gression, which may accompany or even precede dysfunction and 
loss of the RPE (4–9). Loss of these supporting cells eventually 
leads to loss of photoreceptor cells within the macula, causing 
significant and irreversible visual decline (10).

THe COMPLeMenT SYSTeM in AMD

Although AMD is a complex, multifactorial disease, many genetic 
factors have been associated with disease risk. To date, 19 genetic 
loci have been identified, including genes involved in regulating 
complement activity (11). The discovery of a genetic link between 
AMD and the complement system supports previous histological 
and proteomic data identifying complement proteins as constitu-
ents of drusen in postmortem eyes (12–14).

The complement system, which is important for eliminating 
pathogens, cellular debris, and dying host cells, consists of three 
distinct arms: the classical pathway, the alternative pathway, and 
the lectin pathway. After pathway-specific initiation, followed 
by a series of cleavage events, the pathways continue, similarly, 
through to cleavage of C5 and entrance into a common terminal 
pathway. The terminal pathway culminates in formation of the 
membrane attack complex (MAC), which promotes cell lysis. 
Similar to other arms of the immune system, the complement 
system must be carefully regulated, and various serum- and 
tissue-derived complement proteins aid in the regulation of 
one or more pathways. One of the major genetic risk loci for 
AMD includes the complement factor H (CFH) gene, which 
encodes an alternative pathway regulator and harbors multiple 
disease-associated variants (15). Importantly, the Y402H single 
nucleotide polymorphism (SNP) in CFH is a common variant 
that significantly increases AMD risk (15–18). The Y402H sub-
stitution occurs in the SCR7 region of the complement factor H 
(FH) protein, resulting in impaired protein binding to various 
substrates, including proteoglycans (19–22) and CRP (23).

Another component of the complement system, the MAC, has 
been linked to AMD through various histological studies. MAC 
deposition becomes increasingly elevated within the choriocapil-
laris with advancing age in human postmortem eyes, and this 
phenomenon is specific to the eye (24). MAC accumulation is 
further elevated in CFH Y402H high-risk and AMD maculae 
beyond what is observed in normal aging (3). Compromised 
binding of the FH Y402H protein to its extracellular matrix 
substrates, such as heparan sulfate proteoglycans, may increase 
complement activation in the human retina (21), and may be 
one cause for elevated MAC deposition in the macula in AMD 
(3, 4). The potential consequences of MAC accumulation in the 
choriocapillaris are twofold. First, MAC formation on CECs 
in  vitro results in significant cell lysis. Second, the cells that 
survive complement attack adopt an angiogenic phenotype (25). 
While complement activation and MAC accumulation in the 

choriocapillaris in AMD are well-established events (26), the 
precise details for how and why these events occur remain to be 
fully elucidated.

CRP in COMPLeMenT ACTivATiOn  
AnD inFLAMMATiOn

C-reactive protein is an established component of drusen in 
human postmortem eyes (14, 27–29) and it plays a role in both 
complement activation and regulation (23, 30, 31), implicating 
CRP as an intriguing candidate for disease involvement.

Studies examining the role of CRP as a regulator of comple-
ment activation and other inflammatory response pathways have 
recently evolved to evaluate and distinguish the bioactivities of 
two distinct conformational forms of the protein. The widely 
appreciated serum-associated form is a hepatically synthesized 
pentameric discoid protein (pCRP) with high aqueous solubility 
and calcium-dependent phosphocholine (PC) binding affinity. 
pCRP can bind to PC groups exposed on disrupted plasma 
membranes, as occurs when lysophospatidyl choline is formed 
(32). Upon binding to disrupted cell membranes, as shown with 
activated platelets and apoptotic monocytes, pCRP undergoes 
rapid dissociation into monomeric form (mCRP) (33, 34) with 
distinctive solubility, antigenicity, tissue localization, binding 
ligands, and functions compared to pCRP (30, 35, 36). It is now 
known that mCRP rather than pCRP is an efficient activator of 
the classical complement pathway involving C1 (via binding to 
C1q), C4, C2, and C3 (37, 38). mCRP also acts as a regulator 
of the alternative complement pathway, via recruitment of FH 
to injured tissues. This binding to FH was shown to occur in a 
dose-dependent manner and at a site that does not interfere with 
mCRP binding to C1q (38). Importantly, the high-risk FH Y402H 
protein has reduced mCRP binding by up to 45% when compared 
to the FH Y402 protein (28, 39, 40).

In the context of atherosclerosis and coronary artery disease, 
mCRP has been shown to be strongly pro-inflammatory, differ-
entiating monocytes toward a pro-inflammatory M1 phenotype 
(41), delaying neutrophil apoptosis, and stimulating leukocytes 
pro-inflammatory effector responses (42). In addition, Zouki and 
colleagues revealed a mCRP-mediated upregulation of CD11b/
CD18 expression on the surface of human neutrophils, which 
results in enhanced adhesion of these cells to activated endothe-
lium (43). Monomeric CRP can also activate human coronary 
artery endothelial cells in vitro, resulting in production of IL-8 
and MCP-1 (44). Moreover, mCRP stimulates angiogenesis and 
promotes tube formation in brain microvasculature (45). While 
CRP has been widely studied outside the eye, the bioactivities of 
both forms of CRP are now beginning to be elucidated within 
ocular tissue in the context of AMD.

SeRUM-ASSOCiATeD CRP  
AS A RiSK FACTOR in AMD

Seddon and colleagues began examining a potential link between 
CRP and AMD, by assessing CRP levels in the serum of AMD 
and control patients. They found CRP levels to be higher in 
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individuals with intermediate and advanced AMD compared to 
controls (46), and they discovered a positive correlation between 
serum CRP levels and AMD progression (47). Furthermore, they 
found the lowest risk of AMD progression associated with CRP 
levels <0.5 mg/L, little change to AMD risk for CRP levels within 
the range of 0.5–10.0 mg/L, and the highest risk for AMD pro-
gression when CRP levels reached at least 10 mg/L (47). Finally, 
Seddon’s group examined the relationship between serum CRP 
levels, CFH genotype, and AMD risk (48), and they found CRP 
and CFH genotype to be independently associated with AMD 
risk. In fact, both the CFH variant and high CRP levels have an 
additive effect on AMD risk.

Interestingly, others have gone on to assess the relationship 
between serum CRP levels and AMD status in individuals 
harboring variants in the promoter region of the CRP gene, all 
of which either increase or decrease CRP levels in the serum. 
However, regardless of whether the SNP increased or decreased 
CRP levels, the authors found no direct association between any 
of the variants and AMD status (49–51). While none of these 
variants result in an amino acid change to the CRP protein and, 
therefore, do not affect biological function of the protein, these 
studies suggest that serum CRP levels alone may not be enough 
to alter AMD risk.

CRP in THe AMD ReTinA

The association between serum CRP levels and AMD risk may  
be important for defining disease biomarkers; however, the 
primary pathology of AMD occurs in the retina. Prior to the 
realization that CRP exists in more than one form (e.g., mCRP 
and pCRP), work done by Johnson and colleagues examined the 
presence of total CRP in the retina of postmortem eyes genotyped 
at the CFH locus (27). They showed that high-risk eyes (homozy-
gous for the Y402H SNP) had more CRP immunoreactivity in 
the choroid compared to low-risk eyes (homozygous for Y402), 
especially in regions containing drusen-like deposits (27).  
A similar study aimed to determine differences in total CRP levels 
in the retina based on AMD status (52). CRP immunoreactivity  
differed based on disease status, with early and wet AMD eyes 
having more intense CRP immunolabeling compared to controls. 
However, in advanced dry AMD eyes with geographic atrophy 
(GA), CRP immunoreactivity in the non-atrophic area was 
similar to that of age-matched controls, with CRP levels signifi-
cantly reduced within the atrophic lesions. CRP was primarily  
immunolabeling extending into Bruch’s membrane in early and 
wet AMD eyes (52). Interestingly, FH immunoreactivity was 
significantly reduced in the choroid in AMD eyes compared to 
controls, regardless of disease stage, suggesting an imbalance in 
CRP and FH levels, especially in early and wet AMD.

A recent study of human postmortem eyes examined CRP 
in the retina to determine which form of CRP is present in the 
tissue and to begin teasing out its precise role in AMD pathogen-
esis (29). Using monoclonal antibodies that clearly differentiate 
pCRP and mCRP antigens (53), the study found that mCRP is 
the primary form of CRP in the choroid, and it is predominantly 
localized to the choriocapillaris and Bruch’s membrane. Similar 
to previous work looking at total CRP (27), mCRP is more 

abundant in donor eyes with the high-risk CFH polymorphism 
compared to age-matched controls. Monomeric CRP also 
exhibits a direct effect on CECs in  vitro, including increasing 
CEC migration and increasing monolayer permeability. Further- 
more, mCRP treatment of human RPE-choroid tissue ex vivo 
results in a significant upregulation of pro-inflammatory gene 
expression, including an increase in ICAM1, which has been 
associated with AMD previously (54). These data suggest a role 
for mCRP in promoting inflammation in the choroid, which may 
be especially true in individuals at risk for AMD development. 
This study revealed co-localization between mCRP and the MAC 
in the choriocapillaris of human postmortem eyes, providing 
evidence to support the hypothesis that mCRP increases comple-
ment activation in the choriocapillaris (29).

The work outlined above shows that mCRP primarily localizes 
to the choroid; however, other retinal cell types may be affected 
by the presence of this potent pro-inflammatory molecule 
within ocular tissue. For example, Molins et al. propose a role 
for mCRP in disruption of the outer blood–retinal barrier. They 
found that treatment with mCRP in vitro led to a disruption in 
tight junction integrity in ARPE-19 monolayers (55). Exposing 
ARPE-19 cells to mCRP also stimulates IL8 and CCL2 expres-
sion, two molecules that are important for leukocyte recruitment 
and blood–retinal barrier integrity (40, 56). Monomeric CRP 
binds necrotic RPE cells in  vitro and enhances recruitment of 
FH to those cells by over 100% compared to FH recruitment 
without mCRP. In contrast, mCRP increases the recruitment 
of the Y402H variant of FH by just 50%. The mCRP-mediated 
recruitment of FH results in a 35% decrease in TNFα secretion 
from necrotic RPE cells, which is reduced to a 1% decrease for 
the high-risk FH molecule (28). These data indicate that without 
efficient recruitment of FH to RPE cells, the pro-inflammatory 
effects of mCRP may override the protective effects, leading to 
exacerbation of AMD pathology.

MODeL FOR THe ROLe OF CRP  
in THe PATHOGeneSiS OF AMD

The amount of CRP that gets made during an acute phase 
response is up to 1,000-fold beyond baseline levels. While it is 
unlikely that all of the pCRP in serum gets into the tissue, it is 
possible that much of it does reach the target tissue and disso- 
ciate into monomers. Furthermore, local production of mCRP 
cannot be ruled out; however, more work is required to determine 
the precise source(s) of mCRP in the choriocapillaris. Regardless 
of the source, once mCRP reaches the choriocapillaris, it may 
presumably outnumber the regulatory FH molecules present, 
which could create an imbalance in complement regulation 
in favor of more complement activation. Furthermore, in the 
choriocapillaris, where complement injury is highest in AMD, 
FH is the primary regulator of the complement system. This is in 
contrast to the RPE, which has multiple complement regulators 
present and, therefore, may be better armed against complement-
mediated injury (57, 58). In an individual who harbors the 
high-risk CFH polymorphism, their ability to control comple-
ment, at least the alternative pathway, is further limited due to 
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FiGURe 1 | Schematic of mCRP-associated age-related macular degeneration (AMD) pathogenesis. The healthy retina and choriocapillaris is depicted in  
(A). With advancing age, the membrane attack complex (MAC) accumulates around the vessels of the choriocapillaris (B). In individuals with an increased  
genetic risk for AMD (via the CFH Y402H polymorphism), mCRP accumulates around the vessels of the choriocapillaris (C), and this may lead to increased 
complement activation and subsequent elevation in MAC levels in the tissue (D). The mCRP- and/or MAC-mediated changes to the tissue environment may  
result in CEC death and degeneration of the choriocapillaris (e). Loss of the vessels of the choriocapillaris can cause dysfunction and degeneration of the RPE  
(F), and eventually the photoreceptor cells (G). Alternatively, loss of choriocapillaris vessels can lead to choroidal neovascularization formation (H). RPE, retinal 
pigment epithelium; CEC, choroidal endothelial cell; CNV, choroidal neovascularization.
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altered binding capabilities of mutant FH to its tissue-associated 
ligands (e.g., glycosaminoglycans, such as heparan sulfate, within 
Bruch’s membrane). Since mCRP is shown to be present in these 
tissues, it is possible that mCRP may affect complement regula-
tion resulting in the increased MAC deposition observed in the 
choriocapillaris with advanced age and disease. Together, these 
data propose a mechanism for CEC loss in AMD pathogenesis, 
via complement-mediated attack (Figure 1).

Evidence suggests that mCRP also plays a key role in promot-
ing an inflammatory environment in AMD eyes. For example, 
mCRP increases ICAM1 mRNA and protein levels in human 
postmortem RPE-choroid tissue ex vivo (29). ICAM-1, which 
is constitutively expressed in the choriocapillaris with highest 
levels in the macula (59), acts to promote leukocyte recruitment 
in the choroid (60) and elevated levels of ICAM-1 have been 
associated with AMD (54). Ultimately, combining the evidence 
for (1) its localization to the choriocapillaris in high-risk and 
AMD patients, (2) its role in complement system activation and 
its interaction with AMD-associated complement proteins, (3) its 
ability to directly promote CEC activation in vitro and ex vivo, and 
(4) its pro-inflammatory effects on RPE-choroid tissue, mCRP is 
a promising target for the treatment of AMD.

THeRAPeUTiC DeveLOPMenT TO 
TARGeT inFLAMMATiOn AnD 
COMPLeMenT ACTivATiOn in AMD

Treatment options for AMD are currently limited, with the most  
effective therapies consisting of AREDS supplements (antioxi-
dants plus zinc), which have been shown to reduce the risk of 
progression beyond early or intermediate AMD by about 25–30% 
over 5  years (61), and intravitreal anti-vascular endothelial 
growth factor injections, which can help ameliorate the symp-
toms of wet AMD (62). The absence of a more effective and 
universal therapy has been a driver for the continued pursuit 
of novel therapeutic targets. Based on the evidence for mCRP 
and complement activation as key players in AMD pathogen-
esis, future therapies may need to target both mCRP-mediated 
effects in addition to complement proteins to effectively treat the  
disease. Many clinical trials are already completed or underway 
to assess treatments that target inflammation or complement 
activation in individuals with AMD [Table  1; reviewed in  
Ref. (63, 64)]. For example, a handful of trials have aimed to 
target inflammation in participants with AMD using corticoster-
oids such as dexamethasone [NCT01162746] and fluocinolone 
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TABLe 1 | Completed and ongoing clinical trials to reduce inflammation and complement activation in age-related macular degeneration (AMD).

Therapy Mechanism Route Target Trial identifier

Ranibizumab + dexamethasone Anti-VEGF + corticosteroid Intravitreal injection CNV NCT00793923
NCT01162746

Dexamethasone Corticosteroid Intravitreal implant CNV NCT00511706

Fluocinolone acetonide (iluvien) Corticosteroid Intravitreal implant AMD NCT00605423

Eculizumab Humanized monoclonal antibody targeting C5 IV infusion GA NCT00935883

ARC1905 Anti-C5 RNA aptamer Intravitreal injection GA
CNV

NCT00950638
NCT00709527

Zumira® Anti-C5 aptamer Intravitreal injection GA NCT02686658

LFG316 Humanized monocloncal antibody targeting C5 Intravitreal injection GA
CNV

NCT01527500
NCT01535950

LFG316 + CLG561 Humanized monocloncal antibody targeting C5 + anti-properdin antibody Intravitreal injection GA NCT02515942

POT-4/Compostatin Inhibitor of C3 cleavage Intravitreal injection CNV NCT00473928

Lampalizumab Humanized monocloncal antibody targeting CFD Intravitreal injection GA NCT02247479
NCT02247531

AAVCAGsCD59 sCD59 overexpression Intravitreal injection GA NCT03144999

GA, geographic atrophy; CNV, choroidal neovascularization.
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acetonide (iluvien) [NCT00605423]. In addition to steroid 
therapies to reduce inflammation, various studies have taken aim 
at regulating complement system activation in AMD patients, 
including drugs targeting complement components C5, C3,  
and CFD.

Despite the promise these ongoing trials provide, many hur-
dles still exist in the therapeutic regulation of inflammation and 
complement in AMD patients, including delivery method, dose, 
and disease stage at time of treatment. The use of gene therapy to 
treat AMD may help resolve these current issues and provide a 
promising option for future treatments. Early studies to examine 
gene therapy-mediated treatments are already underway in mice 
[e.g., Cr2-fH fusion protein (65) and FH overexpression (66)] 
and in human clinical trials (AAVCAGsCD59; NCT03144999). 
Additional gene therapy options, such as CRISPR/Cas9-mediated 
gene editing, may be useful to correct high-risk variants in 
AMD patients, including the CFH Y402H polymorphism. Since 

advanced AMD pathology includes loss of multiple cell types 
within the macula, cell replacement therapy, possibly in combi- 
nation with other gene editing or drug therapies, could provide the 
greatest promise for improved visual acuity in AMD patients. As 
we continue to advance our understanding of the key mediators 
in AMD pathogenesis, we continue to move closer to the develop-
ment of life-changing treatments for millions of individuals.
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