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Abstract

The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the
transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms
underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in
PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated,
resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that
Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant.
We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF
(secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a
similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within
PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results
indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which
Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell.
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Introduction

Primordial germ cells (PGCs) are embryonic precursors of the

gametes that arise before other major cell lineages in most

multicellular animals [1]. This early specification necessitates a

lengthy migration through the developing embryo in order to

reach the nascent ovaries or testes. In mice, epiblast-derived cells

seal their germline commitment at the embryo periphery ,e7.25,

then enter the forming endoderm and travel through the

elongating hindgut epithelium. PGCs make a coordinated exodus

into the surrounding mesentery at e9.5 and then converge on the

gonadal ridges between e10.5 and e11.5. Though exquisitely

coordinated, this process is also imperfect; by e12 when migration

is over, stragglers consistently remain outside the gonad in midline

tissues, and are eliminated by apoptosis [2]. The importance of

balanced regulation of PGC survival and migration is evident by

the consequences of dysregulation: failure to survive or reach the

gonad can lead to sterility, whereas inappropriate survival can lead

to germ cell tumors [3,4]. The molecular mechanisms underlying

the migration of these evolutionarily essential but relatively

inaccessible cells remain largely unknown in the mammalian

germline. Here we conducted a forward genetic screen for germ

cell defects in mouse embryos and identified an allele of Ror2.

Ror2 is a highly conserved receptor tyrosine kinase with

homologs in many metazoans from Aplysia to Drosophila to hu-

mans [5]. Widely expressed during development, Ror2 has been

implicated in chondrocyte differentiation, cochlear, craniofacial,

heart, limb and gut morphogenesis in mice and humans [6–9].

Work in a number of different organisms suggests that Ror2

signaling affects cell polarity. In the developing mouse gut

epithelium, the protein exhibits apicobasal polarity in its distribution

[10]. Polarity is requisite for cells undergoing directed migration,

cell division in a particular orientation, as in asymmetric divisions,

and for the organization or shape of cells with respect to their

neighbors, for example in convergent extension. Defects in cell

shape and convergent extension have been reported in the mouse

gut, organ of Corti, and Xenopus gastrula as a result of Ror2

signaling loss [9,11–13]. Ror2-mediated polarized cell division has

been reported in C. elegans [14]. A role for Ror2 signaling in

directional migration has been reported in the mammalian palate

[15] and in several cell lines, via c-Jun N-terminal Kinase and the

actin-binding protein FilaminA [16–18].
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Phenotypic resemblance between mouse embryos with targeted

deletions of Ror2 and those deficient for Wnt5a first suggested that

these genes share a common pathway [6,8,17,19]. Biochemical

approaches later confirmed ligand-receptor interactions between

Wnt5a and Ror2 via the cysteine-rich (frizzled-like) extracellular

domain of Ror2 [17]. Indeed, the expression patterns of Wnt5a

and Ror2 virtually overlap in the primitive streak, tail mesoderm

and limb buds of midgestation mouse embryos [19–21]. Wnt5a

was similarly invoked in aspects of cell polarity, including orien-

ftation of cell division in the limb [22], convergent extension

movements and cell shape in the Xenopus gastrula [23,24], and

polarized migration in a melanoma cell line [25,26]. Many of these

different Wnt5a-Ror2 pathway mutants exhibit similarly altered

distribution of polarity mediators, such as Disheveled [23,27,28],

the Dlg-Lgl complex [24,29], Van Gogh [29], or adhesion

receptor complexes [26].

The identification of the Ror2Y324C mutant in an unbiased screen for

PGC defects brings to light a previously unrecognized function of Ror2

in germ cell development. We show here that Ror2 and its putative

ligand Wnt5a promote efficient migration of PGCs to the embryonic

gonads. These studies demonstrate a cell intrinsic function for Ror2 in

potentiating the polarized response to secreted KitL, drawing a new

link between Ror2 and Kit signaling in PGC migration.

Results

An ENU allele of Ror2 and its expression in PGCs
As an unbiased approach to identifying new genes involved in

mouse germ cell development, we conducted a genome-wide

recessive ethylnitrosourea (ENU) mutagenesis screen for PGC

defects in e9.5 embryos [30]. One of the mutations identified

based on the presence of ectopic PGCs mapped to the region of

Ror2. An A to G transition in exon 7 at nucleotide 1203 causes a

tyrosine to cysteine substitution at position 324 (Y324C) of the

ROR2 predicted protein (Figure 1A). This missense mutation falls

in the kringle domain, a conserved structural motif in the ROR2

extracellular domain. Ror2Y324C homozygous embryos exhibit

defects in tail elongation (Figure 1B, 1C) and somite segmentation,

similar to the Ror2 targeted deletion allele (Figure 1D) [8,17]; like

the knockout, Ror2Y324C mutants die perinatally. Ror2 immuno-

blotting on e10.5 embryo lysates revealed a double band at

approximately 200 kD; both bands were present in similar

amounts between WT and Ror2Y324C mutants (Figure 1E). In

humans, missense mutations in the hRor2 cysteine rich, kringle and

tyrosine kinase domains that are associated with Robinow

syndrome cause the protein to be retained in the endoplasmic

reticulum [31]. We examined the expression of ROR2 at e11.5 by

intracellular staining with an antibody directed against the

cytoplasmic tail of the receptor; by flow cytometry signal was

present at similar levels in WT and Ror2Y324C (Figure 1F, right).

These experiments suggest that the mutation does not affect

protein stability but do not discriminate between its normal or

abnormal subcellular localization.

To determine whether Ror2 is expressed in PGCs, we employed

a transgenic mouse strain, Oct4DPE-EGFP, which expresses

Enhanced Green Fluorescent Protein (GFP) under a modified

Oct4 reporter that is specific to PGCs during mid-gestation

[10,32] (Figure 1F). By flow cytometry, ROR2 intracellular

staining was present within the GFP+ population at e11.5

(Figure 1F). Furthermore, when Oct4DPE-EGFP+ PGCs were

purified flow cytometrically, Ror2 transcript could be detected by

semi-quantitative RT-PCR; more transcript appeared to be

present in GFPnegative cells from embryo tails (denoted ‘soma’;

Figure 1G), where high levels of Ror2 have been previously

detected by in situ hybridization [8]. The purity of sorted PGCs

was confirmed by RT-PCR for Oct4, which was absent in somatic

cells, and KitL, which was confined to soma (Figure 1G). ROR2

protein was similarly detected in histologic sections with two

different antibodies; signal appeared to be concentrated at the

apical surface of the hindgut and somites [33] and in the ventral

neural tube in wild type embryos (Figure 1H–1H9), as previously

reported [34]. ROR2 was also present throughout the e10.5 dorsal

mesentery and enriched at the membrane of wild type PGCs

(Figure 1I, 1I9). These studies confirm the expression of Ror2

mRNA and protein in migratory and postmigratory PGCs, as

suggested by previous microarray data [35], and demonstrate the

stable expression of Ror2Y324C mutant protein.

A major ligand for Ror2 is believed to be Wnt5a. Wnt5a mRNA

expression in the tail and hindgut of the embryo overlaps that of

Ror2, although precisely which cells secrete Wnt5a remains unclear

[19–21]. By RT-PCR we determined that Wnt5a transcript is

present in sorted Oct4DPE-EGFP+ PGCs, although it is more

abundant in GFPnegative somatic cells of the tail and hindgut

(Figure 1G). In histological sections stained with a WNT5A

antibody, we observed bright foci as well as intercellular signal in

the intestine and gonadal ridges (Figure 1J–1J9), which both lie on

the PGC migratory route. Upon closer examination, WNT5A

could be detected at variable levels at or near the surface of PGCs

(Figure 1J, inset). These results collectively identify a role for Ror2

in PGC development and raise the possibility that PGCs perceive

paracrine or autocrine WNT5A signals via the Ror2 receptor.

PGCs are gradually depleted in Ror2 and Wnt5a mutants
We next characterized the phenotypes of PGCs in Ror2Y324C

mutants. In e10.5 embryos stained with SSEA1 antibody [36,37],

PGCs can be visualized migrating through the dorsal mesentery

(Figure 2A). In Ror2Y324C mutants, PGCs do not migrate rostrally,

but remain in the mesentery surrounding the caudal hindgut

(Figure 2B), as well as on the surface of the tail and in the allantois

(Figure S3B, S3C). At e11.5, immunostaining with GCNA (a

marker of postmigratory PGCs [38]) revealed a reduction in the

number of PGCs within Ror2Y324C gonad primordia compared to

wild type; furthermore, the distribution of Ror2Y324C PGCs was

skewed toward the caudal end of the gonad and extragonadal

PGCs were increased in midline tissues (Figure 2E, 2F). At e12.5,

male and female Ror2Y324C gonads appeared less densely populated

with PGCs (Figure 2I, 2J, female not shown).

We developed techniques for the quantification of PGCs in the

entire embryo or embryonic gonad with confocal imaging and 3D

analysis (see Methods). The mean number 6 standard deviation of

PGCs in mutants at e10.25 (443673) was similar to wild type

Author Summary

Egg and sperm derive from precursors in the early embryo
called primordial germ cells (PGCs). The mechanisms
underlying the migration of PGCs through the embryo to
the forming gonads remain unclear. In a genetic screen,
we identified a role for the receptor Ror2 and its ligand
Wnt5a in promoting PGC colonization of the embryonic
gonads. By ex vivo culture, we show that Ror2 acts
autonomously in PGCs to enhance their polarized
response to the chemotactic factor SCF. Asymmetric
distribution of ROR2 within PGCs in vitro and in vivo
suggests that signaling via Ror2 locally amplifies cell
polarity in response to other directional cues. These
studies identify a novel relationship between Ror2 and
cKit signaling in polarized migration.

Ror2 and PGC Migration
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(5516157; Figure 2D), in spite of their abnormal distribution.

However, at e11.5, the number of Ror2Y324C PGCs in gonads

was diminished (12436369) compared to wild type (25986265,

p = 0.0002; Figure 2H). At e12.5 this difference persisted (p = 0.009),

as 705862282 PGCs were counted in wild type gonads and

382561144 in Ror2Y324C (Figure 2L); male and female were

combined here, as their numbers were similar. The PGC estimates

and corresponding doubling time found in wild type embryos (13.4–

16.7 hours) are similar to those reported previously [39]. The

doubling time for Ror2Y324C PGCs falls within this range for

postmigratory PGCs, but was more protracted from e10.25–11.5

(20 hours), predicting an earlier decline in proliferation or rise in

apoptosis. We compared the phenotype of Ror2Y324C PGCs to that of

a targeted Ror2 knockout allele [8]. At e11 and e12, we observed a

similar PGC decrease compared to age-matched wild type C57Bl/6

littermates (Figure S1). Despite genetic background differences, the

PGC deficit in Ror22/2 embryos was indistinguishable from that

resulting from our point mutation. This similarity suggests that

Ror2Y324C is a strong loss of function allele.

Previous work has shown that Ror2 lies downstream of Wnt5a both

biochemically and genetically [17,19,40]. Therefore, we examined the

PGCs of Wnt5a null mutants and found a more pronounced and

earlier deficit compared to Ror2. At e10.5, Wnt5a2/2 PGCs were

similarly caudally distributed (Figure 2C) but were already depleted in

number (2426121) compared to wild type (Figure 2D). We noted

significant reductions at e11.5, when 3106148 PGCs were present in

Wnt5a gonads (Figure 2G, 2H), and by e12.5 this number increased to

15876985 (Figure 2K, 2L). Consistent with biochemical data [17,40],

the greater severity of the Wnt5a germ cell phenotype suggests that this

ligand operates through other receptors besides Ror2. Together, these

studies demonstrate that Wnt5a and Ror2 mutants are phenocopies in

the PGC compartment, which corroborates their function there as

ligand and receptor.

Increased programmed cell death of PGCs in Ror2 and
Wnt5a mutants

To investigate the cellular mechanism underlying the PGC

deficit in Ror2 and Wnt5a mutants, we extended our quantitative

imaging in the embryonic gonad to include markers of proliferation

and death. We performed triple immunofluorescence for GCNA, as

well as phospho-histone H3 (PHH3), and cleaved PARP to quantify

subsets of mitotic and apoptotic PGCs, respectively (Figure S2). No

differences were observed in cPARP expression among postmi-

gratory PGCs in wild type, Ror2, or Wnt5a gonads (Figure 3).

However, analysis of e10.5 embryo sections revealed an increase in

cPARP expression among still migratory PGCs in Ror2Y324C

(11.961.6%) and Wnt5a (11.464.8%) relative to wild type

(4.361.3%; Figure 3A, staining shown in Figure S3). This discrete

wave of apoptosis preceded any observed loss in cell number in Ror2

mutants. We next compared the frequencies of programmed cell

death between PGCs within and outside the e11.5 gonad. Caspase3

staining in histologic sections revealed similar frequencies in

properly localized PGCs, but increased apoptosis among extra-

gonadal Ror2Y324C germ cells (14.061%) compared to wild type

(2.462.4%) and Wnt5a (4.961.2%; Figure 3B). Examination of

PGC proliferation by PHH3 staining did not reveal significant

differences in the frequency of proliferating PGCs between wild-

type, Wnt5a, or Ror2Y324C embryos at e10.25 or e11.5 (Figure 3C);

despite several hundred PGCs counted in each genotype at each

stage, the variation was large. Together these results demonstrate

that increased apoptosis rather than reduced proliferation contrib-

utes to the PGC deficit in Ror2 and Wnt5a mutants.

Ror2 is required for efficient PGC colonization of the
gonads

Restriction of the observed burst of programmed cell death to

migratory PGCs, together with its absence in gonadal PGCs,

suggested that the location of mutant germ cells could be a factor

in their elimination. On one hand, migrating mutant PGCs could

be more sensitive to the reduced levels of survival factors such

as KITL and SDF1 in the dorsal mesentery as compared to

Figure 1. A Ror2 ENU allele and expression in PGCs. (A)
Schematic of the Ror2 gene product with indicated mutation at
nucleotide 1203 and predicted amino acid change. (B–D) Ror2Y324C

homozygotes and (C) Ror2 null embryos (D) at ,e10.75 exhibit a short
tail (arrow). (E) Whole embryo lysates from e9.5 immunoblotted for
ROR2 and b-Tubulin indicate that protein is present in Ror2Y324C

homozygous mutants. (F) PGCs at e11.5 flow cytometrically identified
by the Oct4DPE-GFP transgene (left) show comparable levels of ROR2
intracellular staining (right). (G) RT-PCR from WT sorted Oct4DPE-GFP+

(denoted PGC) and GFPneg tail somatic (soma) cells, and no cDNA
controls (-) at e10.0 show the presence of Ror2 and Wnt5a in both
populations. The purity of Oct4DPE-GFP+ cells was confirmed by the
presence of Oct4 and absence of KitL. Both images are from the same
gel, with 100 bp ladder shown at right. (H–H9) ROR2 immunostaining
(green) in the ventral neural tube, hindgut and somites (arrowheads) of
WT e10.5 sections. Scale bar = 100 um. (I–I9) ROR2 immunostaining
(green) was present throughout WT e10.5 dorsal mesentery and
appeared enriched on the surface of PGCs, coincident with SSEA1 (red).
Scale bar = 24 um. (J–J9) In e11.5 transverse sections, WNT5A immuno-
staining (green) was enriched in the intestine (arrow) and gonadal
ridges (dashed lines) where the majority of PGCs (red) reside. Nuclei are
shown in grey. Variable levels of WNT5A signal were observed in PGCs,
such as these two adjacent examples (inset, 56 magnification). Scale
bar = 118 um.
doi:10.1371/journal.pgen.1002428.g001
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the gonad [2,41,42,43], where they are more protected from

death. On the other hand, inefficient migration may lead to an

accumulation of ectopic Ror2 PGCs, which die in an environment

lacking survival factors [2]. To distinguish between these

possibilities, we rescued PGC apoptosis in Ror2 mutants by

generating double mutants with a targeted knockout of the pro-

death gene Bax. Previous work established an increase in ectopic

PGCs in e11.5 Bax single mutants due to the lack of apoptosis of

mis-migrated PGCs, although the total number of PGCs remained

unchanged [2]. Genetic ablation of Bax in Ror2Y324C mutants

increased the number of midline and ectopic PGCs, but did not

restore the number of PGCs in the gonads. At e11.5, 18156362

PGCs were counted in Ror2; Bax double mutant gonads, which did

not differ from 12756359 in stage matched Ror2 littermates

(p = 0.07; Figure 3D). Although Bax does not rescue PGCs in Ror2

gonads, a significant increase in the total number of PGCs in the

entire aorta-gonad-mesonephros region of double mutants com-

pared to Ror2 single mutants (p = 0.036; data not shown) reflects

rescue of ectopic PGC death throughout the midline in Ror2; Bax

(Figure 3G, compared to Figure 3E, 3F). This result suggests that

defects in migration are primary to the defects in PGC survival in

Ror2 mutants.

We next directly compared the efficiency of PGC migration

in mutants. When quantified in histological sections at e11.5

(Figure 3H, 3I), ectopic (extragonadal) PGCs comprised over 70%

of the total PGCs in Wnt5a mutants, and 30% in Ror 2Y324C,

compared to less than 5% in wild type (Figure 3J). Poor cell

trafficking could therefore account for the loss of gonadal PGCs of

both mutants at e11.5. However, it remained unclear whether

morphologic differences in the caudal hindgut of both mutants

cause the observed migration defects. Indeed, morphological and

molecular analysis revealed a shortening and widening of the

Ror2Y324C caudal hindgut at e9.5 (Figure 1E, Figure S4), which

corresponds to the PGC exodus from the hindgut. Upon

examining embryos before hindgut formation, we confirmed that

the location and number of early PGCs were indistinguishable

from wild type in Ror 2Y324C as well as Wnt5a at e7.5–8.0 (Figure

S5). By e9.0, we observed ectopic PGCs accumulated in the

allantois, throughout the tail mesoderm, and caudal hindgut of

Ror2Y324C mutants (Figure S6A–S6C). However, this phenotype

does not distinguish between the possibilities of an intrinsic PGC

migration defect versus a structural abnormality that hindered the

passage of PGCs from the allantois into the hindgut pocket. [44].

Given the previously demonstrated expression of Wnt5a through-

out the allantois and primitive streak [19], we wondered whether it

Figure 2. PGC depletion in Ror2 and Wnt5a mutants. (A–C) PGCs were visualized by wholemount SSEA1 immunostaining with SSEA1 antibody
in e10.25 WT, Ror2, and Wnt5a embryos. (E–G) Gonadal ridges from e11.5 stained with GCNA, and (I–K) e12.5 male gonads stained with GCNA
antibody. The caudal end is down in all images. (D, H, L) Quantification of PGCs in the entire e10.25 embryo, e11.5 and e12.5 gonads from confocal
stacks, with individuals denoted as WT (diamond), Ror2Y324C mutants (triangle), and Wnt5a null (circle), and means indicated as bars. Consistent with
appearances, a significant reduction of PGCs was observed in Wnt5a and from e11.5 onward in Ror2Y324C. We noted no significant difference in the
number of PGCs between XX and XY gonads at e12.5 (not shown). Results of the Student’s t-test are indicated, * p,0.05, **, p,0.01, ***p,0.001.
doi:10.1371/journal.pgen.1002428.g002
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could act chemotactically to draw PGCs from the allantois into the

hindgut. To address this possibility, we implanted beads coated with

WNT5A into the caudal region of e8.0 embryos. Control BSA-

coated beads delivered to the hindgut pocket did not disrupt embryo

or PGC development over 24 h culture (Figure S6D, S6G). Beads

soaked in recombinant WNT5A or concentrated conditioned

medium did not alter the course of PGCs, whether placed directly

in or near their path (Figure S6E, S6H). Consistent with previous

reports [43], beads similarly impregnated with the known

chemoattractants SDF1and Stem Cell Factor (SCF, or secreted

KitL) affected migration of PGCs at close range, inducing

occasional deviation from their normal route (Figure S6F, S6I).

Although we did not assess biological activity of Wnt5a-soaked

beads, when PGCs were explanted and cultured over 24 hours, we

did measure a modest increase in their number in the presence of

recombinant WNT5A, suggesting that WNT5A is biologically

active (Figure S6J). Collectively these results could indicate that

WNT5A may not act as a direct chemotactic cue for PGCs; rather,

they suggest that Wnt5a and Ror2 could have a permissive role to

allow the response of PGCs to other navigation signals.

Ror2 autonomously enhances chemotactic response of
PGCs to SCF in vitro

Reduced PGC colonization of the gonads in Ror2 and Wnt5a

mutants could result from disruptions in hindgut architecture or

from intrinsic defects in PGC migration. The expression of Ror2

in both PGCs and their surrounding tissues does not provide any

insight. In fibroblasts, previous work showed that WNT5A induces

motility, cell shape change, and chemotaxis via Ror2 [16,45]. We

did not observe PGC chemotaxis toward a WNT5A source in

cultured embryos. Other work shows that WNT5A polarizes

melanoma cells when a chemotactic gradient is present [26]. We

sought a direct test of migratory capacity of isolated Ror2 PGCs.

However, when sorted from e9.5–10.5 embryos using the

Oct4DPE-EGFP reporter, we did not observe any migration of

wild type PGCs toward SDF1 or SCF in a transwell assay, as

previously reported [46]. However, Farini et al. also showed that

SCF elicited cytoskeletal changes and membrane protrusions in

isolated PGCs over a short period [46]. We replicated this result

using flow cytometrically purified Oct4DPE-EGFP+ cells from e9.5

embryo posteriors and maintained on Matrigel in serum-free

media. Without the support of feeder cells, which provide growth

factors, survival was poor and PGCs appeared round and devoid

of filopodia (Figure 4A). As reported [46], the addition of SCF

induced morphological changes in PGCs, including the acquisition

of membrane protrusions and ellipsoid shape (Figure 4B). We

noted that the shape assumed by Ror2 PGCs cultured in these

conditions differed from wild type, and therefore endeavored to

quantify this morphology. Using phalloidin to define the F-actin

cytoskeleton, we measured the longest cellular axis and the

orthogonal short axis of the cell body; we then computed an

Elongation Index (ALong2AShort)/(ALong+AShort), which approach-

es zero for round cells, such as the example in Figure 4C.

Elongated cells often extended filopodia or lamellopodia, which

were not included in the measurement, but which usually aligned

with the long axis (Figure 4D–4D9). Following 7 hours of culture

without SCF, a mean Elongation Index (EI) of 0.044 was observed

in wild type PGCs, which increased to 0.088 in the presence of

SCF (p = 0.0005; Figure 4E). PGC elongation continued to

increase in culture up to 20 hours in SCF, to a mean EI of

0.169, (Figure 4F). By contrast, Ror2 PGCs mutants cultured in

parallel exhibited a mean EI of 0.114 in SCF, which is significantly

lower than mixed wild type and heterozygous PGCs (p = 0.005).

When SCF was excluded from the media, but a strip of Matrigel

was introduced along one side of the culture well to produce a

gradient, the elongation response of WT PGCs was similar to that

in static SCF, with a mean EI of 0.20; the graded source of SCF

did not increase the EI of Ror2 PGCs: mean EI of 0.11, p = 0.0004

(Figure 4G). Short axis dimensions did not differ between wild-

type and mutant PGCs (data not shown), but as we did not assess

the z-axis length, these results do not exclude the possibility that

Ror2 PGCs occupy less volume instead of remaining more

spherical than wild type following SCF treatment.

We also examined the capacity of PGCs to align with a

chemotactic gradient. Using the long cellular axis explained above,

we measured the angle between this axis and a line orthogonal to

the source of SCF (schematized in Figure 4H). When SCF was

uniformly present in the media (here termed static), the orientation

of WT PGCs was randomly distributed between 0 and 90u from

Figure 3. Increased PGC apoptosis and impaired colonization
of the gonads in Ror2 and Wnt5a mutants. (A) The frequencies of
apoptotic PGCs were similar between all genotypes in e11.5 and e12.5
gonads, but increased in Ror2 and Wnt5a migratory PGCs at e10.5 (n = 4
mutants). (B) When examined separately in e11.5 sections, the
frequency of apoptotic PGCs was similar in the gonads, but increased
among ectopic extragonadal Ror2 PGCs compared to WT. (C) The
frequencies of PHH3+ (ectopic and non-ectopic) PGCs determined from
tissue sections at e10.5 and wholemount gonads at e11.5 did not differ
between WT and either mutant by t-test (mean and SD of n$3
embryos). (D–G) The number of PGCs within Ror2Y324C e11.5 mutant
gonads was not rescued to WT levels (p = 0.065) on a Bax null
background, quantified in (D). GCNA staining of e11.5 wholemount
gonadal ridges in stage-matched WT (E) and Ror2Y324C single mutants
(F) and Bax; Ror2Y324C double mutants (G). Scale bar = 120 um. (H–J)
Excess ectopic PGCs were observed in e11.5 histologic sections of
Ror2Y324C (I) and Wnt5a (not shown) stained with SSEA1 and DAPI
(gonads indicated by dashed circles, scale bar = 100 um). (J) The
proportion of extragonadal PGCs in Ror2Y324C and Wnt5a sections (mean
and SE of n = 4 slides, ,10 sections each) was significantly increased
compared to WT. Results of the Student’s t-test are indicated, * p,0.05,
**, p,0.01, ***p,0.001.
doi:10.1371/journal.pgen.1002428.g003
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Figure 4. Impaired elongation and alignment with an SCF gradient in cultured Ror2Y324C PGCs. (A–B) Sorted e9.5 Oct4-DPE-GFP+ PGCs
cultured 7 h on trigel without SCF (A) and with 50 ng/ml SCF (B), inset magnified 106. (C–G) Cell axis measurements of the largest plane of the cell
performed after staining with Phalloidin and DAPI are shown for representative round (C) and elongated (D) PGCs cultured ex vivo. A maximal
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an arbitrary line, as would be expected. However, following

20 hours in an SCF gradient, wild-type PGC orientations were

biased toward lower angles; that is, they showed greater alignment

parallel to the gradient (Figure 4I, p = 0.0018). Ror2 PGCs did not

preferentially orient toward the SCF source, but were randomly

distributed in their orientations (Figure 4I, p = 0.0004). Taken

together, these in vitro studies reveal a compromised ability of Ror2

PGCs to respond to SCF, either by elongating or orienting toward

a chemotactic gradient. Because these assays were carried out in

the absence of feeder cells using Oct4-DPE-EGFP+ cells sorted to

.95% purity, the observed defects must be cell-intrinsic.

Ror2 promotes coordinated PGC elongation and
polarized positioning of the Golgi apparatus

Polarized cell migration depends upon the perception of an

extracellular chemotactic gradient, the acquisition of polarized

molecular or membrane components, and ensuing changes in

cellular organization, including cytoskeletal elements and organ-

elles [47]. We observed an overall reduction in Ror2 PGC shape

change and alignment in the presence of an SCF gradient

compared to wild type. This phenotype could result from the

impaired perception of a chemotactic cue or diminished capacity

to respond. As little is known about PGC polarity, we first

examined the localization of two subcellular structures involved in

polarized responses of migratory cells, the Golgi apparatus and the

centrosome; identified here by GM130 (Golgi) and Pericentrin

(centrosome) immunofluorescence, these organelles are positioned

by microtubules in response to polarity cues [48]. Following SCF

exposure, cultured wild type and Ror2 PGCs both elaborated

F-actin-rich extensions (Figure 5A9, 5B9, 5C9). GM130 and

Pericentrin staining was observed colocalized in three discrete

cellular geometries. Asymmetric localization of GM130 and

Pericentrin to one extreme of the nucleus in elongated cells was

denoted Class I (Figure 5A0). Central positioning of GM130 and

Pericentrin adjacent to or above the nucleus was denoted Class II

(Figure 5B0 and 5C0). Class III included geometrically rounded

cells with eccentric GM130 and Pericentrin (Figure 5D0). Finally,

GM130 was occasionally observed as dispersed foci (not shown),

Class IV, which is most likely the configuration in mitotic cells

[48]. The tabulated results of several experiments are shown

(Figure 5E). A similar frequency of wild-type Class I PGCs was

observed in static and graded SCF (69% and 73%, respectively).

This distribution of the Golgi and centrosome appears to be

nonrandom given the relatively large cellular area occupied by the

PGC nucleus. Strikingly, a significant overall reduction of Class I

Golgi position was observed in Ror2: 45% in static SCF and 48%

in a gradient, both of which differ from wild type (p = 0.005). This

result suggests that the coordination of centrosome/Golgi position

and cell shape is affected in Ror2 PGCs. However, if we consider

the Golgi position apart from cell shape—since the rounded Class

III cells could retain molecular and organelle polarization– it

becomes apparent that the cells in Class III also exhibit Golgi/

centrosome asymmetry. In this line of reasoning, we find that the

frequency of combined Class I and III PGCs does not differ

between wild type and Ror2 in graded SCF (p = 0.23) and is barely

significant in static SCF (p = 0.04). This analysis could suggest that

Ror2 PGCs are defective in cell elongation, but not polarized

positioning of the centrosome and Golgi. Conversely, if we

compare only geometrically elongated cells, or those in Classes I

and II, we find a decreased incidence of polarized Golgi position

(Class I) of Ror2 PGCs cultured in static SCF (p = 0.029), but not in

gradient SCF (p = 0.18) compared to wild type. Given that the

majority of Ror2 PGCs elongate to some degree in SCF, this

discrepancy in Golgi position could reveal a more subtle defect in

their polarized response. Finally, although a rare class, the

incidence of Class IV or dispersed GM130 appears elevated in

Ror2 PGCs (Figure 5E). This uptick could reflect a slight increase

in proliferation of the mutant PGCs that we have observed in vitro

(Figure S7). Taken together these experiments demonstrate a

decoupling between cell elongation and polarized position of the

Golgi and centrosome in Ror2 mutant PGCs; however with the

alternate interpretations of Class III cells as either randomly

positioned or polarized Golgi/centrosome within a rounded cell, it

remains possible that Ror2 acts as a cell polarity effector or else in

the associated cell shape changes.

ROR2 exhibits a polarized distribution in migratory PGCs
in vivo and in vitro

Several previous studies have implicated Ror2 in cell polarity,

including polarized cell division in C. elegans [14], directional

migration in the limb and several mammalian cell lines [18,26,49],

and apicobasal polarity in the mouse gut [9]. A polarized

distribution of ROR2 within the developing gut epithelium [9]

prompted us to examine ROR2 localization in PGCs following

culture in SCF. Immunofluorescence revealed asymmetry of ROR2

within the cytoplasm as well as on the surface membrane of PGCs.

The distribution of ROR2 at one extreme of the cell coincided with

GM130 (Figure 5F, 5F9). ROR2 was also observed prominently on

the membrane protrusions of cultured PGCs. Returning to the

embryo, we examined the subcellular distribution of ROR2 and

GM130 in PGCs in vivo. In e10.25 histologic sections, immuno-

staining revealed an apical enrichment of ROR2 in the hindgut and

dorsal neural tube, colocalized with GM130 (Figure 6A–6A9). At

this stage, PGCs identified by the expression of Stella are migrating

through the dorsal mesentery toward the gonadal ridges (Figure 6A).

Within these PGCs, ROR2 appeared to be enriched on one side in

most instances (Figure 6B, 6C, 6D). This enrichment was coincident

with GM130 (Figure 6B0, 6C0) and, unexpectedly, Stella (Figure 6B9,

6C9). As a polarized Stella distribution has not been previously

reported, we wondered whether this pattern could reflect the plane

of section. When PGCs were instead immunostained with the

SSEA-1 antibody, the asymmetric distribution of ROR2 persisted

(Figure 6D), but SSEA-1 appeared to be localized consistently

around the PGC border (Figure 6D9), as did b-catenin (Figure 6D0).

Together, these data demonstrate a polarized distribution of ROR2

in PGCs that are responding to chemotactic cues in vitro and

migrating in vivo. Its localization on filopodia and segregation on

the same side of the cell as the Golgi suggests Ror2 could be

important in the polarization response of the cell in response to

SCF. Upon examining histologic sections from Ror2Y324C embryos,

we did not observe a comparable degree of asymmetric ROR2

distribution or Stella distribution in PGCs, and GM130 staining was

projection of the confocal stacks (D9) depicts actin filament extensions of the elongated cell. An elongation index (EI) is calculated by (ALong2AShort)/
(ALong+AShort) such that round cells approximate 0. The EI of WT PGCs increases after 7 h culture in static 50 ng/ml SCF (E), and is more pronounced
by 20 h in WT (F). Ror2 PGCs remain less elongated in static (p = 0.0005) as well as graded SCF (G, p = 0.0004). Cell axis measurements shown are from
n$3 experiments. (H–I) The angle between the long cellular axis and the gradient was measured to determine PGC alignment with respect to SCF (H).
WT PGCs cultured 20 h in graded SCF are biased toward low angles, whereas Ror2 PGCs exhibit a more random orientation, similar to WT in static SCF
(I). Cell angle data represent n = 3 experiments.
doi:10.1371/journal.pgen.1002428.g004
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Figure 5. Reduced polarization by SCF in cultured Ror2Y324C PGCs. (A–D) Actin, centrosome and Golgi positions were examined in 20 h ex
vivo cultured Oct4-DPE-GFP+ PGCs in the presence of SCF by GFP, Phalloidin, Pericentrin and GM130 immunofluorescence. (A–A0) An example of
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present but dimmer (Figure 6E, 6E9, 6E0). This result suggests that a

functional Ror2 receptor could localize asymmetrically on a PGC

responding to chemotactic cues in order to amplify or enhance the

polarized response.

Ror2 promotes elongation of migratory PGCs in vivo
We next asked whether the elongation phenotype of Ror2 PGCs

in culture could be observed in vivo. As the expression of KitL

changes dynamically after 9.5 to become restricted to the genital

ridges [2], PGCs migrating within the dorsal mesentery toward the

gonadal ridges probably experience a gradient of secreted KITL

analogous to the graded SCF in vitro. We examined PGCs

migrating through the dorsal mesentery of sectioned e9.75–e10.75

embryos using DAPI and SSEA-1 staining to ensure that the entire

cell was captured. Visually, many PGCs in Ror2Y324C embryos at

this stage appeared rounded (Figure 7B, 7C). In confocal stacks,

we located the largest cellular cross section for measuring the

longest cellular axis and the short axis orthogonal to this one

(Figure 7A, 7D). In migratory wild-type PGCs, we measured a

mean EI of 0.1860.08 (Figure 7E). This is in line with the mean EI

of 0.2060.12 that was determined in two dimensions from SCF-

gradient cultured PGCs. In Ror2Y324C embryos, migratory PGCs

exhibited a mean EI of 0.0960.07, which is significantly less than

in wild type (p,0.0001). For comparison, we examined PGCs

located within the gonads of e10.75–11.5 embryos, since previous

studies reported that following their arrival in the gonad, PGCs

acquire a rounded morphology [50]. Wild-type postmigratory

PGCs measured 0.0860.05 mean EI. Together these in vivo

observations suggest that Ror2 enhances the polarized response

that leads to cell elongation of migratory PGCs.

Discussion

The trafficking of PGCs through the embryo is a widely

conserved process across many vertebrates and invertebrates [1].

Success is critical for fertility of the organism and propagation of its

genome, and thus subject to selection. Failure has been linked to the

development of germ cell tumors, because surviving mislocalized

PGCs are subject to transformation [2,51]. Our knowledge of the

mechanisms underpinning PGC migration in mammals is limited

[52]. Through forward genetics, we have implicated a new pathway

in the migration of PGCs. Here we have identified an ENU allele of

Ror2 that leads to a diminution of PGCs in the fetal gonads.

Mutants in the putative ligand Wnt5a phenocopy Ror2Y324C, and

both exhibit reduced efficiency gonad colonization by PGCs. In

culture, we show that the growth factor SCF induces polarized

alignment and cell shape change in wild-type PGCs that is depends

on Ror2. Similar elongation and orientation phenotypes in

Ror2Y324C suggest that Ror2 acts intrinsically in PGCs to enhance

their polarized migration toward KITL.

What is the primary defect in Ror2 mutant PGCs?
Our analysis shows a surge in apoptosis, an increase of ectopic

PGCs in Ror2Y324C and Wnt5a, and disrupted hindgut architecture

in Ror2Y324C embryos; consistent with this, PGC diminution in

e11.5 gonads and concomitant increase in ectopic PGCs was

reported in Wnt5a mutants as this manuscript was under revision

[53]. However it remains unclear which of these three defects–

apoptotic elimination, mismigration or anatomic barriers– pri-

marily causes the PGC phenotype. On one hand, PGCs that

migrate inefficiently could be increasingly subject to death, or on

the other hand, dying or unhealthy PGCs could migrate poorly.

This dilemma is resolved by rescuing cell death with genetic

ablation of the proapoptotic gene Bax, which does not restore the

loss of PGCs in Ror2Y324C gonads. By contrast, in Steel mutants,

which lack both membrane and secreted KitL, one or two Bax null

alleles is sufficient to rescue KitLSteel/Steel gonadal PGCs [2].

Together these results argue that migration is the primary defect

in Ror2 PGCs, and apoptosis in the periphery arises as a

consequence of reduced survival factor exposure. The possibility

remains that ectopic Ror2 PGCs are increasingly sensitive to the

withdrawal of survival factors. KITL and SDF1, known to be the

most important PGC survival factors [42,43,54], are both

concentrated in the e11.5 gonads and their absence in peripheral

tissues likely leads to Ror2 PGC death.

Does Wnt5a function as a chemoattractant in PGC
migration?

In the developing mammalian palate, a series of bead and cell

implantations suggest that WNT5A is sufficient for directional

movement of cells via Ror2 [15]. However, similarly implanted

beads coated with WNT5A did not divert the migration of PGCs

in our studies (Figure S6), and we could not detect any role for

Wnt5a as a chemoattractant. Instead, we suggest that Wnt5a may

act permissively in PGC migration. This is not unprecedented, as

in a melanoma cell line, Witze et al. showed that WNT5A acts

permissively to regulate the polarized distribution of adhesion

receptors in response to a chemokine gradient [26]. In PGCs, the

known chemoattractive factors include SDF1 [42,43] and KitL

[2,41,55]. Recognized as the most critical growth and survival

factor for PGC, KitL was first postulated as a guidance cue for

PGCs from the analysis of the SteelDickie mutant [56]; SCF (secreted

KitL) was later shown to induce PGC migration ex vivo, as well as

inducing cell shape changes [46,57]. Aberrant cell shape was

previously noted in PGCs from Steel mutants [58]. When the

survival of Steel PGCs was restored in compound mutants with Bax,

functions for KitL in motility, adhesion and colonization of the

gonad were identified [2,41]. The resemblance of these cellular

phenotypes to what we observed in Ror2Y324C PGCs prompted

us to ask whether Ror2 could enhance the response to KitL

chemotactic cues.

What is the role of Ror2 in PGC migration?
Our ex vivo experimental approach addresses three separate

aspects of cell migration: polarity, cell shape change and

orientation toward a chemotactic cue. We find that a gradient of

SCF induces geometric elongation as well as a nonrandom

alignment of wild type PGCs within the field. This chemotropic

function of SCF was previously recognized in mast cells but

not PGCs [59,60]. Similar to a recent report [57], our results also

reveal a chemokinetic, or non-directional function of SCF in

asymmetrically distributed GM130 and Pericentrin of an elongated cell, categorized as Class I. Class II contains elongated cells with centrally located
GM130 and Pericentrin (B–B0, C–C0). Geometrically round cells comprise Class III, with GM130 and Pericentrin adjacent to the nucleus (D–D0).
Dispersed GM130 was observed in a small fraction of cells that are likely dividing (not shown). (E) Quantification of cultured PGCs reveals a significant
reduction of elongated Ror2 PGCs exhibiting asymmetric GM130/Pericentrin distribution (Class I, p = 0.005), similarly in static or graded SCF by Fisher’s
exact test. Also, in static SCF the number of elongated Ror2 PGCs with geometrically central GM130/Pericentrin distribution (Class II) was significantly
higher than in WT (p = 0.029). Counts were accumulated from n = 3 experiments. (F–G) Ror2 and GM130 immunofluorescence on WT PGCs similarly
cultured in SCF shows ROR2 localization on filopodia (F–F9) and asymmetrically on the cell surface and cytoplasm (G–G9).
doi:10.1371/journal.pgen.1002428.g005
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Figure 6. Asymmetric localization of ROR2 in polarized migratory PGCs in vivo. (A–E) Histologic sections from e10.25 WT embryos were
immunostained with Stella, Ror2 and GM130 antibodies and PGCs migrating through the dorsal mesentery (A–A9) were examined (arrowheads).
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migration, as wild-type PGCs assumed an elongated, polarized

morphology when SCF was uniformly present. This morphology

was accompanied by a polarization of the Golgi apparatus, which

is typical of migratory cells [61]. In all of these cellular behaviors,

Ror2 PGCs exhibit a mitigated response to SCF; their orientation

is randomized instead of aligned with respect to the gradient, they

elongate less, and the frequency of polarized Golgi distribution

reduced. We find, strikingly, a similar difference in the shape of

migratory PGCs in Ror2 mutant embryos. This result confirms in

vivo a function for Ror2 in the polarized migration of PGCs.

Taken together, the in vivo and in vitro experiments suggest that

Ror2 signaling enhances the chemotactic response of PGCs to

KitL emanating from the gonadal ridges. Although the precise

function of Ror2 in this polarized migration remains to be

determined, its nonrandom protein distribution throughout

migratory PGCs may provide a clue. The observed pattern of

ROR2 within the cytoplasm and near the cell membrane is

reminiscent of the asymmetry within the hindgut epithelium [9].

The potential colocalization with the Golgi apparatus is intriguing

and warrants further investigation. On the other hand, the

distribution of ROR2 on membrane protrusions is reminiscent of

the reported expression on the dendrites of hippocampal neurons

[62]. The altered distribution of ROR2 in Ror2Y324C PGCs argues

for its specificity and functional significance, and leads us to

propose that ROR2 distribution becomes polarized in response to

directional KitL cues and thus reinforces the polarization of the

cell. In other words, Ror2 might potentiate asymmetry in Kit

signaling, or even transform it from a general signal to a polarized

signal. It is also possible that the localization of ROR2 on

protrusions promotes the growth and selection of filopodia into a

clear lamellopodia or a leading edge, similar to the axonal path

finding function of the homolog in C. elegans [7]. Elucidating the

dynamic distribution of ROR2 in PGCs undergoing polarized

responses will be an important future pursuit.

How does Ror2 enhance the response to KitL?
The connection established in these studies between Ror2 and

SCF-induced cell polarization is new, and the molecular nature of

the relationship is unclear. The robust evidence for the specificity

of SCF for cKit rules out the possibility of biochemical interaction

between SCF and Ror2 [63]. However, the absence of feeder

cells or serum and purity of sorted PGCs in our culture system

demonstrates that both proteins are acting in the same cell. Based

on the detection of Wnt5a transcript and protein in PGCs, a

plausible scenario would involve autocrine WNT5A secreted from

PGCs in the cultures. In this model, PGC polarization is initiated

by KitL and amplified by localized extracellular concentrations of

WNT5A secreted from either PGCs or surrounding mesentery. In

regions of high Wnt5a expression, which correspond to successive

targets of PGCs such as the hindgut and the gonadal ridges, the

sensitivity to KitL may be amplified to help guide PGCs toward

these targets. Within PGCs, Ror2 engagement by Wnt5a could

lead to the redistribution of ROR2 at the cell surface, for example

through ligand-receptor endocytosis [64]; this could rapidly lead to

asymmetric ROR2 distribution between leading and trailing

edges of the cell. Ror2 could ultimately reinforce the polarization

response initiated by KitL-cKit in a number of different ways, such

as by augmenting common downstream signaling components,

such as cytoskeletal reorganization machinery, or perhaps by

inhibiting the responsiveness to KitL in some regions of the cell.

Understanding the relationship between Wnt5a-Ror2 and KitL-

cKit at a mechanistic level is an important next step. Both tyrosine

kinase receptors function in the development of multiple tissues as

well as cancer; cKit is a proto-oncogene implicated in mela-

noma [65] and gastrointestinal stromal tumors [66], and Wnt5a

expression has been correlated with tumor invasiveness [25].

Therefore the relationship between these two pathways is likely to

extend beyond PGCs.

Materials and Methods

Animals
All animal work was carried out in compliance with care and

use standards at each institution. Ror2Y324C was identified in a

recessive ENU screen at e9.5 for mouse mutants with PGC defects

[23]. Other mouse strains used included: Bax (MGI:1857429),

Wnt5a (MGI:1857617), and Oct4-DPE-GFP [67] with genotyping

performed as described elsewhere [19,50]. Mice were maintained

on C3H or mixed C3H/FvB genetic backgrounds. Embryos were

generated in timed matings by monitoring for copulatory plugs.

Pregnant females were sacrificed and embryos staged by the

following anatomic landmarks: 27–33 somite pairs was designated

e10.0, 34–39 somite pairs as late e10, 45–48 somite pairs and the

appearance of the otic vesicle as e11.5, and the presence of

embryonic kidneys designated e12.5; gonad sex was determined by

the appearance of tubules and the coelomic vessel in e12.5 males,

and SRY genotyping [68].

Mapping
MIT SSLP markers were used to map Ror2Y324C to

chromosome 13 to a ,10 Mb interval between D13 MIT 176

and D13 MIT 13. Sequencing of the Ror2 ORF revealed an A to

G transition at position 1203, which creates a restriction site.

Y324C genotyping was carried out by PCR amplification of a

238 bp fragment in 25 uL reactions heated to 95uC for 3 min,

followed by 45 cycles of 94uC for 30 sec, 57uC for 1 min, 72uC for

30 sec, and a 7 min hold at 72uC using the following primers: 59-

ACC AGT GCT ACA ACG GCT CT-39 and 59-AGT TCC

ACG CGT ACG TTT TT-39). Subsequent digestion 5 h with

3 U HpyCh4 V (NEB) produced fragment sizes 152 and 86 bp for

the wild type allele, 152, ,50 and ,30 bp for mutant allele.

Flow cytometry and RT–PCR
Embryos were dissected at e9.5–11.5 in cold PBS/0.2% BSA

and the posterior fragment or gonads dissociated in 0.25%

trypsin/EDTA for 3–5 minutes at 37uC followed by 1 mg/mL

DNaseI for 5 min. For Ror2 intracellular flow cytometry, cells

were prepared using the Cytofix/cytoperm Kit (Beckton Dickson)

and stained at 1:50 (Santa Cruz Biotech A17). Live cell staining

was carried out in phenol red-free DMEM/2% fetal bovine

serum/10 mM EDTA. Dead cells were excluded on the basis of

Sytox Blue (Invitrogen) signal. PGCs, delineated as Oct4(DPE)-

GFP+ were sorted directly into lysis buffer and extracted with

RNeasy Kit (Qiagen), DNAse I treated, and reverse-transcribed

with qScript (Quanta Biosciences) or Superscript III (Invitrogen).

PCR primers were designed with Primer Express software

Viewed in the xy plane from above, as well as xz and yz cross sections (top and sides of panels) Ror2 and Stella distribution appeared asymmetric in
most WT PGCs at this stage (asterisk, in B, B9, C, C9), and both signals were on the same side of the cell as GM130 (B0, C0). SSEA1 staining was not
similarly asymmetric on PGCs (D, D9), nor was membrane-associated b-catenin (D0). On Ror2Y324C PGCs, Ror2 signal was very weak, and did not appear
polarized, nor did Stella (E–E9), despite the presence of asymmetric GM130 (E0, arrowhead).
doi:10.1371/journal.pgen.1002428.g006
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Figure 7. Reduced elongation of migratory Ror2Y324C PGCs in vivo. (A) WT migratory PGC stained with SSEA1 (green) and DAPI (grey) shown
in five sections at different levels through a confocal stack. The axes are measured (blue lines) in the largest plane of the cell, shown in the middle
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(Applied Biosystems). Amplification was carried out with 50 or 100

cell equivalents of cDNA on a Mastercycler EP (Eppendorf) using

the following primer sets: 59-GACTTCAACAGCAA-

CTCCCAC-39 and 59-TCCACCACCCTGTTGCTGTA-39 for

Gapdh; 59- AATGCACAACTGCCATCTCC-39 and 59-AGGA-

ATGCCTAGACTACTGGAAAA-39 for KitL [69]; 59-AGTC-

TGGAGACCATGTTTCTGAAG T-39 and 59-TACTCTTCT-

CGTTGGGAATACTCAATA-39 for Oct4; 59- GAGATCAGCT-

TGTCCAC-39 and 59- AGCATCGCCTCTTGCCGG-39 for

Ror2, 59- GCAGACCGAACGCTGTCATT-39 and 59- CCA-

CAATCTCCGTGCACTTCT-39 for Wnt5a.

Immunostaining
For Western blotting, day 9.5 embryos were lysed in RIPA buffer

containing 1% Nonident P-40, 0.25% Deoxycholate acid, 150 mM

NaCl, 0.1% SDS, 50 mM HEPES (pH 7.4) and proteinase inhibitor

cocktail (Roche). 40 ug protein was separated by SDS-PAGE gel and

probed with anti-ROR-2 antibody (Santa Cruz Biotech, H-76).

For immunofluorescence histology, embryos fixed in 4%

paraformaldehyde were embedded in OCT and cryosectioned

at10 um. Slides were blocked 1 h in 10% calf serum + 0.1%

Tween in PBS and stained overnight @ 4uC in the blocking buffer

followed by 3615 minute washes in PBS. Primary antibodies used

included SSEA1 (Developmental Studies Hybridoma Bank, 1:200),

Wnt5a (R&D Systems AF645; 1:20), activated Caspase 3 (Promega,

G7481, 1:250), phospho-histone H3 (Sigma, clone HTA28, 1:200),

E-cadherin (Invitrogen, 13–1900, 1:200), Ror2 (Santa Cruz Biotech

A-17 1:50), Pericentrin (Covance, PRB-432C, 1:50), GM130

(Beckton Dickinson, monoclonal, 1:100), the latter was preceded by

2 min treatment in Ficin (Invitrogen). Bromodeoxyuridine (Abcam

ab6326, 1:40) was preceded by treatment in 4N HCl for 10 minutes

and 5 min in 0.1 M Borate buffer pH 8.6. Secondary antibodies and

fluorescent Phalloidin were purchased from Invitrogen were

incubated for 1 hour at room temperature and used at 1:200–

1:500. Sections were mounted in Vectashield (Vector Labs).

For whole mount immunofluorescence, embryos or gonads

were fixed in methanol:dimethylsulfoxide (4:1) at 220uC over-

night, rehydrated and rocked @ 4uC overnight in PBSMT (PBS/

2% nonfat dry milk/0.5% Tween) with antibodies to SSEA1

(1:200), cleaved PARP (Cell Signaling #9544, 1:50),phospho

histone H3 (1:50), GCNA (a kind gift of George Enders, undiluted

supernatant); triple washes in PBSMT were followed by overnight

rocking with secondary antibodies diluted 1:200 in PBSMT,

followed again by washing 36. Gonads were mounted on slides in

Vectashield (Vector Labs), whereas whole embryos were serially

dehydrated and cleared in Methyl Salicylate for viewing.

PGC ex vivo culture
Oct4-DPE-GFP+ PGCs sorted from e9–9.75 embryos were

seeded in chambered slides (Lab-Tek II) coated with 1 mg/ml

Matrigel then incubated @ 37uC in 5% CO2 with DMEM/15%

Knockout Serum Replacement (Invitrogen), 1000 U/mL LIF

(Millipore), 5 uM Forskolin, and added 250 ng/mL WNT5a

(RnD), 50 ng/ml SCF (Invitrogen). Gradients were produced by

placing 100 ng/mL SCF in Matrigel along one edge of the

chamber. Following culture, cells were fixed for 10 min in 4%

paraformaldehyde and immunostained.

Embryo culture
Embryos were dissected in RPMI/10 mM Hepes/10% FBS at e8.0

with membranes intact. Heparin coated glass beads (Sigma) or Affygel

Blue 100–200 mesh beads (BioRad) were washed36 in PBS, soaked

1 hr in PBS-BSA, 25 ug/mL SCF (RnD), 25–50 ug/mL SDF1

(RnD), 50 ug/mL WNT5a (RnD) or 20–50-fold concentrated

WNT5A conditioned media, washed, and implanted into the proximal

allantois, hindgut pocket or axial mesoderm with microforceps.

Embryos were cultured in organ culture dishes (Falcon) containing

50% DMEM HG with Pen-Strep/50% Heat inactivated Rat Serum

(Taconic) at 37uC in 5% C02 for 24 hours.

Alkaline phosphatase activity
Fast red staining was carried out as detailed elsewhere [70].

Image collection and analysis
Brightfield imaging was performed on an Olympus MVX10

stereomicroscope. Confocal imaging was carried out with a 106,

206 or 636 objective on a Leica SP5 TCS microscope equipped

with 405, 488, 543, 594, and 633 nm lasers. Stacks were analyzed

using Volocity (Improvision).

The number of PGCs in wholemount e10.5 immunostained

embryos or e11.5–12.5 gonads was estimated using a measurement

protocol created in Volocity 5.0 acquisition software. Objects were

identified by in the SSEA1 or GCNA channel using the ‘‘Find

Objects Using Standard Deviation (SD) Intensity’’ task, with a lower

limit of 3.2–3.7 SDs above the mean. Holes were filled in objects,

and those under 20 mm3 were excluded, and touching objects

separated using a size guide of 200 mm3 in the GCNA channel or

750 mm3 in the SSEA1 channel. ‘‘Exclude Objects by Size’’ task

was repeated to eliminate objects less than 20 mm3 created by the

previous command. Objects were visually inspected to determine

the approximate size cutoff for single objects. For gonads colabeled

with antibodies against PHH3 or cleaved PARP, subsequent selec-

tion of colocalized objects was carried out using the intensity and

colocalization functions. All measurement results were exported to

Excel (Microsoft) for calculations. Clustered objects exceeding the

defined threshold of single PGCs were summed and divided by the

average PGC size. For instances in which over 20% of the total

measured GCNA volume remained clustered, the quantity of PGCs

was estimated by dividing this total volume over the average object

size in well scattered specimens (300 um3 used here for GCNA).

Cell axes lengths were quantified in confocal stacks visualized in

Volocity using the measurement function and exported to Excel

for analysis. Image reconstructions with the long axis marked were

exported to ImageJ (NIH) for angle measurements.

Supporting Information

Figure S1 PGCs are depleted in mutants homozygous for Ror2

targeted deletion allele. Gonads from age matched Ror22/2 and

WT littermates on the C57Bl/6 background were stained in

wholemount with GCNA antibody and PGCs quantified from

panel, resulting in an EI = 0.23. (B) A confocal stack from a WT e10.25 embryo section stained with SSEA1 and E-cadherin to delineate the hindgut
(left). Autofluorescent erythrocytes are present in the lower right quadrant. Filopodia and lamellopodia can be seen on many PGCs; the cell in (A) is
boxed. (C) A similar histologic section from a Ror2Y324C embryo posterior, showing several SSEA1+ PGCs in the dorsal mesentery, many of which
appear rounded. The boxed PGC is represented in (D), where measurement of the long and short axis in a plane yields an EI = 0.01. (E) Accumulated
measurements for EIs of migratory WT and Ror2 mutant PGCs from e9.75–10.75 histologic sections. Postmigratory WT e10.75 (‘‘Gonadal’’) PGCs are
shown at right in grey and the mean EI in red.
doi:10.1371/journal.pgen.1002428.g007
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confocal stacks. A significant depletion was observed in homozy-

gous mutants (purple triangles) compared to WT (black diamonds)

at e11.25 and e12.25 (A). At e11.5, compared to WT (B), Ror22/2

(C) gonads exhibit a skewed distribution of PGCs at the posterior

(bottom), similar to Ror2Y324C.

(TIFF)

Figure S2 PGC proliferation and apoptosis in whole gonads.

(A) Apoptosis and proliferation were simultaneously visualized in

whole gonads, shown at e12.5 stained with GCNA (red), PHH3

(blue) and cleaved PARP (green) antibodies. PGCs were modeled

as GCNA-delineated, size selected objects (B), and the subset of

PHH3+ nuclei (C) and cPARP+ (D) objects were quantified

(frequency of total GCNA+ objects indicated as percentage).

(TIFF)

Figure S3 Mitotic and dying PGCs can be identified in

histological sections. Sagittal section through a WT e10.75 embryo

stained with (A) SSEA1 (green), PHH3 (blue) and cPARP (red)

antibodies reveals proliferating (arrowheads) and apoptotic (arrows)

PGCs in the dorsal mesentery. Nuclear staining with DAPI (grey)

confirms nuclear localization of PHH3 (B) and cPARP (C) signals,

with the overlay of all channels shown in (D). Scale bar = 39 um.

(TIFF)

Figure S4 Posterior hindgut morphogenesis is abnormal in Ror2

mutants. Hematoxylin and eosin staining of transverse sections of

e9.5 wild-type and Ror2Y324C embryos, showing that the hindgut

ring becomes increasingly dilated from upper trunk level (A) to

lower trunk level (A9) and tail bud level (A0) in wild-type embryos

(arrowheads). However, the hindgut ring was dilated at all

equivalent positions in Ror2 mutant embryos (arrows in B, B9, B0).

(TIFF)

Figure S5 PGCs are specified normally in Ror2Y324C and Wnt5a

mutants. Embryos collected at ,e7.5–8.0 were staged and alkaline

phosphatase-stained PGCs were quantified. (A) Ror2Y324C did not

affect the number of PGCs in heterozygotes (unfilled triangles) or

homozygotes (blue triangles) compared to wild type littermates (black

diamonds). Similarly, Wnt5a haploinsufficiency (unfilled circles) or

ablation (pink circles) had no affect on PGCs at this stage (B).

(TIFF)

Figure S6 PGCs migrate inefficiently in Ror2 and Wnt5a, but

WNT5A is not a chemoattractant. (A–C) Embryos at e9.0 (12–14

somites) stained for alkaline phosphatase (AP) activity (red,

arrowhead) reveal excessive ectopic PGCs throughout the allantois

(B) and tail mesoderm (C) of Ror2Y324C (insets 26 magnification).

(D–I) Beads impregnated with either BSA, SCF, SDF1 or WNT5A

conditioned medium were implanted into e8.0 embryos before

24 hours culture and AP staining, and shown in ,8 somite stage

(D–F) and ,12 somite stage embryos (G–H). PGC migration was

not disrupted by the bead’s presence (left) or altered by WNT5A-

beads (E,H). By contrast, SDF1 and SCF were capable of diverting

the migration of PGCs at close range (F,I red arrows)in n.3

embryos. (J) Culture of sorted e9.5 Oct4-DPE-GFP+ WT PGCs for

20 h on Matrigel in presence of Wnt5a (250 ng/ml) revealed a

significant increase in PGC number (p = 0.007 by paired t-test).

(TIFF)

Figure S7 Increase in ex vivo Ror2Y324C PGC proliferation

measured by BrdU incorporation. Unsorted PGCs mechanically

dissociated from e9.5 embryos were cultured for 24 hours, with

1 hour in Bromodeoxyuridine (Brdu). After fixation, PGCs were

identifiable by SSEA immunofluorescence (A) with 5 PGCs in the

field (arrows). (B) Anti-BrdU staining shows incorporation by

many of the feeder cells and one PGC (arrowhead), with overlaid

channels in (C). Scale bar = 100 um. (D) Quantification of the %

of PGCs that incorporate Brdu reveals a slight increase (p = 0.05)

in Ror2Y324C compared to mixed WT and heterozygous PGCs.

(TIFF)
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