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ABSTRACT
The lung microbiome plays an important role in the pathophysiological processes associated with pulmonary tuberculosis
(PTB). However, only a few studies using 16S rDNA amplicon sequencing have been reported, and the interactions between
Mycobacterium tuberculosis (MTB) and the lungmicrobiome remain poorly understood. Patients with respiratory symptoms
and imaging abnormalities compatible with tuberculosis (TB) were enrolled. We analyzed the lung microbiome in
bronchoalveolar lavage (BAL) samples from 30 MTB-positive (MTB+) subjects and 30 MTB negative (MTB-) subjects by
shotgun metagenomic sequencing. Alpha diversity tended to be lower in the MTB+ group than in the MTB- group.
There was a significant difference in beta diversity between the MTB+ and MTB- subjects. MTB+ lung samples were
dominated by MTB, while MTB- samples were enriched with Streptococcus, Prevotella, Nesseria, Selenomonas and
Bifidobacterium, which more closely resemble the microbial composition of a healthy lung. Network analysis suggested
that MTB could greatly impact the microbial community structure. MTB+ and MTB- communities showed distinct
functional signatures. Fungal communities were also found to be associated with the presence or absence of MTB.
Furthermore, it was confirmed that 16S rDNA amplicon sequencing underrepresents Mycobacterium. This pilot study is
the first to explore the interplay between MTB and the host microbiome by using metagenomic sequencing. MTB
dominates the lung microbiome of MTB+ subjects, while MTB- subjects have a Streptococcus-enriched microbiome. The
16S approach underrepresents Mycobacterium and is not the best way to study the TB-associated microbiome.
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Introduction

Due to the development of shotgun and targeted meta-
genomic next generation sequencing, an increasing
number of studies have revealed that the lung micro-
biome plays an important role in the pathophysiologi-
cal processes associated with respiratory diseases [1].
The lungs are not sterile or free from bacteria; the
dominant bacterial genera found in the lower airways
are Prevotella, Veillonella, and Streptococcus during
health [2]. Acute and chronic lung diseases can change
the ecological determinants of the lung microbiome-
immigration, elimination and regional growth con-
ditions, resulting in markedly different microbial com-
munities [3]. A better understanding of the nature and
impact of the lung microbiome during health and dis-
ease may provide important information for diagnostic
and/or therapeutic approaches.

Tuberculosis (TB), caused by the Mycobacterium
tuberculosis (MTB) complex, is one of the top 10
causes of death and ranks as the leading cause from
a single infectious agent worldwide with 10 million
cases each year and 1.6 million deaths in 2017 [4].
MTB infection is initiated by inhalation of aerosol
droplets carrying the bacilli. Alterations in the lung
microbiome have been observed in many respiratory
diseases, including TB, nontuberculous Mycobacter-
ium (NTM) pneumonia, chronic obstructive pulmon-
ary disease (COPD), asthma, and cystic fibrosis [1,5–
9.] However, the lung microbiome in TB remains lar-
gely undefined. Very few studies by means of 16S
rDNA sequencing have been reported to investigate
the airway microbiome in TB patients with inconsist-
ent and sometimes contradictory results [5]. It was
also reported that Mycobacterium was frequently
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not identified using 16S rDNA sequencing even in
samples with positive cultures for these organisms.
In addition, 20% to 30% of patients with TB are diag-
nosed clinically due to lack of culture confirmation
[10]. To date, the lung microbiome in MTB-positive
(MTB+) and MTB-negative (MTB-) lung samples
has not been analyzed. This pilot study is the first
shotgun metagenomic analysis of the lung micro-
biome in bronchoalveolar lavage fluid (BALF) with
or without MTB to investigate whether MTB is
associated with a distinct lung microbiome.

Materials and methods

Study subjects and sampling

We enrolled subjects with respiratory symptoms and
imaging abnormalities compatible with TB disease
admitted to Shenzhen Third People’s Hospital in
China. Patients underwent two sputumacid-fast bacillus
smear examinations to diagnose PTB. Acid-fast bacillus
smear-and culture-negative patients underwent
bronchoscopy with bronchoalveolar lavage (BAL) for
clinical diagnosis, with 1 mL set aside for microbiome
analysis. MTB+ TB was defined as having a positive
detection at least for M. tuberculosis on BALF by
smear, culture, RT–PCR or the GeneXpert method.
MTB- TB was regarded as having negative results on
BALF by smear, culture and the GeneXpert, while clini-
cal or radiographic improvement with anti-tuberculous
treatment following the diagnostic guidelines rec-
ommendations [11]. Bronchoscopy was performed a
median of 3 d after hospital admission (interquartile
range, 1–4 d). All subjects had no immunosuppressive
medications and negative for human immunodeficiency
virus negative. Finally, residual aliquots (1 mL) of BALF
were obtained from 60 subjects (30MTB+ and 30MTB-
subjects) (Supplementary Table S1).

Experimental design and DNA isolation

To obtain enough DNA for shotgun metagenomic
sequencing, BALF from each patient was processed in
pools of 5 (Supplementary Table S1). Each sample pool
was centrifuged at 10,000×g for 30 minat 4°C.Thepellets
were resuspended in 500 µL of Hanks’ balanced salt sol-
ution, and DNAwas isolated using a method combining
homogenization and chemical lysis of cells with the
QIAampDNAMicrobiome Kit (Qiagen). A pure culture
of Shigella flexneri Sf301(equating to 105 cells as input)
was used as a negative control (subject to “blank” DNA
extractions) and sequenced concurrently.

Microbiome analysis

In brief, microbial DNA from 12 pools of samples
(MTB+, 6; MTB-, 6) was processed without

amplification, and barcoded libraries for multiplex
high-throughput sequencing were constructed with
the Nextera XT DNA Library Prep Kit following
the manufacturer’s recommendations and sequenced
on an Illumina HiSeq 2500 platform (Illumina,
single-end, 125-bp read length). In parallel, the V3–
V4 hypervariable regions of the bacterial 16S rDNA
gene in the 12 pools were amplified using the multi-
plex barcoded primers 341F (CCTAYGGGRBGCAS-
CAG) and 806R (GGACTACNNGGGTATCTAAT)
and sequenced using an Ion S5 next-generation
sequencing system.

Sequence data processing

The raw metagenomic data were first filtered by base
quality score and read length using Trimmomatic
(v0.35; SLIDINGINDOW: 4:10 MINLEN: 70) [12].
Human sequences were discarded by Bowtie2
(v2.2.6-end-to-end, -sensitive) [13]. The remaining
nonhuman reads were assembled and analyzed by
SOAP de novo software (v2.04, -d 1, -M 3, -R, -u,
-F, -K 55) [14]. Assembled and unassembled reads
were directly mapped against the NCBI nt database
(download date, May 20th, 2019) using BLASTN
(v2.3.0, -task megablast, -evalue 1e-10, -max_target_-
seqs 10, -max_hsp 1, –qcov_hsp_perc 60) [15]. The
results were then used as the input for MEGAN 6
(min score 100, top percent: 10), and the taxonomic
assignment for each read was inferred using the low-
est common ancestor (LCA) method [16]. Mean-
while, nonhuman non-rRNA reads were also
mapped to the NCBI nr database using Diamond
(v0.7.11, –sensitive –c 1) [17], with the thresholds
used in MEGAN6 modified accordingly (min score:
40, max expected 0.001). The conversion file from
Gi number to Kyoto Encyclopedia of Gene and Gen-
omes (KEGG) was used to annotate the function of
microbial reads [18]. In addition, the HMP Unified
Metabolic Analysis Network (HUMAnN2) was used
to determine the metabolic contributions within the
samples. The HUMAnN2 pipeline involved mapping
of the metagenomic reads against the KEGG database
and MetaCyc pathway database [18–21]. As a pure
culture was used as a negative control, any reads
other than S.flexneri observed in subsequent DNA
sequencing results were regarded as contamination
and screened out of downstream analysis
proportionally.

After Ion S5 sequencing, the individual sequence
reads were filtered by PGM software to remove low
quality and polyclonal sequences. Sequences matching
the PGM 3′ adaptor were also automatically trimmed.
All PGM quality-approved, trimmed and filtered data
were exported as sff files. Singletons and low-abundance
taxa (frequency < 10 considering all samples) were also
discarded to reduce statistical noise, leaving the most
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abundant OTUs for downstream analyses (Supplemen-
tary methods). Metagenomic and 16S rDNA amplicon
sequencing data are deposited at SequenceReadArchive
under BioProject PRJNA580164.

Statistical analysis

All statistical analyses were performed in the R
environment and GraphPad Prism 7 (GraphPad Soft-
ware, Inc., La Jolla, CA). Pearson’s chi-square test or
Fisher’s exact test was used for categorical variables,
and the Mann–Whitney U test or Kruskal–Wallis
rank sum test was used for continuous variables that
did not follow a normal distribution. Alpha diversity
measures were compared using the Wilcoxon signed-
rank test. An unsupervised ordination data-visualiza-
tion technique (nonmetric multidimensional scaling,
NMDS) was used to compare the overall structure
(beta diversity). Permutational multivariate analysis
of variance (PERMANOVA) with 1,000 permutations
was performed, and the resulting R2 provided the pro-
portion of variation explained. For comparison of the
relative abundance of the most frequent phyla and gen-
era between both groups, a Mann–Whitney U test was
also performed using pairwise multiple comparison
adjustments according to the Benjamini-Hochberg
procedure. The correlation between two genera was
considered statistically robust if the Spearman corre-
lation coefficient (ρ) was >0.6 and the Benjamini-
Hochberg adjusted p-value was <0.05. Statistical ana-
lyses were conducted by “psych” packages in R. The

networks were visualized by Gephi (v0.9.2) (Sup-
plementary methods).

Results

Overview

In total, the lung microbiome was examined in 12
BALF pools (5 BALF samples/each) from 60 active
PTB subjects by shotgun metagenomic sequencing.
After demultiplexing and stringent quality control
filtering, a total of 584,381 reads were generated with
an average of 48,698 ± 36,976 reads (mean ± SD) per
pool, among which 92% could be assigned to a specific
genus and 63% were assigned to a specific species or
subspecies. Singletons and low-abundance taxa (fre-
quency < 10 considering all samples) were discarded.
Alpha and beta diversity analyses were performed
using rarefied counts based on the lowest number of
reads obtained across all samples (12,446 reads) (Sup-
plementary Figure S1).

Overall, the dominant phyla were Actinobacteria,
Firmicutes, Proteobacteria, Bacteroidetes and Fusobac-
teria, which were detected in all 12 samples and
accounted for 99.6% of the total reads (Supplementary
Figure S2). Of the 359 genera identified, Mycobacter-
ium, Streptococcus, Rothia, Actinomyces, Staphylococ-
cus and Pseudomonas were the most abundant; these
genera accounted for 78.6% of the total reads. Myco-
bacterium was detected in all samples regardless of
MTB+ or MTB– BALF samples but was dominant
only in MTB+ samples.

Figure 1. Alpha and beta diversity differences between MTB+ and MTB- patients. (A) Alpha diversity was calculated by the
observed species, Shannon, Fisher, Simpson, Chao1 and Pielou’s evenness indices. Significance was confirmed using the Mann-
Whitney U test in GraphPad, Prism 7. (B) Beta diversity of lung bacterial communities in MTB+ and MTB- BALF specimens using
unsupervised ordination (NMDS). Centroids are indicated by crosses. NMDS analysis demonstrated significant differences between
the MTB+ and MTB- patients (PERMANOVA, R2 = 0.3815, P = 0.007).
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MTB+ or MTB- defines the lung community types

Compared to MTB- patients, MTB+ patients showed a
significantly reduced alpha diversity (microbial diver-
sity within a sample), as calculated by the observed
species, Fisher and Chao1 indices (Figure 1A, P <
0.05). The distinct separation of the two centroids in
NMDS analysis demonstrated a significant difference
in average community composition between MTB+
and MTB- patients (Figure 1B, Adonis, Bray–Curtis
dissimilarity, R2 = 0.3815, P = 0.007). Removal of the
dominant genus (Mycobacterium) reads and reapplica-
tion of NMDS to the remaining data yielded similar
results, indicating that Mycobacterium is not the sole
defining feature of the airway microbiome (Sup-
plementary Figure S3).

The relative abundances of the taxa at different taxo-
nomic levels were further analyzed. Phylum-level analy-
sis showed that the relative abundance ofActinobacteria
in MTB+ patients was obviously (but not significantly,
P = 0.06, Wilcoxon test) higher than that in MTB-
patients. This result was accompanied by a lower rela-
tive abundance of Firmicutes (P = 0.012, Wilcoxon
test) and Bacteroidetes (P = 0.030, Wilcoxon test)
(Supplementary Figure S2). At the genus level, Myco-
bacterium was significantly enriched in MTB+ subjects
(P = 0.005, Wilcoxon test; abundance, 5.4–86.8%, aver-
age 44.6% vs 0.02–1.4%, average 0.3%), while

Streptococcus, Prevotella, Neisseria, Selenomonas and
Bifidobacterium were significantly enriched in MTB-
subjects, which more closely resembled the microbiome
composition of the healthy lung, as reviewed by a pre-
vious study [2,3] (Figure 2A-C). Further taxonomic
breakdown (species level) revealed that 77.9% ofMyco-
bacterium sequences corresponded to MTB in MTB+
subjects, which dominated the lung microbiome. Pseu-
domonas aeruginosa and Streptococcus salivarius were
enriched in MTB- samples (Supplementary Figure S4).

Network analysis reveals potential microbial
interactions

The specific interactions of MTB and the lung micro-
biome during infection are entirely unexplored. We
compared the co-occurrence of taxa between the
MTB+ and MTB- groups to determine how specific
microbes potentially interact with each other in the
community and how their interactions are disrupted
by MTB infection. A co-occurring network containing
strong (ρ > 0.6) and significant (FDR-adjusted P <
0.05) correlations between 68 bacterial genera was con-
structed. Overall, the total number of microbial inter-
actions, as indicated by the number of edges between
the nodes, showed no difference between MTB+ and
MTB- groups (MTB+: n = 153, MTB-: n = 123, chi-

Figure 2. Average relative taxon abundance comparisons between theMTB+ andMTB- groups at the genus level. P-valueswere deter-
mined using theMann-Whitney U test, and the Benjamini-Hochberg procedure (false discovery rate correctionmethod) was applied to
obtain adjusted p values for multiple comparisons between groups. Boxes indicate 5th to 95th percentiles, with median relative abun-
dances marked as lines and whiskers indicating the range (minimum/maximum)multiplied by the interquartile range (5th to 95th per-
centiles) from the boxes. Bacterial taxa are ranked by average relative abundances of the of overall lung microbiome in MTB- patients.
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square, P = 0.41). Mycobacterium, which had only 3
connections (all positive) in MTB- samples, established
7 negative connections with other members of the
microbiome in MTB+ samples (Figure 3A and B).
This finding implied that MTB may compete with
specific taxa and affect the overall network. Examin-
ation of the microbial network revealed that it was pre-
dominated by a few “hub” genera that were highly
connected with multiple other nodes, and the MTB
may change the hub from one to another. For example,
Rothia had only 3 connections (2 negative, 1 positive)
in the MTB- group, while the genus had a high degree
of connectivity in the MTB+ group network, with a co-
exclusive relationship with MTB and a co- existence
relationship with 11 other genera. We also observed
that Pseudomonas established 8 new taxonomic inter-
actions and became a central node in MTB+ subjects,
while it was independent of other taxa in MTB- sub-
jects (Figure 3A and B).

MTB+ and MTB- communities show distinct
functional signatures

To explore differences in the metabolic potential of the
lung microbiome between MTB+ and MTB- patients,
we further estimated the abundance of metabolic path-
ways using our metagenomic reads mapped to func-
tional orthologs from the KEGG and MetaCyc
databases with the HUMANn2 pipeline (Supplemen-
tary Table S2). The taxonomic community types were
functionally different across KEGG and MetaCyc
(Figure 4A, PERMANOVA R2 = 0.016, P = 0.041). We
identified a significantly decreased gene abundance for
PRPP biosynthesis in MTB+ patients compared to
that in MTB- patients (system: carbohydrate metab-
olism; central carbohydrate metabolism; PRPP biosyn-
thesis, ribose 5P≥ PRPP, KEGG module number

M00005, Wilcoxon t-test, P = 0.004, Figure 4B). This
result was corroborated by a decreased abundance of
genes in the pentose phosphate and purine metabolism
pathways (KEGG pathway ko00030/ko00230, Wil-
coxon test, P = 0.004/0.0087, respectively) (Supplemen-
tary Table S2). We also found one pathway for aerobic
respiration I (cytochrome C,MetaCyc pathway number
PWY-3781, Wilcoxon test, P = 0.004, Figure 4B), which
appeared to be more active in the microbiome ofMTB+
patients than in the microbiome of MTB- patients. To
determine which bacteria are involved in these path-
ways, we traced the contributing genes and determined
their likely taxonomic origin (Figure 4B). Although sev-
eral species contribute to these pathways, we only found
evidence thatMTB contributed significantlymore reads
inMTB+patients thanMTB-patients in the aerobic res-
piratory I pathway, while in the PRPP biosynthesis
module, Streptococcus contributed significantly more
reads inMTB-patients thanMTB+patients (Figure 4B).

Furthermore, a network analysis of the functional
profiles among the top 60 abundant KEGG pathways
was performed to determine the metabolic co-occur-
rence patterns in both groups. Overall, the total num-
ber of microbial interactions showed no difference
between MTB+ and MTB- samples (MTB-: n = 668,
all positive; MTB+: 619, positive 615, negative 4; chi-
square, P = 0.37). Interestingly, the Proteasome path-
way, which had only 1 positive connection in MTB-
communities, established 4 negative connections with
other pathways, such as butanoate metabolism and car-
bon fixation, in MTB+ samples. Likewise, lysine bio-
synthesis, fatty acid biosynthesis, vitamin B6 and
drug metabolism showed more co-occurrence with
other pathways in MTB+ than in MTB-. Otherwise,
one carbon pool by folate, thiamine and pyruvate
metabolism were less connected with other pathways
in MTB+ than in MTB- samples (Figure 4C).

Figure 3. Co-occurring network of microbial communities in lung samples from MTB+ and MTB- patients based on correlation
analysis. The connections in the network represent a strong (ρ > 0.6) and significant (P < 0.05) correlations. The nodes are colored
by phylum. The size of each node is proportional to the number of connections. The thickness of each edge is proportional to the ρ.
Light blue lines represent positive correlations, and purple lines represent negative correlations.
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16S rDNA amplicon sequencing underrepresents
Mycobacteria

16S rDNA sequencing data were successfully obtained
for the 12 pools (V3–V4 region, with 28,320 reads
each); 432 genera were identified, 184 (43%) of which
were also identified in the metagenomic data (184/
359, 51%), (Figure 5A). The 184 genera accounted for
76% of the 16S rDNA reads and 97% of the metage-
nomic reads, suggesting that the high-abundance gen-
era could be identified by both methods. However, the
relative abundances determined were not always com-
parable between the two methods. The metagenomic
method detected more Mycobacterium, consisting
mainly of M. tuberculosis, while 16S rDNA data
obviously underrepresented the genus (Figure 5B and

C). In the MTB+ group, Mycobacterium had the high-
est abundance in the metagenomic data, while Actino-
myces and Streptococcus were more highly enriched in
the 16S rDNA data (Figure 5C-1 and C-2); for the
MTB- subjects, Streptococcus, Actinomyces and Rothia
were the three most abundant genera in both the meta-
genomic and 16S rDNA data (Figure 5C-3 and C-4).

Furthermore, we compared microbial alpha and
beta diversity in the 16S amplicon and metagenomic
analysis. By measuring alpha diversity using the
observed genus, Shannon and Simpson indices, we
found that MTB- patients also had higher alpha diver-
sity than MTB+ patients in 16S amplicon analysis,
which is in line with the metagenomic analysis (Sup-
plementary Figure S5A). Likewise, NMDS analysis

Figure 4.MTB+ and MTB- lung community are functionally distinct. A: a NMDS plot of Bray–Curtis resemblance generated from the
square root-transformed KEGG pathway (level 3) relative abundances (generated using HUMAnN2); B: Functional differences
between the MTB+ and MTB- patients based on selected metabolic pathways and bacteria associated with such functions through
read-mapping; C: network analysis of microbial metabolic profiles in lung samples from MTB+ and MTB- patients based on corre-
lation analysis. The connections in the network represent a strong (ρ > 0.6) and significant (P < 0.05) correlations. The nodes are
coloured by KEGG pathway (level 2). The size of each node is proportional to the number of connections. Light blue lines represent
positive correlations, and red lines represent negative correlations.
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showed that beta diversity was different between MTB-
patients and MTB+ patients in 16S amplicon analysis
(Supplementary Figure S5B). Our analysis showed
that all of the alpha diversity indices in the 16S ampli-
con analysis were higher than those in the metage-
nomic analysis. Lung microbiome revealed by 16S
rDNA sequencing tends to be more diverse, including
more unidentified genera. This phenomenon is likely
because the information provided by this method is
limited due to its narrow detection spectrum (bacteria)
and low resolution (genus). Our study demonstrated
that the 16S rDNA sequencing approach significantly
underrepresented Mycobacteria, which is in line with
a previous study [6].

Bacterial metagenome content was also predicted
from 16S rRNA gene-based microbial compositions,
and functional inferences were made from the KEGG
catalog using the PICRUSt algorithm. A total of
225,866,890 inferred genes were categorized into 328
KEGG functional pathways; pathways present in
<10% of participants were removed, leaving 301
KEGG pathways (level 3) for analysis (Supplementary
Table S3). The 25 most abundant functional pathways
were related mainly to membrane transport, genetic
information processing and metabolism, including
pathways related to the ribosome, aminoacyl tRNA bio-
synthesis, glycolysis/gluconeogenesis, aspartate and
glutamate metabolism and pyruvate metabolism,
which were also among the top 25 KEGG pathways
from the metagenomic analysis (Supplementary Table
S3). Of the 301 KEGG pathways tested, 18 pathways
(level 3) differed in abundance between MTB+ and

MTB- patients (P < 0.05); these included pathways
associatedwith Purinemetabolism, Ribosome, Bacterial
chemotaxis, ABC transporters, Pyrimidine metabolism,
Aminoacyl-tRNA biosynthesis and Bacterial secretion
systems, all of which were also significantly different
between MTB+ and MTB- patients in metagenomic
analysis (P < 0.05) (Supplementary Table S3).

Furthermore, we performed a comparison in net-
work analysis between the 16S amplicon and metage-
nomic analysis. Overall, the total number of microbial
interactions, as indicated by the number of edges
between the nodes, showed no difference between
MTB+ and MTB- samples (MTB-: n = 90, positive 61,
negative 39; MTB+: n = 98, positive 52, negative 46).
Mycobacterium, which had only 2 positive connections
in MTB- samples, had 5 connections with other mem-
bers of the microbiome in MTB+ samples, including a
negative connection with Solobacterium (Supplemen-
tary Figure S5C). Additionally, several “hub” genera
shifted as theMTB- communities shifted toMTB+com-
munities. For example, Streptococcuswith a high degree
of connectivity in the MTB- group had only 5 connec-
tions in the MTB+ group. Moreover, Ignatzschineria
and Bradyrhizobium became the new “hub” genera in
the MTB+ group (Supplementary Figure S5C).

Fungal diversity

The reads assigned to fungi through BLASTN against
the NCBI nt database (download date, May 20th,
2019) in each sample were analyzed further. Although
with low relative abundance (range: 0.1–4.6%;

Figure 5. Comparison of microbial composition between the metagenomic and 16S rDNA data. A: Overlap of identified genera
between two data sets. B: Comparison of the read abundance of Mycobacteria and M. tuberculosis in lung microbiome from
MTB+ and MTB- patients revealed by the metagenomic and 16S rDNA gene amplicon sequencing. C: (1) the top 10 most abundant
genera in the metagenomic data in MTB+ data sets; (2) the top 10 most abundant genera in the 16S rDNA data in MTB+ data sets;
(3) the top 10 most abundant genera in the metagenomic data in MTB- data sets; (4) the top 10 most abundant genera in the 16S
rDNA data in MTB- data sets.
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median: 0.3%), the fungi in the lungs of MTB+ sub-
jects were significantly less abundant than those in
the lungs of MTB- subjects (Figure 6A, Wilcoxon
test, P = 0.04; median: 0.2% vs 1.3%). Overall, the
majority of the sequences analyzed were classified as
belonging to the phylum Ascomycota, followed by
Basidiomycota (Figure 6B). This result is consistent
with the findings by means of ITS analysis by Botero
and his colleagues, who demonstrated that Aspergillus
and Candida were the most frequent genera in both
sputum and oropharyngeal samples from TB patients
[22]. In this study, Aspergillaceae and Malasseziaceae
were detected in all samples, while Candida was
found only in MTB- subjects. As we know, the
majority of cases infected by fungi of the genus Asper-
gillus occurred in people with underlying illnesses
such as TB or COPD, but with otherwise healthy
immune systems. Previous work on skin microbial
communities indicated that diversity was dependent
on body site, while in this study, the fungal commu-
nities were found to be associated with the presence
or absence of MTB [23].

Discussion

This pilot study is the first to explore the lung
microbial communities using shotgun metagenomic
sequencing techniques in a prospective cohort of
patients suspected of having PTB. As we know, only
a few studies using 16S rDNA amplicon sequencing
have investigated the lung microbial changes associ-
ated with TB. However, small sample sizes, limited
sequencing depth, and sputum specimens pose sig-
nificant limitations in the interpretation of the results.
Thus, standardization of collection and sequencing
methods, accounting for contamination, and consist-
ent presentation of data and analysis are urgently
needed. Our study, in line with a previous study
[6], demonstrates that 16S rDNA sequencing

significantly underrepresents the Mycobacterium
genus. This phenomenon may occur for the following
reasons: (1) more powerful methods may be required
for thorough lysis of the mycobacterial cell wall to
isolate genomic DNA due to the large amount of
fatty acids and waxes in the cells [24]; and (2) because
MTB tends to have only one or two copies per gen-
ome, 16S rDNA amplicon sequencing tends to under-
represent this genus. Thus, we suggest that an
integrated analysis of the 16S rRNA gene and metage-
nomic sequencing may be needed to greatly advance
our understanding of the lung microbiome associated
with TB. Shotgun metagenomic sequencing has
enabled more in-depth characterization and insights
into the function of lung microbiomes than 16S
rDNA amplicon sequencing. However, obtaining
enough DNA from lung samples for sequencing is
challenging because the bacterial burden in the lung
is approximately one million-fold lower than that in
the gut and one hundred-fold lower than that in
the upper airway [3]. In this study, BALF samples
from each patient were processed in pools of 5 to
obtain enough DNA for shotgun metagenomic
sequencing. The results showed that the metagenomic
method accurately revealed microbial diversity in
both MTB+ and MTB- patients.

Culture-negative PTB is likely an early disease state
on the continuum between MTB infection and disease,
which, if left untreated, can advance to culture-positive
disease [10]. It was reported that classic TB symptoms
are not always associated with culture-negative disease,
which had less hemoptysis, sputum production, weight
loss, and cavitary lesions on chest computed tomogra-
phy (CT) [10]. Our study showed that there was also a
significantly different microbial community between
MTB+ and MTB- subjects. The lung microbiome
dominated by Streptococcus and Prevotella in MTB-
subjects more closely resembled the healthy lung
microbiome revealed by a previous study [2]. In this

Figure 6. Phylum-level analysis of fungal sequences. A: Comparison of the relative abundance of fungal communities in lung micro-
biome from the MTB+ and MTB- patients; B: the relative abundance of fungal families in bronchoalveolar lavage fluid from each
MTB+ and MTB- patient.
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study, the majority of fungal sequences were classified
as belonging to the phylum Ascomycota, followed by
Basidiomycota. This result is consistent with the
findings by means of ITS analysis by Botero [22].

In conclusion, this pilot study is the first to explore
the lung microbial communities and their network and
functional signatures associated with TB by metage-
nomic sequencing. MTB+ and MTB- lung microbial
communities showed microbial diversity, distinct func-
tional signatures and overall networks. The 16S rDNA
sequencing underrepresents Mycobacterium, which is
consistent with the observation in NTM cases.
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