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Strain-induced control of a pillar 
cavity-GaAs single quantum dot 
photon source
inah Yeo1,4*, Doukyun Kim1,4, Il Ki Han2 & Jin Dong Song3

Herein, we present the calculated strain-induced control of single GaAs/AlGaAs quantum dots (QDs) 
integrated into semiconductor micropillar cavities. We show precise energy control of individual single 
GaAs QD excitons under multi-modal stress fields of tailored micropillar optomechanical resonators. 
Further, using a three-dimensional envelope-function model, we evaluated the quantum mechanical 
correction in the QD band structures depending on their geometrical shape asymmetries and, more 
interestingly, on the practical degree of Al interdiffusion. Our theoretical calculations provide the 
practical quantum error margins, obtained by evaluating Al-interdiffused QDs that were engineered 
through a front-edge droplet epitaxy technique, for tuning engineered QD single-photon sources, 
facilitating a scalable on-chip integration of QD entangled photons.

Single-photon sources (SPSs) based on semiconductor quantum dots (QDs) have been developed for 
high-performance quantum computation and technologies1–3. Conventional self-assembled QDs exhibit 
near-perfect quantum emission properties4–6, making them highly promising for use in quantum-information 
processing7–11. However, despite the high potential of solid-state SPSs, the deterministic control (e.g., com-
positional profiles and strain-related defects) of self-assembled QDs is rendered difficult by the strain-driven 
self-assembly process accompanied by lattice mismatches in the epilayer/substrate heterostructures. To alleviate 
this problem, researchers have fabricated strain-free GaAs QDs via droplet epitaxy12–18 or by filling self-assembled 
nanoholes19–23. Potentially, strain-free QDs can be engineered to specific sizes and shapes, realizing high-fidelity 
entangled photon sources24–26. Moreover, the individual energies of single two-level systems can be effectively 
controlled by applying stress to the QD SPSs26–31.

Our approach to single-QD control is based on a micropillar cavity optomechanical resonator embed-
ded with strain-free GaAs/AlGaAs QDs. We exhibit the stress-induced control of the individual QD exciton 
dynamics, which would permit emitter-emitter and cavity-emitter resonant couplings. Additionally, we theoret-
ically evaluate the quantum mechanical corrections of the QD band structures using a three-dimensional (3D) 
envelope-function method. We provide the practical limits on the tuning/position precision, which we ascribe to 
the QD shape asymmetry and individual composition profiles. The hybrid tuning scheme can conceptually create 
quantum bits in QDs30–36, The QD-cavity structures (vertical-cavity surface-emitting laser or VCSEL-type) are 
considered to be the most promising platform for efficient light collection4,5,37. As some hybrid quantum systems 
have been implemented in the past38–40, the optomechanical techniques are critical for improving the scalability 
of QD SPSs in these systems.

Results and Discussions
Adjusting the nano- or micro-scale distributed Bragg reflector (DBR) cavity of a singly clamped pillar offers sev-
eral degrees of freedom with completely different natures. Figure 1 shows how the frequencies of the four charac-
teristic oscillation eigenmodes in a standard micropillar cavity depend on the pillar aspect ratio g (defined as R/h, 
where R and h are the radius and height of the pillar, respectively). These results were obtained via a finite element 
simulation. As the pillar widened relative to its height (g < 0.3), the eigenfrequencies fn of the first two flexural 
modes increased such that β π ρ=f h YI A/(2 ) /n n

2 2  41. Here, the first two eigenvalues of the vibration modes cor-
respond to β1 = 1.875 and β2 = 4.69442. For AlxGa1−x As epitaxial structures, the alloy-composition-dependent 
Young’s modulus Y and mass density ρ correspond to (85.3 − 1.8x) [MPa] and (5320 − 1560x) [kg/m3], 
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respectively43. In addition, I = πR4/4 is the area moment of inertia and A is the cross-sectional area. While the 
longitudinal eigenfrequencies were almost independent of g, the hybrid mode frequencies degenerated at two 
points within a relative frequency splitting (Δf/f) of 10−3, which are labeled D1 and D2 (with gD1 ~ 0.1 and gD2 ~ 
0.2, respectively) in Fig. 1. The hybrid resonances with higher-order modes can be set in a strong-coupling 
regime44,45, controlling the resonant dynamics via the coherent exchange of phonons46–48. In our DBR-based SPS 
prototype, the degenerate eigenfrequencies of the two hybrid modes were tunable from several tens of MHz to 
~650 MHz.

Controlling the pillar ellipticity adds additional degrees of freedom, leading to asymmetric mechanical polar-
ization distributions. The semi-major and semi-minor radii of the elliptic pillar resonators are denoted as Rx and 
Ry, respectively. As the ellipse’s axial ratio Ry/Rx reduced toward 0.5, the fundamental oscillation frequency of the 
major axis increased with a relative frequency splitting of 0.4. Elliptical VCSEL resonators with low axial ratios 
developed torsional breathing modes (green open circles in Fig. 1(b)). The longitudinal breathing characteris-
tics were independent of the pillar ellipticity. In the second flexural mode, two separate elliptic modes appeared 
within 2% of the resonant frequencies.

These distinct multimode mechanical vibrations were accompanied by non-uniform strain fields in the pillar 
geometries. Figure 2(a) shows typical in-plane principal-stress components of the various modes applied on the 
QD embedded in the middle of the AlGaAs cavity layer inside the pillar. The stress components linearly varied by 
several tens of MPa. Owing to the quadratic distributions of stress in the flexural modes and the non-uniformity 
of the longitudinal stress, our investigation of the stress-field gradients Δ σx z

m is restricted in the ranges |r/R| < 0.4. 
The Δ σx z

m along the x-axis were determined as 4 and 17 MPa/μm for the first two flexural modes, respectively. We 
adjusted the aspect ratio of the VCSEL pillar from 0.2 to 0.9 at a fixed radius of 1.5 μm such that a high Purcell 
factor could be obtained49. Uniaxial stresses, σz

L, of up to 40 MPa can be generated in the QD plane by longitudi-
nally displacing the free-end of the cylindrical pillar by 1 nm (≈106 xzpa) at g ~ 0.4 (see Fig. 2(b)). Here, xzpa 
denotes the zero-point amplitude of the first flexural mode. In addition, we calculated the uniform in-plane mean 
stress profiles at 0 MPa and 22 MPa for the radial and longitudinal breathing modes, respectively. As Fig. 2(c) 
demonstrates, increasing the ellipticity decreased the axial stress gradient. The gradient of a highly elliptic cavity 
resonator (axial ratio 0.5) was almost 50% that of the symmetric flexural resonances. The (ellipticity-independent) 
longitudinal resonance simply increased the relative principal stress by 15%. Here, the sign of the applied stress 
depends on the vibrational phase.

At each resonance, an applied stress can change the exciton energy levels of the strain-free GaAs QDs embed-
ded in a cylindrical VCSEL pillar resonator. A single crystal under uniaxial stress undergoes various deformation 
processes. First, a hydrostatic stress produces the isotropic crystal lattice distortion, shifting the QD conduction/
valence band extrema to higher/lower energies, relative to the mechanical phase. Second, a shear stress lowers the 
symmetry of zinc-blend crystals, splitting their heavy- and light-hole valence states. Consequently, the bandgap 

Figure 1. (a) Size- and (b) shape-dependent resonance frequencies of a GaAs/AlGaAs Bragg micropillar cavity 
as functions of the pillar aspect ratio g (= R/h) between the radius, R, and height, h, and pillar axial ratio Ry/Rx 
at g ~ 0.4. To construct a strain-free GaAs/Al0.3Ga0.7As QDs in a cavity system, we modeled an Al0.3Ga0.7As 
λ (= 241 nm)-cavity enclosed by (λ/4 = 50.5 nm, λ/4 = 60.7 nm) GaAs/Al0.9Ga0.1As Bragg reflectors (17 and 
15 periods in the bottom and top reflectors, respectively). The micropillar contains GaAs QDs in the center 
of the Al0.3Ga0.7As λ-cavity. The cavity’s resonant mode is optimized to the conventional QD exciton energy, 
i.e., 1.653 eV. The red circles, blue squares, green circled dots, and yellow crosses in the figure indicate the first 
and second flexural modes, and the radial and longitudinal breathing modes, respectively. The multimode 
deformation profiles have been magnified for clarity. The inset demonstrates the frequency shift, fD, of the 
degenerate points D1 and D2 as a function of the height h(μm). For the four DBR pillars, the numbers of the 
bottom (top) reflectors are 7 (5), 17 (15), 27 (25), and 37 (35).
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energy between the heavy hole and conduction bands also shifts to a lower energy. Under an external (tensile) 
uniaxial stress, the reduced QD height modifies the quantum potential. Such a change in the confinement poten-
tial not only increases the electron–hole sub-band confinement energies, but also alters the strength of the elec-
tron–hole Coulomb interaction. Even small intrinsic strains in GaAs/AlGaAs QDs can significantly alter the 
quantum confinement parameters15.

Figure 3(a) depicts the calculated shift in the QD excitonic bandgap energy δEG under characteristic multi-
mode strain fields (e.g., Fig. 2(a)). To exploit our system as an optomechanical oscillator for QD SPSs, we exam-
ined the magnitudes of the rates of change of δΔ Ex G in the core region |r/R| < 0.4. We tuned the cross-sectional 
rates of change to 0.2, 1.4, and 0.7 meV/μm, obtaining the first flexural mode, the second flexural mode, and the 
radial breathing mode at g ~ 0.9, respectively (Fig. 3(b)). In the longitudinal mode, we observed an almost uni-
form energy shift of the GaAs QDs embedded in the micropillar cavity. Notably, δΔ Ex G was characterized by 
higher degree polynomials undergoing the nonlinear stress fields in the flexural and longitudinal modes outside 
the core region (see Figs. 2(a) and 3(a)). The combined effects of the hydrostatic and shear stresses experienced by 
a direct bandgap semiconductor QD can be described by the Bir-Pikus Hamiltonian50

= + + +ε ε εE E Q R S , (1)G H
2 2 2

where the hydrostatic and shear deformation energies, EH and Qε, Rε, and Sε, are defined, respectively, as EH = a 
Tr(ε), = −εQ b

2
[Tr(ε) − 3εzz], ε ε ε= − −εR id( )b

xx yy xy
3
2

, and ε ε= − −εS d i( )xz yz . Here, εij denotes the com-
ponents of the strain tensor. The coefficient a denotes the hydrostatic deformation potential, whereas the coeffi-
cients b and d denote the valence-band shear deformation potentials, corresponding to the strain tensors with 
symmetries Γ1, Γ3, and Γ4 50. For the bulk case of GaAs, the shear deformation energy is simply given by Qε based 
on an external uniaxial stress applied along the [001] growth direction. The simple case of strain correspondingly 
induces the bandgap energy shift δ δ δ= + εE E QG H  (see Fig. 3(a) and symbols). In practice, under the stress 
applied by the fundamental flexural oscillation (cf. Fig. 2), various types of shear deformation potentials produce 
a two-fold decrease in the rate of bandgap change δΔ Ex G (red lines and closed red circles, in Fig. 3(a,b)). Shear 
deformation effects in pillar cavities with three different aspect ratios induce non-zero rates of change (between 
0.3 and 0.7 meV/μm; Fig. 3(b)) in the radial breathing mode. The size of the bump in the center (|r/R| < 0.02) of 
the energy response curve of the flexural modes increases with the increase in axial ratio of the elliptic pillar cavity 
(Fig. 3(c)). At an axial ratio of 0.5, the slope of the least-squares-fitted line δΔ Ex G for the first flexural mode was 
twice that of the symmetric cavity resonator. As the quadratic behaviors of the shear deformations of the bump, 

Figure 2. (a) Representative principal stresses σz of multiple modes acting on the QD plane in a cylindrical 
micropillar cavity resonator with g ~ 0.4. (b) Size and (c) shape dependencies of the maximum longitudinal 
stress σz

L and the stress-field gradient σΔ | |r R( /z
m  < 0.4) near the center. The left (yellow) and right axes 

correspond to the longitudinal uniaxial stress σz
L and the cross-sectional stress-field gradient σΔ z

m of the 
flexural modes m, respectively.
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weakens in the second flexural mode, Fig. 3(c) (blue rectangles) simply depicts the cross-sectional rate of bandgap 
change, δ δ δ= + εE E QG H . The cross-sectional rate of bandgap change was simply reduced by two folds.

The quantum confinement potential of an electron–hole system provides a significant correction to the 
stress-induced exciton energy change. The exciton recombination energy EX is the sum of the GaAs bulk bandgap 
EG, the electron–hole sub-band energies ES of carriers, and the electron–hole Coulomb interaction J51: 

= + + .E E E JX G S  We calculated the quantum mechanical characteristics of the 3D lens-shaped GaAs QDs 
using an envelope-function method developed within k ⋅ p theory (see theoretical details in Methods). For GaAs/
Al0.3Ga0.7As QDs of radius Rx y/

QD = 7 nm and height h = 5 nm, the quantum mechanical correction to the excitonic 
energy shift δ δ δ= − | |E E JQ S  was approximately 70 μeV under a uniaxial hydrostatic stress of 1 MPa (Fig. 3(d)). 
The substantial correction to the quantum confinement surpasses the stress-dependent bandgap change (60 μeV/
MPa; Figs. 2 and 3). The geometrical parameters were obtained from the cross-sectional transmission electron 
microscope (TEM) images15,52. Here, the QD emission energy (1.653 eV) was engineered to couple to the cavity’s 
resonant mode. Figure 3(d) demonstrates the considerable quantum confinement effects by precisely controlling 
the ellipticity R R/y x

QD QD of pure GaAs QDs. The stress-induced confinement characteristics, Δ ES Q, were deter-
mined by the slope of a quantum confinement energy–stress curve obtained using a 3D envelope-function for-
malism. We evaluated the 3D QD confining potentials relative to structural parameters (Rx y/

QD and h) and the 
uniaxial stress-induced change in the confinement geometry. At a minor-major axis ratio of ~0.9, the 
stress-induced rate Δ ES Q  was changed by 10% (7 μeV/MPa) relative to the symmetric QD. The 
quantum-confinement effect δEQ has a standard deviation of 3% over an axial ratio of 0.5–1.

Furthermore, we investigated the effect of Al interdiffusion on the excitonic band gap in the GaAs DE QDs. To 
construct a realistic confinement potential profile, we studied the empirical in-depth Al profile for an optimized type of 
GaAs DE QD15,52. In a previous two-dimensional study, we measured the position-dependent mole fraction x(z) of Al 
along the QD’s growth axis using TEM-energy dispersive X-ray spectroscopy. Then, we applied the polynomials 
obtained via least-squares-fitting to the well-known bandgap formula 

−
E z( )Al Ga Asx (1 x)

 = 1.519 + 1.155 x(z) + 0.37 
x(z)2 53. According to this analysis wherein we used 3D envelope-function modeling, the DE QD recombination energy 
red-shifted by ~1.7% and the quantum confinement correction of ~16%. In addition, the stress-induced shift rate Δ ES Q 
changed by 5% in its realistic confining potential profile of Al-interdiffused QDs (cf. Fig. 3(e)). Our 3D calculation 
showed that the individual rate of change Δ ES Q, which depended on the shape anisotropies of the confinement poten-
tial in the GaAs QDs, was also shifted by approximately 5%. These results provide the practical margins for GaAs QD 
tuning and for improving the source performances of QD SPS applications (such as nondestructive position mapping 
and imaging methods). Our methodology presented in this study can be directly implemented in versatile 

Figure 3. (a) Influence of stress on the QD excitonic bandgap energy δEG in the middle layer of the λ-AlGaAs 
cavity in a cylindrical micropillar with g ~ 0.4. Effect of (b) pillar aspect ratio g and (c) ellipticity on the cross-
sectional shift rate δΔ Ex G of the two flexural modes (red circles and blue squares) and the radial breathing 
mode (green open circles). (d) Stress-induced changes in the quantum confinement energy Δ ES Q. As an 
example, we plot the sum of QD sub-band and Coulomb interaction energies as a function of the geometrical 
asymmetry R R/y x

QD QD of the QDs. Here, Rx y( )
QD denotes the major(minor) radius of a lens-shaped strain-free GaAs 

QD. (e) Effect of Al interdiffusion on the stress-induced quantum correction Δ ES Q. The dependence of 
− Δ ΔE E1 /S Q

Al
S Q on the QD axial ratio is plotted as a percentage. The inset shows the probability density 

distribution |ψ(r)|2 of the lowest hole state localized in a pure QD (left) and an Al-interdiffused QD (right).
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micropillar–microcavity embedding quantum emitters. For quantum telecommunication on optical fiber networks, 
such precise control can be utilized in hybrid two-level systems such as InGaAsP/InP54–56 and GaSb/GaAs QDs57,58, clad 
by lattice-matched DBR pillars. In general, our methods can be applied to improve the source performance of different 
types of solid-state quantum-emitters embedded in cylindrical structures. Because the quantum error in the energy 
shift was estimated down to E E5% /Q

Al
X, the subwavelength imaging/positioning of QDs theoretically outperforms other 

optical nanoscopy such as the stimulated emission depletion, in which 5-nm resolution of nitrogen-vacancy centers was 
achieved59. Meanwhile, the practical quantum error is set by employing the quantum-mechanical corrections in the 
individual confinement geometries of solid-state emitters. Destructive composition depth-profile analyses of individual 
emitters are mainly needed for their high-precision control at the quantum level.

conclusion
We have theoretically demonstrated full frequency control of strain-free GaAs QDs embedded in micropillar 
cavity SPSs. By harnessing strain coupling, we fine-tuned the QD excitonic energy with cross-sectional shift rates 
of few meV/μm in tailored micropillar optomechanical resonators. Using an envelope-function model of 3D 
GaAs QDs, we demonstrated that the tuning/positioning precision of the quantum confinement energy is limited 
to 5% by varying shapes and compositions of the QDs. Our approach, which exploits the nano-optomechanics 
of QD-cavity systems, is fully compatible with integrated photonic circuits, providing an intriguing avenue for 
developing hybrid quantum and classical computers.

Methods
We employ a 3D envelope-function method developed within k ⋅ p perturbation theory to calculate the quantum 
mechanical characteristics of lens-shaped DE QDs of GaAs/Al0.3Ga0.7As. The geometrical parameters such as height 
and base lengths were extracted from the cross-sectional TEM images15,52. The QD energy of a single electron–hole pair 
comprises the GaAs bulk bandgap EG, the sub-band energies ES of the carriers, and the direct Coulomb interaction 
energy J. Here, the quantity = − | |E E JQ S  characterizes the quantum confinement of an electron–hole system in the 
QD. To determine the sub-band confinement energies ES and the electron–hole Coulomb interaction energy J in the 
stress-dependent QD confinement potential V(r), we numerically solved the following Schrödinger equation:

 ψ ψ ψ−
∂
∂

+ = .⁎m
V E

r r
r r r r

2 ( )
( ) ( ) ( ) ( )

2 2

2

Using a finite-difference method, we evaluated the 3D Coulomb integral of J projected onto the exciton state 
|ψeψh〉 defined as 15,51 ∫ ∫= − ∑ ′ ×σ σ

ψ σ ψ σ ψ σ ψ σ
ε

′ ′
′ ′′

∗ ∗ ′ ′
| − |

J e d r d r e hr r r r
r r r r

2
,

3 3 ( , ) ( , ) ( , ) ( , )
( , )

e h , for the dielectric screening ε(r, 
r′) at a given position r with spin σ. The material parameters used in the calculation are given elsewhere15,60.
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