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Elevated cerebral spinal fluid 
biomarkers in children with 
mucopolysaccharidosis I-H
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Mucopolysaccharidosis (MPS) type-IH is a lysosomal storage disease that results from mutations 
in the IDUA gene causing the accumulation of glycosaminoglycans (GAGs). Historically, children 
with the severe phenotype, MPS-IH (Hurler syndrome) develop progressive neurodegeneration 
with death in the first decade due to cardio-pulmonary complications. New data suggest that 
inflammation may play a role in MPS pathophysiology. To date there is almost no information on 
the pathophysiologic changes within the cerebral spinal fluid (CSF) of these patients. We evaluated 
the CSF of 25 consecutive patients with MPS-IH. While CSF glucose and total protein were within 
the normal range, we found a significantly mean elevated CSF opening pressure at 24 cm H2O (range 
14–37 cm H2O). We observed a 3-fold elevation in CSF heparan sulfate and a 3–8 fold increase in MPS-IH 
specific non-reducing ends, I0S0 and I0S6. Cytokine analyses in CSF of children with MPS-IH showed 
significantly elevated inflammatory markers including: MCP-1 SDF-1a, IL-Ra, MIP-1b, IL-8, and VEGF 
in comparison to unaffected children. This is the largest report of CSF characteristics in children with 
MPS-IH. Identification of key biomarkers may provide further insight into the inflammatory-mediated 
mechanisms related to MPS diseases and perhaps lead to improved targeted therapies.

Severe mucopolysaccharidosis type I, Hurler’s syndrome (MPS-IH), is a lysosomal storage disease due to muta-
tions in the IDUA gene resulting in decreased/absent alpha-L-iduronidase activity. The consequent accumulation 
of the glycosaminoglycans (GAGs), heparan sulfate (HS) and dermatan sulfate (DS), in tissues results in a number 
of clinical features including hepatosplenomegaly, progressive cognitive impairment, cardiovascular complica-
tions, and joint and bone abnormalities (dysostosis multiplex)1. Currently, exogenous enzyme replacement using 
recombinant alpha-L-iduronidase is available to patients with MPS-I, although it does not cross the blood brain 
barrier in significant amounts2.

To achieve continuous enzyme delivery as well as provide a cerebral source of cells expressing 
alpha-L-iduronidase (presumed to be microglia), hematopoietic cell transplant (HCT) is used as standard of care 
for patients with Hurler syndrome3,4. HCT leads to an increase in IDUA enzyme activity and concomitant reduc-
tions in substrate levels as well as stabilization of neurodegeneration5–7. HCT does not arrest the progression of 
joint and bone disease8–11, nor does it reverse the characteristic changes in the heart valves12,13. These observations 
suggest that GAG accumulation is not the sole mediator of disease-related complications in MPS-IH14. Recent 
work in rodent models supports that co-existent immune and microglial inflammatory processes contribute to 
the pathology of several MPS diseases with demonstrating several key inflammatory cytokines including IL-6, 
IL-8, MIP1-beta, MIP1-alpha, and MCP-115–17.

As mentioned, prior to the development of HCT, children with MPS-IH were observed to develop progressive, 
debilitating developmental and cognitive deterioration7. While there have been several descriptions of various 
plasma biomarkers for MPS-IH5,18–21, no study has systematically evaluated the cerebrospinal fluid (CSF). Here, 
we document for the first time, the characteristics of MPS-IH CSF with a focus on inflammatory cytokines.
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Results
We performed a lumbar puncture and CSF analysis on 25 consecutive patients with MPS-IH with a median age 
of 11.2 months. Nearly all CSF was free from erythrocytes or white blood cells. As shown in Fig. 1, the mean CSF 
glucose concentration was 47.6 (range 32.2–60.1 mg/dL), with the normal range for age being 40–70 mg/dL. The 
mean CSF total protein was 30.8 (range 9.3–61.6 mg/dL), with a normal range for age of 15–60 mg/dL. Strikingly, 
we found a significant elevation in opening pressure (OP) in children with MPS-IH, with a mean of 24.6 cm 
H2O (range 14–37 cm H2O). This is higher than what is considered a normal OP in children of this age, which is  
< 20 cm H2O22.

Using the Sensi-Pro ®  assay, we measured NREs characteristic for MPS-IH, I0S0 and I0S6, and also deter-
mined total HS concentration19. We found a significant elevation in I0S0 and I0S6 with an average of 56.3 and 
249.1 ng/mL respectively (with normal values of < 15 and < 30 ng/mL, respectively19) as shown in Fig. 2. Total HS 
was also significantly elevated with an average of 278.1 ±  108.2 ng/mL (normal < 120 ng/mL) (Fig. 2).

We also evaluated HCII-T (heparin cofactor II-thrombin) complex, a previously described biomarker of lyso-
somal storage diseases including MPS-IH18. We found a significant elevation with a mean level of 4.5 ±  1.4 ng/mL 
of HCII-T complex (reference range: < 0.25 ng/mL) (Fig. 3).

We found six inflammatory markers to be significantly elevated in children with MPS-IH when compared to 
controls: monocyte chemoattractant protein-1 (MCP-1) (mean 811 vs 328 pg/mL, p <  0.001), stromal cell-derived 
factor-1a (SDF-1a) (784 vs 200 pg/mL, p <  0.0001), interleukin-1 receptor antagonist (IL-Ra) (62 vs 6 pg/mL, 
p <  0.0001), macrophage inflammatory protein 1-beta (MIP-1b) (13.1 vs 3.3 pg/mL, p =  0.04), interleukin-8 (IL-8)  
(39 vs 17 pg/mL, p <  0.0001), and vascular endothelial growth factor (VEGF) (5.1 vs 0.1 pg/mL, p <  0.0001) as 
shown Fig. 4.

Discussion
We report potential CSF biomarkers for patients with MPS-IH. These may be important to consider as further 
therapies are being developed either through immunomodulation, hematopoietic stem cell transplant, new forms 
of enzyme therapy and other interventions. These biomarkers may serve as indicators to which we can compare 
the effectiveness of new interventions. In addition, they may prove useful as a means of identifying future phe-
notypes in children diagnosed through newborn screening that display novel or poorly characterized genotypes.

Figure 1. CSF opening pressure (OP), glucose, and total protein in MPS-IH patients. The boxes represent to 
25th to 75th percentiles with a line at the mean. Whiskers show the 10th and 90th percentiles. Symbols represent 
value outside the 10 – 90th percentile. The yellow area indicates the normal range for age at our institution.

Figure 2. Non-reducing ends (NRE)s, I0S0 and I0S6, and total HS content in MPS-IH CSF. The boxes 
represent to 25th to 75th percentiles with a line at the mean. Whiskers show the 10th and 90th percentiles. 
Symbols represent value outside the 10 – 90th percentile. The yellow area indicates the normal range in the 
general population.
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We found the mean CSF OP was higher in children with MPS-IH than what is considered “typical” for healthy 
children, which is <20 cm H2022. Recently, Avery et al. analyzed the OP of 197 children and found a mean OP of 
19.6 cm H2023. Furthermore, given the 10th/90th percentage of Avery’s data was 11.5 and 28 cm H2O, it has been 
suggested that an abnormal OP should be consider that of > 28 cm H2O23,24. Six of 25 MPS-IH patients had OP 
greater than 30 cm H2O. While sedation and changes in ventilation can both modulate the OP24, our patients all 
had strict end-tidal CO2 monitored and maintained from 25–40 mm Hg. Classically, elevated OP is associated 
with intracranial processes such as infection (bacterial, viral, or fungal meningitis), subarachnoid hemorrhage, 
pseudotumor cerebri, or any communicating hydrocephalus. Our data suggest that GAG accumulation and per-
haps subacute neuroinflammation may contribute to an increase in OP. We should note that none of our patients 
has evidence of papilledema suggesting that their increased OP was not severe enough to affect the optic nerve 
head.

An inflammatory process has been implicated as a pathological contributor to MPS disease21, with specific 
contributions to skeletal manifestations. Simonaro et al. previously found TNF-alpha to be elevated in MPS VII 
mice and treatment of MPS VI affected rats with Infliximab, an antibody targeted to TNF-alpha, significantly 
reduced joint disease15. Additionally, the anti-inflammatory compound, pentosan polysulfate, has been shown to 
reduce inflammation associated bone pathology in a rat model of MPS VII and is now entering clinical trials in 
MPS patients25.

In this study, we demonstrate for the first time that markers of inflammation are manifest in the CSF of MPS 
patients. Our data is consistent with what others have shown in the brain of MPS animal models. For example, 
Wilkinson et al. showed significantly high levels of MCP-1 in the brain of MPSI, MPSIIIA, and MPSIIIB mice17. 
The links between the immune system of MPS pathology as it relates to the neurological and skeletal system is 
becoming more appreciated26. It is doubtful that a single cytokine or inflammatory factor is responsible for MPS 
pathology, as many of the inflammatory proteins exist in a “cascade” of factors where initiation of inflammation 
is followed by waves of chemokine secretion and recruitment of immune cells. Several of the elevated factors we 
show here are also associated with other neuroinflammatory conditions, including MCP-1 and MIP-1b which 
are elevated in patients with multiple sclerosis, while MCP-1, MIP-1b, IL-8, and SDF-1a are elevated in stroke 
victims27.

Whether the CSF inflammatory mediators are due to GAG accumulation or another process is not known. 
There are very few reports of CSF GAG evaluation in patients afflicted with a mucopolysaccharidosis diagnosis28–30,  
and we believe this is the first study to evaluate non-reduced ends (NREs) and HS levels in the CSF of MPS-IH 
patients. Clinical trials investigating the use of anti-inflammatory agents are being developed in MPS-I and other 
MPS subtypes for the purpose of ameliorating joint and bone disease25. Novel attempts at targeting the CSF with 
recombinant viral vectors delivering the missing enzyme are being developed in several MPS diseases as well31–35. 
Commonly, glycan-based markers are used to show efficacy for these various strategies36. Based on our CSF find-
ings, it may also be important to collect and assess both CSF GAG and inflammatory markers as new clinical trials 
evolve, since reducing inflammation will likely coincide with an impact on neurological processes and perhaps 
skeletal disease as noted above.

Figure 3. Levels of HCII-T in MPS-IH CSF. The boxes represent to 25th to 75th percentiles with a line at the 
mean. Whiskers show the 10th and 90th percentiles. Symbols represent value outside the 10 – 90th percentile. 
The yellow area indicates the non-MPS reference. N =  10 MPS-IH patients. The reference value was determined 
from the average of four non-MPS samples.
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Figure 4. CSF Inflammatory cytokines in MPS-IH patients. Shown are the factors that demonstrated 
significant elevation in the MPS-IH group. Error bars represent standard error of the mean and p-values were 
generated from a Student’s t-test. *p <  0.05, ***p <  0.001.

Cytokine Name Abbreviation

Epithelial derived neutrophil activating peptide 
78 or CXCL5 ENA-78

Basic fibroblast growth factor bFGF

Granulocyte colony stimulating factor G-CSF

Granulocyte macrophage colony stimulating 
factor GM-CSF

Interferon gamma IFN-gamma

Interleukin 1alpha IL-1alpha

Interleukin 2beta IL-1beta

Interleukin 1 receptor antagonist IL-1ra

Interleukin 2 IL-2

Interleukin 4 IL-4

Interleukin 5 IL-5

Interleukin 6 IL-6

Interleukin 8 IL-8

Interleukin 10 IL-10

Interleukin 17 IL-17

Monocyte chemotactic protein 1 or CCL2 MCP-1

Macrophage inflammatory protein 1alpha or 
CCL3 MIP-1a

Macrophage inflammatory protein 1beta or 
CCL4 MIP-1b

Regulated upon activation, Normal T-cell 
expressed or CCL5 RANTES

Tumor necrosis factor alpha TNF-alpha

Thrombopoietin TPO

Vascular endothelial growth factor VEGF

Stromal derived factor 1alpha SDF-1alpha

Table 1. List of inflammatory factors evaluated in CSF samples.
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Methods
Participants. Patients with MPS-IH (n =  25, median age of 11.2 months, range 6–30 months) had CSF sam-
pling performed 8 weeks prior to hematopoietic stem cell transplant at the University of Minnesota. During the 
initial evaluation including a sedated MRI, a lateral decubitus lumbar puncture is routinely performed with an 
opening pressure (OP) measurement and CSF was obtained and analyzed for cell count, protein concentration, 
glucose concentration, GAG concentration and cytokine analysis. End-tidal CO2 monitored and maintained from 
25–40 mm Hg to ensure opening pressure accuracy.

Control patients for biomarker analyses (n =  25, median age 6.8 years, range 4–17 years) were those under-
going intrathecal chemotherapy for a prior diagnosis of acute lymphoblastic leukemia, at least 3 months into 
maintenance therapy, and without a CSF leukemia diagnosis. In controls, CSF was withdrawn just prior to admin-
istration of the intrathecal chemotherapy and cytokine concentrations determined by ELISA. Unavailability of 
“healthy” controls due to the risks inherent to attaining CSF from “healthy” children established these patients as 
the most appropriate control group available and has been previously published by our group and others37–39. This 
study was approved by the Committee on the Use of Human Subjects in Research at the University of Minnesota, 
and all experiments were performed in accordance with relevant guidelines and regulations by the Committees 
on the Use of Human Subjects in Research at the University of Minnesota. Informed written consent was obtained 
for all patient samples from the parents or guardians on behalf of the child participants.

Cytokines. CSF samples were evaluated using the 22-plex, human panel A, (R&D Systems, Minneapolis, MN) 
measured with the Luminex system (Luminex, Austin, TX) and analyzed by Bioplex software (BioRad, Hercules, CA).  
This panel includes ENA-78, bFGF, G-CSF, GM-CSF, IFN-gamma, IL-1alpha, IL-1beta, IL-1ra, IL-2, IL-4, IL-5, 
IL-6, IL-8, IL-10, IL-17, MCP-1, MIP-1alpha, MIP-1beta, RANTES, TNF-alpha, TPO, and VEGF as shown in 
Table 1. SDF-1alpha was measured by sandwich ELISA (R&D Systems, Minneapolis, MN).

Heparin cofactor II-thrombin (HCII-T). HCII-T complex was determined by ELISA, following the man-
ufacturer’s instruction (#MBS904277, Mybiosource, San Diego, CA).

Non-Reducing Ends (NREs) and total HS. The CSF NREs (I0S0 and I0S6) and total HS (calculated from 
the addition of the internal disaccharides, D0A0 +  D0S0) were determined using the Sensi-Pro ®  assay as previ-
ously described19.

Statistical methods. Cytokine measurements were made in duplicate and the average of the two values was 
used to determine concentration using standard curves generated with the relevant recombinant human proteins 
provided with the commercial kits. Means for the MPS-IH and control groups were calculated and subjected to a 
two-tailed Student’s t-test to compute a p-value.
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