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Abstract: Several constituents of essential oils have been shown to be active against pathogens
such as bacteria, fungi, and protozoa. This study demonstrated the in vitro action of ten
compounds present in essential oils against Leishmania amazonensis promastigotes. With the exception
of p-cymene, all evaluated compounds presented leishmanicidal activity, exhibiting IC50 between
25.4 and 568.1 µg mL−1. Compounds with the best leishmanicidal activity presented a phenolic
moiety (IC50 between 25.4 and 82.9 µg mL−1). Alicyclic alcohols ((−)-menthol and isoborneol)
and ketones ((−)-carvone) promoted similar activity against the parasite (IC50 between 190.2 and
198.9 µg mL−1). Most of the compounds showed low cytotoxicity in L929 fibroblasts. Analysis of the
structure-activity relationship of these compounds showed the importance of the phenolic structure
for the biological action against the promastigote forms of the parasite.
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1. Introduction

Leishmaniasis is a disease of worldwide distribution, present in Africa, Latin America,
Asia, and Europe. It is estimated that 1.3 million new cases occur annually in these continents,
with approximately 20,000 to 30,000 deaths due to the disease [1]. Leishmaniasis is transmitted by
sandflies and is usually associated with poverty, malnutrition, poor living conditions, and climate
and environmental changes [1,2]. Leishmaniasis can be caused by different protozoa species of the
genus Leishmania, and the development of the disease is influenced by factors such as parasite species,
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parasite-host interaction, and vulnerability of the host immune system, presenting variable clinical
manifestations as cutaneous, diffuse cutaneous, mucocutaneous and visceral leishmaniasis [3,4].

Antimonials and amphotericin B are the first-choice drugs for the treatment of leishmaniasis in
most countries. However, there are several limitations related to their use, such as high financial cost
(drug price and hospital support/hospitalization), long term treatment (up to 30 days), high toxicity
and variable efficacy (30 to 98% cure). In addition, the emergence of resistant strains, especially in
endemic areas, is also a limiting factor for the use of traditional chemotherapies [5–7].

A vast array of essential oil-bearing plants has been used to control parasites for centuries [8,9].
For example, garlic oil is known to be active against 12 different human and nonhuman parasites [10],
eugenol-containing basil and clove oils possess antiphagocytic activity, and Mentha crispa essential
oil is active against Trypanosoma brucei [11]. The discovery of new drugs has been based on natural
products for years, either by the synthesis of substances that mimic a natural product, by modifying an
existing natural molecule, or by the use of the natural product itself [12]. Among natural products,
monoterpenes stand out for their wide use in the industry, in addition to having vast biological activity
already verified against fungi, bacteria, viruses, and parasites, including protozoa [13–21]. Thus, the
present work aims to investigate the relationship between chemical structures and the activity of
different monoterpenes and a phenylpropanoide, constituents of essential oils, against promastigote
forms of Leishmania amazonensis.

2. Results and Discussion

Nine monoterpenes and one phenylpropanoid were selected (Table 1) to investigate the action
of these compounds against L. amazonensis promastigotes and to determine the relationship between
their chemical structure and biological activity.

Table 1. In vitro leishmanicidal activity of different essential oils constituents against
Leishmania amazonensis promastigotes.

Compound Chemical Structure IC50 (µg mL−1) * IC50 (µM) * R2

Carvacrol (1)

Molecules 2017, 22, 815 2 of 10 

 

Antimonials and amphotericin B are the first-choice drugs for the treatment of leishmaniasis in 
most countries. However, there are several limitations related to their use, such as high financial cost 
(drug price and hospital support/hospitalization), long term treatment (up to 30 days), high toxicity 
and variable efficacy (30 to 98% cure). In addition, the emergence of resistant strains, especially in 
endemic areas, is also a limiting factor for the use of traditional chemotherapies [5–7]. 

A vast array of essential oil-bearing plants has been used to control parasites for centuries [8,9]. 
For example, garlic oil is known to be active against 12 different human and nonhuman parasites [10], 
eugenol-containing basil and clove oils possess antiphagocytic activity, and Mentha crispa essential 
oil is active against Trypanosoma brucei [11]. The discovery of new drugs has been based on natural 
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different monoterpenes and a phenylpropanoide, constituents of essential oils, against promastigote 
forms of Leishmania amazonensis. 

2. Results and Discussion 

Nine monoterpenes and one phenylpropanoid were selected (Table 1) to investigate the action 
of these compounds against L. amazonensis promastigotes and to determine the relationship between 
their chemical structure and biological activity. 

Table 1. In vitro leishmanicidal activity of different essential oils constituents against Leishmania 
amazonensis promastigotes. 

Compound Chemical Structure IC50 (µg mL−1) * IC50 (µM) * R2 

Carvacrol (1) 25.4 ± 2.4 169.08 ± 15.97 0.70 

Thymol (2) 26.8 ± 3.7 178.40 ± 24.63 0.81 

3-Carene (3) 72.5 ± 18.5 532.18 ± 135.79 0.81 

Eugenol (4) 

 

82.9 ± 6.2 504.87 ± 37.75 0.98 

Isoborneol (5) 190.2 ± 9.8 1233.06 ± 63.53 0.97 

(–)-Carvone (6) 194.7 ± 16.9 1296.09 ± 112.50 0.94 

25.4 ± 2.4 169.08 ± 15.97 0.70

Thymol (2)
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Table 1. In vitro leishmanicidal activity of different essential oils constituents against Leishmania 
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Compound Chemical Structure IC50 (µg mL−1) * IC50 (µM) * R2 

Carvacrol (1) 25.4 ± 2.4 169.08 ± 15.97 0.70 

Thymol (2) 26.8 ± 3.7 178.40 ± 24.63 0.81 
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82.9 ± 6.2 504.87 ± 37.75 0.98 
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Table 1. Cont.

Compound Chemical Structure IC50 (µg mL−1) * IC50 (µM) * R2

(–)-Carvone (6)
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Carvacrol (1) 25.4 ± 2.4 169.08 ± 15.97 0.70 
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3-Carene (3) 72.5 ± 18.5 532.18 ± 135.79 0.81 
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(–)-Menthol (7) 198.9 ± 12.0 1272.87 ± 76.79 0.96 

(–)-Linalool (8) 276.2 ± 24.0 1790.59 ±155.59 0.91 

1,8-Cineole (9) 

 

568.1 ± 56.5 3682.98 ± 366.28 0.89 

p-Cymene (10) 

 

>1000 >7450.45 - 

c Amphotericin B - 0.05 ± 0.01 0.054 ± 0.01 - 

a IC50 = Drug concentration capable of inhibiting 50% of promastigote multiplication; b R2 = Coefficient of 
determination—measure for the quality of the curve fitting of sigmoidal dose-response curves; c 

Amphotericin B was used as positive control. * Represents the mean of three independent experiments 
conducted in triplicate and expressed with means plus or minus standard deviation (±SD). 

Among the compounds evaluated in this study, three presented a phenolic moiety: carvacrol 
(IC50 25.4 μg mL−1), thymol (IC50 26.8 μg mL−1), and eugenol (IC50 82.9 μg mL−1). The positional 
isomers carvacrol and thymol were the most active compounds in this series, exhibiting the lowest 
IC50 values among evaluated compounds. In addition, these compounds presented similar 
leishmanicidal activity, possibly suggesting that the different positions of the hydroxyl in the 
aromatic ring does not influence the antiparasitic activity. 

The acidity of phenolic hydroxyl groups may play an important role in explaining higher potencies 
of phenolic compounds in this series. Aside from the hydroxyl and the aromatic ring, eugenol also bears 
a hydrogen bond between the methoxyl in the ortho position and the phenolic OH, which reduces the 
release of protons by the OH group due to the presence of this intramolecular hydrogen bonding [22]. 
This molecular property might justify eugenol lower potency in relation to both phenolic 
compounds deprived of intramolecular hydrogen bonds, carvacrol and thymol [23]. 

Non-aromatic hydroxylated compounds, such as isoborneol and menthol alcohols, exhibited 
weaker antiparasitic action than phenolic compounds (IC50 of 190.2 μg mL−1 and 198.0 μg mL−1, 
respectively). Within the aliphatic alcohols tested, linalool was the least active compound (IC50 of 
276.2 μg mL−1). Carvone, an α,β-unsaturated ketone, exhibited similar results to isoborneol and 
menthol alicyclic alcohols (IC50 of 194.7 μg m−1). The enone of carvone might play an important 
antiparasitic activity, as expected from the hydroxyls of alcohols, once conjugated ketones have the 
potential to function as a Michael acceptor by reacting with nucleophilic species of the parasite [24]. 

The importance of the phenolic hydroxyl group as for leishmanicidal activity is observed in 
carvacrol, thymol, p-cymene, and menthol in a similar manner, as previously observed by Ultee et al. [25] 
for monoterpenes with antibacterial action. Interestingly, p-cymene, a precursor of thymol and carvacrol, 
which does not have the hydroxyl group, did not exhibit any activity against L. amazonensis, unlike the 
two hydroxylated derivatives that exhibited better results. These results suggest that the lack of a 
polar hydroxyl group in the p-menthane ring template, as well as the absence of aromaticity might 
render monoterpenes inactive. The importance of aromatic hydroxyls for antiparasitic activity is 

OH

198.9 ± 12.0 1272.87 ± 76.79 0.96

(–)-Linalool (8)
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Among the compounds evaluated in this study, three presented a phenolic moiety: carvacrol
(IC50 25.4 µg mL−1), thymol (IC50 26.8 µg mL−1), and eugenol (IC50 82.9 µg mL−1). The positional
isomers carvacrol and thymol were the most active compounds in this series, exhibiting the lowest IC50

values among evaluated compounds. In addition, these compounds presented similar leishmanicidal
activity, possibly suggesting that the different positions of the hydroxyl in the aromatic ring does not
influence the antiparasitic activity.

The acidity of phenolic hydroxyl groups may play an important role in explaining higher potencies
of phenolic compounds in this series. Aside from the hydroxyl and the aromatic ring, eugenol also
bears a hydrogen bond between the methoxyl in the ortho position and the phenolic OH, which
reduces the release of protons by the OH group due to the presence of this intramolecular hydrogen
bonding [22]. This molecular property might justify eugenol lower potency in relation to both phenolic
compounds deprived of intramolecular hydrogen bonds, carvacrol and thymol [23].

Non-aromatic hydroxylated compounds, such as isoborneol and menthol alcohols, exhibited
weaker antiparasitic action than phenolic compounds (IC50 of 190.2 µg mL−1 and 198.0 µg mL−1,
respectively). Within the aliphatic alcohols tested, linalool was the least active compound (IC50 of
276.2 µg mL−1). Carvone, an α,β-unsaturated ketone, exhibited similar results to isoborneol and
menthol alicyclic alcohols (IC50 of 194.7 µg m−1). The enone of carvone might play an important
antiparasitic activity, as expected from the hydroxyls of alcohols, once conjugated ketones have the
potential to function as a Michael acceptor by reacting with nucleophilic species of the parasite [24].
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The importance of the phenolic hydroxyl group as for leishmanicidal activity is observed
in carvacrol, thymol, p-cymene, and menthol in a similar manner, as previously observed by
Ultee et al. [25] for monoterpenes with antibacterial action. Interestingly, p-cymene, a precursor of
thymol and carvacrol, which does not have the hydroxyl group, did not exhibit any activity against
L. amazonensis, unlike the two hydroxylated derivatives that exhibited better results. These results
suggest that the lack of a polar hydroxyl group in the p-menthane ring template, as well as the
absence of aromaticity might render monoterpenes inactive. The importance of aromatic hydroxyls for
antiparasitic activity is again highlighted in the analysis of menthol. Although menthol has a hydroxyl
group, the absence of the aromatic ring contributed to an IC50 well above phenolic compounds.
The importance of the aromatic structure for leishmanicidal activity was also observed in the study of
synthetically modified lactones [26].

Previous studies of carvacrol in the literature found an IC50 of 2.3 µg mL−1 [27] and
28.0 µg mL−1 [28] against L. chagasi promastigotes, while another study found an IC50 of 15.3 µg mL−1

against L. amazonensis promastigotes [29]. The different values of IC50, when comparing the same
species and compound, are probably related to the experimental design. In a previous study, the use
of longer drug-parasite incubation (72 h) and the assay development performed with the chromogen
p-nitrophenol phosphate to measure viability, determined the IC50 of 15.3 µg mL−1 for carvacrol [29].
Meanwhile, in the present study (IC50 of 25.4 µg mL−1), the parasites were incubated for 24 h using
the resazurin method.

Several studies have reported the action of thymol on species of Leishmania, such as
L. chagasi (IC50 of 9.8 µg mL−1, 12.85 µg mL−1, and 65.2 µg mL−1) [28,30,31], L. panamensis
(IC50 of 194.3 µg mL−1) [32] and L. amazonensis (IC50 of 22.6 µg mL−1) [33], presenting similar activity
to the ones observed in our study. Eugenol, on the other hand, was evaluated against promastigote
forms of L. chagasi (IC50 of 56.1 µg mL−1) [30] and L. amazonensis (IC50 of 500 µg mL−1 and
80.0 µg mL−1) [34,35], and the latter exhibits similar results to our experiment.

The potent behavior of thymol and carvacrol identified in the present study, when compared
with other monoterpenes, has already been observed previously in bacteria. Dorman and Deans [36]
evaluated the action of six essential oils and their major compounds, with 21 monoterpenes and
the phenylpropanoid eugenol, against 25 different bacterial species, and identified that thymol,
carvacrol, and eugenol were much more potent than the other monoterpenes. These authors also
discussed a value of the phenolic hydroxyl present in these compounds for this biological activity.
Nazzaro et al. [37] still emphasized the importance of the delocalization of electrons, besides the
phenolic hydroxyl, as important characteristics for the antibacterial activity of carvacrol and thymol.
However, bacteria and protozoa are microorganisms, thus they are relatively different in structural
and molecular terms.

Isoborneol, a bicyclic alcohol, was previously evaluated against promastigotes of L. infantum,
L. tropica, and L. major. No leishmanicidal activity was found, even at a maximum dose of
400.0 µg mL−1 [38]. To date, there are no reports of isoborneol activity against L. amazonensis.
In our study, isoborneol exhibited an IC50 of 190.2 µg mL−1 as leishmanicidal against L. amazonensis.
In this study, linalool, an acyclic tertiary alcohol, exhibited an IC50 of 276.2 µg mL−1, considerably
higher than the value of 4.3 ng mL−1 found by ROSA et al. [39], which was also obtained on
L. amazonensis promastigotes. Meanwhile, Dutra et al. [35] did not identify changes in the viability
of promastigotes of L. infantum chagasi treated with linalool up to the dose of 750 µg mL−1. These
authors believe that the difference between their results and those observed by ROSA et al. [39] may
be related to different concentrations of enantiomers. The literature does not mention the action of
menthol, a cyclic alcohol, in L. amazonensis or other species of Leishmania. In our results, an IC50 of
198.0 µg mL−1 was obtained for this compound.

Among the monoterpenes, two hydrocarbons 3-carene and p-cymene were tested. No report
was found in the literature of the leishmanicidal activity of the bicyclic hydrocarbon 3-carene on
L. amazonensis. In this study, an IC50 of 72.5 µg mL−1 was found for 3-carene against L. amazonensis.
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However, on L. donovani promastigotes, 3-carene exhibited an IC50 of 27.0 µg mL−1 [40]. p-Cymene,
an aromatic hydrocarbon, was evaluated on L. chagasi and found to have an IC50 of 149.1 µg mL−1 [28].
On the other hand, in our experiments, no effect on the viability of L. amazonensis promastigotes was
found in concentrations up to 1000.0 µg mL−1.

(−)-Carvone was previously evaluated on L. chagasi promastigotes and exhibited an
IC50 > 300.0 µg mL−1 [28]. However, no IC50 for carvone was found in the literature against
L. amazonensis. In our trial, an IC50 of 194.7 µg mL−1 was obtained for (−)-carvone against
L. amazonensis. Similar results were also obtained for the alicyclic alcohols isoborneol and menthol.

Machado et al. [38] evaluated the cyclic ether 1,8-cineole on promastigotes of L. infantum, L. tropica,
and L. major in increasing doses up to 400 µg mL−1. However, no leishmanicidal activity was
detected. On the other hand, Camargos et al. [41] obtained an IC50 of 4697.0 µM against L. amazonensis
promastigotes, which is equivalent to 724.0 µg mL−1, similar to that obtained in the present study
(568.1 µg mL−1).

The replacement of the hydroxyl group in menthol by the ether function found in the 1,8-cineole
p-menthane ring resulted in a lower toxic effect (IC50 = 568.1 µg mL−1 as compared to 198.9 µg mL−1

of menthol), against the assessed species of Leishmania. This result corroborates the importance of the
aromatic ring and the hydroxyl group to yield more potent compounds.

The interpretation of the results and comparison between studies should also consider similar
species of Leishmania and life stage, such as promastigote or amastigote forms of the parasite,
since different species of the parasite and evolutionary forms have specific biological characteristics
that can produce discordant results [42–44]. In addition, the results are dependent on the experimental
model being used [38].

In general, the compounds showed low cytotoxicity on L929 fibroblasts at the concentrations
evaluated, 50.0 and 100.0 µg mL−1. The results of the tests are expressed as a percentage of viability
(Table 2).

Table 2. Cytotoxic activity of the compounds on L929 fibroblasts.

Compounds
Viability (%)

50 µg mL−1 100 µg mL−1

3-Carene 84.1 ± 6.4 ** 48.7 ± 6.7 *
Carvacrol 51.3 ± 3.0 46.1 ± 2.9 *

(−)-Carvone 65.1 ± 4.7 58.2 ± 4.2
1,8-Cineole 71.4 ± 0.7 66.9 ± 7.8

Eugenol 78.1 ± 7.0 63.1 ± 1.7
Isoborneol 73.3 ± 9.4 72.9 ± 7.5

(−)-Linalool 65.7 ± 8.2 66.7 ± 7.8
(−)-Menthol 83.8 ± 8.0 ** 81.2 ± 2.4 **

Thymol 64.5 ± 4.0 58.5 ± 6.7
p-Cymene 91.2 ± 6.6 ** 87.1 ± 6.7 **

Low cytotoxicity (viability between >50% and <80%); * Moderate cytotoxicity (viability between >30% and <50%);
and ** Non-cytotoxic (viability >80%).

An intensity scale based on the methods of Rodrigues et al. [45] was used to classify
the cytotoxicity of the compounds. At 50.0 µg mL−1, 3-carene, menthol and p-cymene were
considered non-cytotoxic. The remaining compounds showed low cytotoxicity. At the concentration of
100.0 µg mL−1, only menthol was not considered cytotoxic. Most compounds showed low cytotoxicity,
whereas carvacrol and 3-carene showed moderate cytotoxicity to the cells. Additionally, essential
oil components, such as carvacrol, thymol, 1,8-cineole, isoborneol, menthol, carvone, linalool,
and p-cymene are considered to be safe food additives, an indication of low mammalian toxicity [46].

The structure-activity relationships are important not only to understand how these compounds
act on the parasite, but also to guide future studies on these molecules. Although most of the
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compounds used in this work had an IC50 higher than 100.0 µg mL−1, the tests are still preliminary,
performed only on L. amazonensis promastigotes. Some studies show a greater sensitivity to intracellular
amastigote forms of Leishmania, with an IC50 about 50% lower than that found for promastigotes [47,48].
Thus, a more detailed evaluation of these compounds in the intracellular form of the parasite and in
other mammalian cells is needed to better evaluate the toxicity of these compounds.

3. Materials and Methods

3.1. Compounds

The following compounds were used: 3-carene (96.1% purity) (IUPAC (International Union
of Pure and Applied Chemistry) name: 4,7,7-trimethylbicyclo[4.1.0]hept-3-ene), carvacrol (99.9%)
(IUPAC name: 2-methyl-5-propan-2-ylphenol), (−)-carvone (99.4%) (IUPAC name: (5R)-2-methyl-5-
prop-1-en-2-ylcyclohex-2-en-1-one), 1,8-cineole (99.7%) (IUPAC name: 2,2,4-trimethyl-3-oxabicyclo
[2.2.2]octan-6-ol), p-cymene (99.7%) (IUPAC name: 1-methyl-4-propan-2-ylbenzene), isoborneol
(99.0%) (IUPAC name (1R,3R,4R)-4,7,7-trimethylbicyclo[2.2.1]heptan-3-ol), (−)-linalool (99.1%)
(IUPAC name: (3R)-3,7-dimethylocta-1,6-dien-3-ol) e (−)-menthol (99.4%) (IUPAC name: (1R,2S,5R)-
5-methyl-2-propan-2-ylcyclohexan-1-ol) purchased from Sigma-Aldrich (St. Louis, MO, USA), eugenol
(99.0%) (IUPAC name: 2-methoxy-4-prop-2-enylphenol) purchased from Biodinâmica (Ibiporã, PR,
Brazil) and thymol (99.0%) (IUPAC name: 5-methyl-2-propan-2-ylphenol) purchased from Synth
(Diadema, SP, Brazil), all with analytical purity.

3.2. Parasites

Culture of L. amazonensis (LTCP 9667 obtained by Giudice et al. [44]) promastigotes were
maintained at 24 ◦C in Schneider′s Drosophila medium (Sigma-Aldrich, St. Louis, MO, USA; pH 6.7)
supplemented with 10% (v/v) inactivated fetal bovine serum (FBS, Gibco by Thermo Fisher Scientific,
Carlsbad, CA, USA), ampicillin 500 mg m−1, 1% and gentamicin 40 mg mL−1, 0.1% (Sigma-Aldrich,
St. Louis, MO, USA).

3.3. Fibroblasts

Culture of the mouse fibroblast cell line (L929, ATCC CCL-1) were maintained in Dulbecco′s
Modified Eagle Medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%
heat-inactivated FBS and 1% streptomycin/penicillin (5000 units + 5 mg mL−1, Sigma-Aldrich,
St. Louis, MO, USA), and kept in a humid atmosphere at 37 ◦C and 5% CO2.

3.4. Evaluation of Leishmanicidal Activity

Promastigotes of L. amazonensis in log-phase growth were distributed in a 96-well plate
(5 × 105 cells/well) and treated with the evaluated compounds solubilized in dimethyl sulfoxide
(DMSO, Sigma-Aldrich, St. Louis, MO, USA) and diluted in Schneider′s medium in different
concentrations (between 0.0 and 1000.0 µg mL−1) and incubated for 24 h at 24 ◦C in a biochemical
oxygen demand (BOD) incubator. Promastigotes incubated in the absence of test compounds were
used as a negative control. Promastigotes treated with Amphotericin B (Sigma-Aldrich, St. Louis, MO,
USA) were used as a positive control. The cellular viability of the parasites was evaluated using the
colorimetric method of resazurin, adapted from Kulshrestha et al. [49]. Briefly, after the treatment
time, 50 µL of resazurin (2 mM mL−1 in phosphate-buffered saline (PBS)) (Sigma-Aldrich, St. Louis,
MO, USA) was added per well and the plates were again incubated for 6 h at 24 ◦C, then read in a
spectrophotometer (Synerg H1, Biotek, Winooski, VT, USA) at 570 and 595 nm. Absorbance was used
to calculate cell viability based on the following equation:

Viability (%) =
Abs.570 nm− (Abs.595 nm × RO) test

Abs.570 nm –(Abs.595 nm × RO) control
× 100 (1)
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wherein:

RO =
OD medium with resazurin in 570 nm−OD medium without resasurin in 570 nm
OD medium with resazurin in 595 nm−OD medium without resazurin in 595 nm

(2)

The IC50 values were obtained by a non-linear regression analysis from the viability values using
the GraphPad Prism 5.0 program. All experiments were performed in triplicate from three independent
experiments and the data were expressed as mean ± standard deviation (±SD).

3.5. Cytotoxicity

Fibroblasts were distributed in 96-well plates (2 × 104 cells/well) and incubated for 24 h in a
5% CO2 atmosphere at 37 ◦C. After this period, the medium was removed and the adhered cells
were treated with the compounds at concentrations of 50.0 and 100.0 µg mL−1 for 24 h under the
same incubation conditions. Untreated cells were used as controls and considered with 100% cell
viability. After the treatment period, cell viability was determined by MTT assay as described in ISO
10993-5 [50], with modifications. For this, the cell monolayer was washed twice with PBS (pH 7.4),
and then 200 µl MTT (0.5 mg mL−1 in PBS, Sigma-Aldrich, St. Louis, MO, USA) was added to each
well. The plates were again incubated under the same conditions as listed above, for a period of
3 h. After the incubation time, the MTT was aspirated and the formazan crystals were solubilized in
200 µL of DMSO. After 10 min, the optical density (OD) was measured on a microplate reader at the
wavelength of 570 nm. The results were expressed as percentage of viability according to the following
equation:

Viability =
Absorbance (treated cell)
Absorbance (control cell)

× 100 (3)

Each experiment was conducted in quadruplicate and repeated at least three times. Data were
expressed as mean ± standard deviation (±SD).

4. Conclusions

In this work, the compounds with phenolic moiety carvacrol, thymol, and eugenol were the most
potent against L. amazonensis promastigotes. In addition, the evaluated compounds exhibited low
cytotoxicity on L929 fibroblasts.

Studies with a clinically more relevant intracellular amastigote form will have to be conducted
in order to further evaluate the potential of these compounds. Even though the overall activity level
of the investigated compounds is low compared to amphotericin B, the results presented in this
work demonstrate there are activity differences among the essential oil constituents distinguishing
between more and less potent compounds that may serve as a basis for the planning of more promising
antileishmanial agents.
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