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Abstract

Motivation: In a predictive modeling setting, if sufficient details of the system behavior are known,

one can build and use a simulation for making predictions. When sufficient system details are not

known, one typically turns to machine learning, which builds a black-box model of the system

using a large dataset of input sample features and outputs. We consider a setting which is between

these two extremes: some details of the system mechanics are known but not enough for creating

simulations that can be used to make high quality predictions. In this context we propose using ap-

proximate simulations to build a kernel for use in kernelized machine learning methods, such as

support vector machines. The results of multiple simulations (under various uncertainty scenarios)

are used to compute similarity measures between every pair of samples: sample pairs are given a

high similarity score if they behave similarly under a wide range of simulation parameters. These

similarity values, rather than the original high dimensional feature data, are used to build the

kernel.

Results: We demonstrate and explore the simulation-based kernel (SimKern) concept using four

synthetic complex systems—three biologically inspired models and one network flow optimization

model. We show that, when the number of training samples is small compared to the number of

features, the SimKern approach dominates over no-prior-knowledge methods. This approach

should be applicable in all disciplines where predictive models are sought and informative yet ap-

proximate simulations are available.

Availability and implementation: The Python SimKern software, the demonstration models (in

MATLAB, R), and the datasets are available at https://github.com/davidcraft/SimKern.

Contact: dcraft@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction and motivation

There are two general approaches to computationally predicting the

behavior of complex systems, simulation and machine learning (ML).

Simulation is the preferred method if the dynamics of the system

being studied are known in sufficient detail that one can simulate its

behavior with high fidelity and map the system behavior to the output

to be predicted. ML is valuable when the system defies accurate simu-

lation but enough data exist to train a general black-box machine

learner, which could be anything from a linear regression or classifica-

tion model to a neural network. In this work, we propose a technique

to combine simulation and ML in order to leverage the best aspects of

both and produce a system that is superior to either technique alone.

Our motivation is personalized medicine: how do we assign the

right drug or drug combination to cancer patients? Across cultures

and history, physicians prescribe medicines and interventions based

on how the patient is predicted to respond. Currently these choices
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are made based on established patient-classification protocols,

physician judgment, clinical trial eligibility and occasionally limited

genomic profiling of the patient. All of these approaches, in one way

or another, attempt to partition patients into groups based on some

notion of similarity.

Genomics is especially relevant for computing the similarity

between two cancer patients since cancer is associated with altera-

tions to the DNA, which in turn causes the dysregulation of cellular

behavior (Balmain et al., 2003). Bioinformatic analysis has revealed

that there is heterogeneity both within a patient tumor and across

tumors; no two tumors are the same genomically (Felipe De Sousa

et al., 2013; Fisher et al., 2013). Although in a small fraction of

cases specific genetic conditions are used to guide therapy choices,

for example, breast (commonly amplified gene: HER2), melanoma

(BRAF mutation), lung (EML4-ALK fusion) and head-and-neck

(HPV status for radiation dose de-escalation; see Mirghani and

Blanchard, 2017), there remains a large variability in patient

responses to these and other treatments, likely due to the fact that

patients will usually have tens or hundreds of mutations and gene

copy number variations, chromosomal structural rearrangements,

not to mention a distinct germline genetic state (Hauser et al.,

2018), human leukocyte antigen (HLA) type (Chowell et al., 2018),

tumor epigenetic DNA modifications, microbiome, and comorbidity

set. Even amidst this heterogeneity, the notion of patient similar-

ity—although currently not deeply understood due to the complex-

ities of cancer biology—is appealing both conceptually and for its

value in the ML setting.

Simulating a drug is a task that far exceeds our current scientific

capacity: it enters the patient, either intravenously or orally, and

winds its way to the cancer cells, where it either influences the can-

cer cell via receptors on the cell membrane or penetrates into the cell

and affects signaling pathways, cell metabolism, DNA repair,

apoptosis, or some combination of these and other modules.

Nevertheless, a vast amount of knowledge of cellular processes,

residing in molecular biology textbooks and millions of scientific

papers, has been accrued over the past century and it seems worth-

while to attempt to use that information, if unclear how. Most

machine learning research efforts in the personalized medicine realm

take a pure data approach. Given the complexity of patient biology

and cancer, this approach will require vast amounts of high quality

patient data that is suitably standardized for algorithmic processing.

With this drug sensitivity prediction problem as our backdrop,

we develop a method to combine approximate simulations with ML

and demonstrate using in silico experiments that a judicious combin-

ation can yield better predictions than either technique alone.

The basic idea is a division of labor: coarse and approximate simula-

tions are used to compute similarity measures, and these similarity

measures are then used by the ML algorithm to build a predictive

model, called SimKern ML (Fig. 1). At this point in time, although

vast details of cellular biology are known, we are not in a position

to simulate with any fidelity complete cellular or in vivo cancerous

processes. However, herein we present demonstrations that one

could combine simulation results into machine learning and improve

the overall predictive capability, a technique which may play a role

in future drug recommendation systems.

2 Materials and methods

Our method is centered on kernelized ML. Rather than feature vec-

tors (a list of attributes for each sample), kernelized learning requires

only a similarity score between pairs of samples. For training, one

needs the outcome of each training sample and a measurement of

the similarity between all pairs of training samples. For predicting

the outcome of a new sample, one needs to provide the similarity of

that sample to each training sample. It is well known in ML that

Fig. 1. Workflow comparison of Standard ML and SimKern ML. The feature matrix X and outcome data y are given (in this paper, we generate such ‘ground truth’

datasets by simulating complex systems, a step which is not shown in this figure). Traditional feature-based ML is depicted in the upper orange part. SimKern,

the simulation-based method, pre-processes the dataset by sending each sample through a number of approximate simulations. Each sample pair is given a

similarity score based on how closely they behave under the various simulations (see Fig. 2 and Section 2.2 for more details). This information is stored in a ker-

nel matrix K, where K(i, j) measures the similarity between samples i and j. Note that K ði ; iÞ ¼ 1 and 0 � K ði; jÞ � 1. Useful SimKern simulations yield a kernel K

that improves the downstream machine learning performance
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good similarity measures, which come from expert domain know-

ledge, result in better ML performance (Schölkopf et al., 2004).

We assume that we can formulate a simulation of each sample’s be-

havior based on its known individual characteristics (i.e. features).

We also assume that we do not know exactly how to simulate the

systems, so rather than a single simulation we have a family

(possibly parametrized by real numbers, and thus infinite) of plaus-

ible simulations. Two samples are given a high similarity score if

they behave similarly across a wide range of simulations.

We begin with a brief description of the four models we use to

demonstrate and analyze the performance of SimKern. By describing

these models, the reader has in mind a more concrete context with

which to frame the SimKern development.

2.1 Brief model descriptions
We investigate four models: radiation impact on cells, flowering

time in plants, a Boolean cancer model and a network flow opti-

mization problem. Full details and model implementation notes are

given in the Supplementary Material.

For each model we begin by generating a dataset of N samples,

each sample i is described by a feature vector xi of length p and a

response yi, using the ground truth simulation (see Supplementary

Fig. S1). This produces an N�p feature matrix X and a response

vector y of length N. This ground truth simulation (referred to as

SIM0 in the code repository) is not part of our kernelized learning

method, but the datasets created are needed to demonstrate the

simulation-based kernel ML method. This ground truth simulation

step is further described in the Supplementary Material. In an actual

application of SimKern, this artificial data creation step would not

be used.

The radiation cancer cell death model is a set of ordinary differ-

ential equations (ODEs) which represents a simplified view of the

biochemical processes that happen after a cancer cell is hit by

radiation. The core of the model involves the DNA damage response

regulated by the phosphorylation of ATM and subsequent p53 tetra-

merization (Elia�s et al., 2014). We have added cell cycle arrest

terms, a DNA repair process, and apoptosis modules in order to

capture the idea that cellular response to DNA damage involves the

combined dynamics of these various processes. The model, which

is depicted as a network graph, is displayed in Supplementary

Figure S3, and consists of 34 ODEs. The rate parameters were not

tuned to realistic values (except for the ones from the original p53

core network, where we used the values provided by the authors; see

Elia�s et al., 2014). Instead, values were manually chosen such that

the family of samples created had representatives in each of the four

output classes: apoptosis, repaired and cycling, mitotic catastrophe,

and quiescence. A population of distinct cell types is formed by vary-

ing 33 of the ODE rate constants and the mutation status of six

genes (ARF, BAX, SIAH, Reprimo, p53 and APAF1), for a feature

vector length of 39. The SimKern simulation uses the same underly-

ing model as the original ODE model with two key differences:

87 of the ODE parameters are marked as uncertain and given

Gaussian probability distributions around their true values, and the

simulation outputs the time dynamics of the ODEs rather than a

classification.

The flowering time model is a set of six ODEs that simulate the

gene regulatory network governing the flowering of the Arabidopsis

plant (Valentim et al., 2015), and yields a regression problem.

Nineteen mutants are modeled and experimentally validated by the

authors. We use those 19 mutational states as well as 34 additional

perturbations on the rate parameters to create a varied ground truth

sample set. The output of the model is the time to flowering which,

following the authors, is set to the time at which the protein AP1

exceeds a particular threshold. For the SimKern model we assume

the same model but with uncertainty about the rate parameters. The

SimKern simulation output is the time dynamics of the six ODEs.

The Boolean cancer model is a discrete dynamical system of can-

cer cellular states (Cohen et al., 2015). Based on the steady state of

the system, a sample is labelled as one of three categories: apoptotic,

metastasizing, or other. There are no rate parameters since this is a

Boolean model. We use the initial state vector (the on/off status of

the 32 nodes in the network) as well as mutations of five of the genes

(p53, AKT1, AKT2, NICD and TGFb) to create a varied sample

population with 37 features. In the SimKern simulation, we use a

reduced version of the model provided in the original publication.

It is unclear how to map the initial conditions from the full model to

the initial conditions of the modularly-reduced model, so for all

of the modules we randomly choose the mapping, which gives rise

to the uncertainty for the SimKern simulations. The output from the

SimKern model (i.e. the data used to form the similarity matrix) is

the same classification as from the ground truth model.

The network flow model is an optimization problem rather than

a simulation. It falls into a subclass of linear optimization models

called network flows which are used in a wide range of applications

including production scheduling and transportation logistics

(Bertsimas and Tsitsiklis, 1997). The network flow model takes arc

costs as inputs, which are the costs of sending a unit of flow through

a certain arc in the network. The model then simulates the optimal

path of flow along arcs of a directed graph that minimizes the total

arc cost along the path. The network is designed in layers and is

such that the flow will pass through exactly one of the three arcs in

the final layer, which gives us a classification problem (see

Supplementary Fig. S2). Changes in arc costs, which represent the

features in this model, can lead to changes in the routing of the opti-

mal flow. For the ground truth dataset, we generate samples by

varying 12 out of the 80 arc costs. We build two separate SimKern

simulations: the better simulation perturbs 23 arc costs, including

the 12 costs that were varied to make the ground truth dataset,

resulting in a less noisy kernel. The worse simulation varies 21 add-

itional arc costs resulting in a noisier kernel.

2.2 SimKern simulation—similarity matrix generation
Users must define a model (currently supported languages for the

simulation modeling are MATLAB, Octave, and R) which simulates

a sample. This simulation procedure, called SIM1 in the Python

codebase, is used to generate the sample similarity kernel matrix and

would be the starting point in an actual application of SimKern.

Figure 2 illustrates the SimKern simulation process control.

We assume that there are parameters in this simulation model

that we are uncertain about. Let h be a vector of these uncertain

parameters. We assume we have a random variable description of

each of these parameters, which can be very general. For example, a

parameter could take the value of 0 or 1 if we have two ways of

modeling a particular interaction. Then, in the simulation, depend-

ing on how that random variable gets instantiated, the code uses one

of the two parameter values. Alternatively, we might be uncertain

about the value of a rate constant, in which case we could use a

Gaussian random variable with a specified mean and standard devi-

ation. We assume independence of the random variables h, but one

could also assume a covariance structure.

Each sample i ¼ 1 . . . N is characterized by a feature vector xi,

which constitutes sample-specific information that we use to
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perform the simulations; xi could be for example a genomic descrip-

tion of patient i. For r ¼ 1 . . . R, where R is the number of trials to

run, we instantiate a parameter vector, hr. These parameters as well

as the sample data xi are used to run simulation (i, r).

Let Sðxi; hrÞ (or shorthand, Sir) be the simulation output for sam-

ple i with uncertainty parameters equal to hr. Note that these out-

puts Sðxi; hrÞ can be scalars, a classification category, vectors, or any

other object. There is no need for these outputs to be the same as

what we are trying to predict, yi. We simply assume that given two

such outputs, say Sir and Sjr for samples i and j, we have a way to

measure the similarity between them. Let this similarity be given by

zði; j; rÞ. We leave it up to the user to define this function in general

(a concrete procedure, for simulations using ODEs, is given in the

Supplementary Material).

Finally, the similarity K(i, j) between two samples i and j is the

average similarity across the R simulation runs

Kði; jÞ ¼ ð1=RÞ
XR

r¼1

zði; j; rÞ:

The above SimKern kernel matrix generation procedure is imple-

mented in Python and is fully described in the Supplementary

Material.

2.3 Machine learning comparisons procedure
Figure 1 shows a schematic of the differences in the data processing

and machine learning steps for Standard ML and SimKern ML. We

compare standard feature-based ML algorithms [orange/top: linear

support vector machine (SVM), radial basis function (RBF) SVM

and random forest (RF)] with simulation kernel based methods

(green/bottom: kernelized SVM and kernelized RF). We also include

results for one-nearest neighbor (NN) and kernelized one-nearest

neighbor (SimKern NN). As NN-type algorithms are arguably the

simplest non-trivial ML algorithms, including these algorithms

allows us to understand the distinct contributions of ML algorithm

sophistication and simulation-based kernels.

Since we can generate as many samples as we wish, we train the

models and tune the hyperparameters on training and validation

datasets which are distinct from the final testing set on which

we compute prediction performance metrics (see Section 2.4).

The ground truth simulation generates one dataset which is split

into three parts (train/validation/test) using the standard proportions

50%/25%/25% (Hastie et al., 2009, p. 222). SVM (Ben-Hur and

Weston, 2010) and NN algorithms are dependent on feature scaling,

therefore features are standardized to the interval ½0;1� by subtract-

ing the minimum value and scaling by the range. Categorical

features are dummy-coded for SVM and NN algorithms. Each ML

algorithm is trained on the training data for many hyperparameter

configurations and the configuration with the best fit on the valid-

ation data is selected. The model given the selected configuration is

applied on the test set to compute the performance metrics. See

Alg. 1 in the Supplementary Material for the details of training,

hyperparameter tuning, and testing procedures.

To investigate the performance of simulation-based kernels in

scenarios with less data for training, we consider five scenarios in

which we train the algorithms on subsamples comprising s1, s2,. . .,

s5 of the training data. The subsampling percentages are chosen dif-

ferently per model to highlight the interesting regions of curves that

display the performance versus training set size. Supplementary

Table S3 reports the subsampling percentages per model.

2.4 Performance metrics
For each of the simulation models, we estimate the generalization

performance of an ML algorithm in test data, i.e. data unused for

model training, as performance estimates on training data are of lit-

tle practical value (Hastie et al., 2009, p. 230). The learning tasks

per model are either classification or regression. For classification,

we consider prediction accuracy, which is defined as

Accuracy ¼ true classification count

total number of samples
¼ TPþ TN

TPþ TN þ FPþ FN
;

where TP, TN, FP and FN are the counts of true positives, true nega-

tives, false positives, and false negatives, respectively. For regression,

we consider the coefficient of determination R2, which is defined as

R2 ¼ 1� sum of squared prediction error

sum of squares
¼ 1�

P
i ðŷi � yiÞ2P
i ð�y � yiÞ2

;

where yi is the outcome for sample i, ŷi is the predicted outcome for

sample i and �y is the sample mean of the outcome. To attain a reli-

able estimate of the generalization performance, we consider the

average test data performance in ten repetitions of a train/valid-

ation/test analysis, i.e. repeating training and hyperparameter tuning

each time.

2.5 Standard ML versus SimKern ML comparison
For each model, we produce a box plot and/or a line plot that show

algorithm performance versus training dataset size for the various

ML algorithms in both algorithm groups, Standard ML and

SimKern ML.

i. Box plots display results for each algorithm separately for the

Standard ML (linear SVM, RBF SVM, RF, NN) and SimKern

ML algorithms (SimKern SVM, SimKern RF, SimKern NN).

The horizontal lines indicate the sample median, the boxes are

placed between the first and third quartile (q1, q3). Outliers are

defined as samples outside ½q1 � 1:5ðq3 � q1Þ; q3 þ 1:5ðq3 � q1Þ�
and are indicated by crosses.

ii. Line plots further condense the findings by displaying the me-

dian performance metric of the best performing Standard ML

Fig. 2. Creation of the similarity matrix for use downstream in the machine

learning
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and SimKern ML algorithms, excluding NN algorithms in both

cases. The best performing algorithm is defined as the algorithm

that most frequently produces the highest median performance

metric over all five training dataset subsamples. Lines are inter-

polated for visual guidance.

2.6 Sensitivity analysis
To investigate possible factors affecting the SimKern algorithms’

prediction performance, we run the following sensitivity analyses:

Varying prior knowledge
i. Radiation model: we examine the results for two kernels which

represent different levels of prior knowledge. Both cases utilize

the same SimKern simulation, but the higher quality kernel uses

the dynamics of only the compartments of the ODE set that are

used in the classification of the samples in the initial ground truth

simulation. The lower quality kernel uses all ODE equations,

therefore not emphasizing the most important ones (Ferranti

et al., 2017).

Varying simulation parameter noise/bias

ii. Network flow model: we generate two kernels for the network

flow model. These kernels differ in the number of arc costs that

are perturbed and the size of the perturbations (full details in

Supplementary Material).

iii. Flowering time model: along with the model that generates the

baseline kernel, we study one less noisy, one noisier, and one

biased version of the SimKern simulation. The baseline SimKern

simulation uses multiplicative Gaussian noise on 34 of the rate

parameters, using a mean of 1 and a standard deviation of 0.2.

The less noisy model uses stdev¼0.1 and the noisier model uses

stdev¼0.4. For a more radical, and non-centered, departure from

the true rate parameters, we also run a model where we multiply

each of the same 34 rate parameters with a random variable

chosen uniformly from the discrete set f0:01; 1; 5; 10g.

Varying the number of simulation trials, R

iv. Network flow model: we analyze the effect of additional simula-

tion trials on the prediction performance. We compare the

prediction performance of SimKern algorithms when using a

similarity kernel based on R ¼ 3 simulation trials to the final ker-

nel based on R ¼ 10 trials. Furthermore, we track the conver-

gence of the kernel matrix over R ¼ 10 trials.

3 Results

The general theme that emerges is that, for small training dataset

sizes, the methods using the SimKern kernel outperform the

Standard ML methods. For larger training sizes, however, the stand-

ard methods either approach the SimKern methods or exceed them,

depending on the quality of the kernel.

For the radiation model, we see exactly this general pattern

(Fig. 3). For small training sizes (up to 50 samples), the SVM with

the SimKern kernel dominates. We can attribute much of the per-

formance gain to the similarity kernel itself given that the NN algo-

rithm using the same similarity kernel also dominates over the no-

prior-knowledge methods for all training sizes shown. The increase

in accuracy by the Standard ML algorithms does not yet show signs

of saturation by 500 training samples. These box plots are summar-

ized by line plots in Fig. 4 (left), which also displays the results of

the lower quality SimKern kernel, which was made with the same

simulations but without focusing on the most relevant ODEs for the

kernel matrix computation.

The results of the flowering time model, which also display the

clear dominance of SimKern learning for small training dataset sizes,

show a trend of decreasing variance in predictive performance with

increasing training sizes (Fig. 5). SimKern learning is strongly dom-

inant up to 75 training samples, after which the two learning styles

converge to R2 � 1. Another view of the improvement offered by

the SimKern method for small training size set sizes is shown by

plotting the predicted flowering times versus the actual flowering

times, Supplementary Figure S9.

The sensitivity results obtained by increasing the variance of the

(centered) Gaussian noise that was applied to the flowering model’s

rate parameters display a robustness to these deviations (Fig. 6,

upper green curves and Gaussian box plots). However, the non-

centered noise perturbation analysis shows a clear drop in ML

Fig. 3. Machine learning results for the radiation cancer model
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accuracy (Fig. 6, dark green dotted line and dark green box plot).

With enough training data all SimKern kernels, including the ones

with heavy noise, achieve an R2 above 0.95. We call such kernels

sufficient.

In contrast, the Boolean cancer model kernel is based on a model

reduction with additional uncertainty and produces what we call a

biased kernel. There, the SimKern approach produces an accuracy

that initially dominates but quickly plateaus to around 85% and is

overtaken by no-prior-knowledge methods when more training data

is available (Fig. 7). The fact that the kernel learning barely

improves with additional data implies that the feature space induced

by the simulation kernel is simple enough to be learned by a small

amount of samples (Bottou et al., 1994). The kernelized NN method

gets worse with more samples, and in general is worse than the other

SimKern algorithms, which indicates that the space induced by the

biased kernel is less cleanly separable compared to the flowering

model case. Above 100 training samples, the no-prior-knowledge

RF method is the superior technique.

For the network flow problem, we evaluate two separate ker-

nels (Fig. 4, right) based on different levels of noise in the SimKern

simulation: the kernel based on a less noisy SimKern simulation

dominates throughout, but even the kernel based on a noisier

SimKern simulation is still useful in the very small training set size

range. It is doubtful whether one can make general statements

Fig. 4. Varying prior knowledge experiments for the radiation model (left) and

varying parameter noise experiments for the network flow model (right).

Performance metrics of SimKern ML based on simulations with less and

more prior knowledge (green) and Standard ML (orange). For each line, the

best performing algorithm of SimKern ML or Standard ML is selected (see

Section 2.5). Note, the waviness of the less noise case for the network flow

model is an artifact of how the data from the box plots was converted into a

line plot; the full data, Supplementary Figure S7, reveals a flat relationship

Fig. 5. Machine learning results for the flowering time model

SimKern, Gaussian(1,0.1)
Baseline SimKern, Gaussian(1,0.2)
SimKern, Gaussian(1,0.4)
Biased SimKern
Standard ML

Fig. 6. Varying simulation parameter noise/bias experiments for the flowering

time model. SimKern ML based on simulations with varying parameter noise

(green), with parameter bias (dark green), and Standard ML (orange). Left:

performance metrics of SimKern ML (green) and Standard ML (orange)

trained on up to 150 samples. For each line, the best performing algorithm of

SimKern ML or Standard ML is selected (see Section 2.5). Right: performance

metrics box plots for the 25 training sample case
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about how good a simulation needs to be in order to yield a useful

kernel. However, the intuition that the simulations need only dis-

cover the similarity of samples, while not necessarily providing ac-

curate (hence directly useful) simulation results, is described in

Supplementary Figure S8.

When comparing the individual Standard ML algorithms to the

SimKern ML algorithms based on the noisier SimKern simulation

(Supplementary Fig. S7), Standard RF eventually dominates. When

comparing algorithms within the Standard ML group, RF is the

dominant Standard ML algorithm for the network flow model

(Supplementary Fig. S7) as well as for the Boolean cancer model

(Fig. 7). For these models, the dominance of RF is likely related to

the discrete characteristics of the underlying models.

The quality of a simulation-generated kernel also depends on the

number of trials R that are used to compute the kernel. Figure 8 dis-

plays both the convergence of the kernel (bottom) and the improved

learning accuracy from the further converged kernel (top), for the

less noisy network flow case. We see that the earliest kernel written,

kernel three (we chose to not determine similarity kernels below

R¼3), performs noticeably worse than the final kernel. We can also

visually observe the differences in the kernels by plotting the

500�500 kernels (Fig. 8, bottom left and right). The kernel

Fig. 7. Machine learning results for the Boolean cancer model

Fig. 8. Varying simulation trials experiments for the network flow model. The upper two box plots compare the learning accuracy for a kernel from the third of R¼10

trials versus the final kernel. The kernels themselves are displayed with the same color scale below, and centered at bottom displays the convergence of the kernel

(measured using the Frobenius matrix norm) over the ten trials
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convergence plot is obtained by taking the Frobenius norms of the

difference of the kernel matrices of iteration i – 1 and i, until

i ¼ Rð¼ 10Þ.

4 Discussion

We introduce simulation as a pre-processing step in a machine learn-

ing pipeline, in particular, as a way to include expert prior know-

ledge. One can consider simulation as a technique which regularizes

data or as a specialized feature extraction method. In either view,

the SimKern methodology offers a decomposition of an overall ML

task into two steps: similarity computation followed by predictive

modeling using the pairwise similarities. This decomposition high-

lights that to improve the performance of an ML model one can dir-

ect efforts into determining better similarity scores between all

samples. This is in contrast to the more commonly heard call for

‘more data’ to achieve better ML results. Of course, more samples

are always desirable, but here we show that, particularly in limited

data settings, sizable performance gains can come from high quality

similarity scores.

The decomposition of simulation and machine learning steps

also points out their individual contributions. The simulation-based

kernel structures the space in which the samples live (or more tech-

nically, the dual of the space; see Kung, 2014), and ML finds the

patterns in this simplified space. We see that in order to improve ma-

chine learning performance we can either improve the kernel or in-

crease the number of samples to better populate the space. For the

cases shown here, custom similarity measures show large improve-

ments especially in limited data settings (up to a 20% increase in

classification accuracy and a 2.5 fold increase in R2, depending on

the case and the amount of training data used). One could also use

the output of the simulations as features for machine learning rather

than the additional kernelization step that we employed. Using the

simulation outputs directly is related to the field of model output

statistics from weather forecasting, where low level data from pri-

mary simulations are used as inputs to a multiple regression model

which outputs human-friendly weather predictions (Glahn and

Lowry, 1972). In our case, we opted for kernelizing the simulation

outputs to highlight the fundamental concept of similarity and

because a similarity computation is natural when the output of

the simulations is a set of time varying entities, e.g. in the case

of ODEs.

Similar in spirit to SimKern, although differing in details, com-

bining simulation and machine learning has been used in physics to

predict object behaviour (Lerer et al., 2016; Wu et al., 2015).

Simulation results are used to train networks to ‘learn’ the physics.

Varying the simulation conditions during training, called domain

randomization, is used to improve model generalization (Tobin

et al., 2017). Inversely to the SimKern approach to exploit simula-

tion to enhance ML algorithms, machine learning is also used to cor-

rect the inputs to physics simulations (Duraisamy et al., 2015), an

idea which is also pursued in the context of traffic prediction

(Othman and Tan, 2018).

A novel potential application of the SimKern methodology, one

that the authors are currently investigating, involves the prediction

of peptides (chains of approximately nine amino acids) binding to a

given HLA class 1 allele. Current technologies (e.g. Nielsen et al.,

2007) predict if a given peptide will bind to a given HLA allele using

properties of the amino acids but without using 3D details of the

chemical structure of the peptide or information on the structural

binding of the peptide and HLA molecule. Computational

predictions of binding are considered too difficult at the present

time due to the sensitivity of the structural conformations to the

detailed chemistry of peptides and the non-covalent interactions

(Kar et al., 2018). Nevertheless, simulations could be used to gener-

ate similarity scores between peptides, and then the supervised bind-

ing data can be used to train a kernelized classification algorithm.

Finally, the use of a SimKern kernel need not be an all-

or-nothing decision, since two or more kernels can be combined to

yield a single kernel. This allows one to explore the combination of

‘standard’ kernelized learning (using uninformed kernels such as lin-

ear or RBF) with a SimKern kernel. In the case of a weighted linear

sum as the method of kernel combining, one can optimize the

weighting vector as part of the training procedure (Schölkopf et al.,

2004). Combining kernels allows one to mix traditional feature-

based machine learning (which we called Standard ML above) with

prior knowledge similarity matrix-based learning.

5 Conclusions

It remains to be seen which approaches will be the most fruitful as

we make our way towards personalized cancer medicine. Direct test-

ing of chemotherapeutic agents on biopsied patient tissues is a

straightforward and promising ‘hardware-based’ approach

(Montero et al., 2015). In the machine learning realm, expert feature

selection may turn out to be more feasible than the simulation-based

kernel methods described in this report. A key question is: can we

make simulation-based kernels that—although almost certainly

biased—will still be useful (see, e.g. Fig. 4)? Progress in detailed bio-

logical simulation, such as the full simulation of the cell cycle of the

bacterium Mycoplasma genitalium (Karr et al., 2012), the

OpenWorm project (Szigeti et al., 2014), and integrated cancer sig-

naling pathways for predicting proliferation and cell death

(Bouhaddou et al., 2017) offer some encouragement, but cancer

influences human biology at all levels, from minute phosphoryla-

tions to immune system rewiring. It is thus by no means clear if we

are close to simulations that can be useful in this context. However,

the magnitude of the problem—both in economic terms and for the

number of future patients at stake—suggests pressing forward on all

fronts that display conceptual promise.
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