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Abstract
The objective of this study was to develop and apply a novel multiplex panel of solid-phase

proximity ligation assays (SP-PLA) requiring only 20 μL of samples, as a tool for discovering

protein biomarkers for neurological disease and treatment thereof in cerebrospinal fluid

(CSF). We applied the SP-PLA to samples from two sets of patients with poorly understood

nervous system pathologies amyotrophic lateral sclerosis (ALS) and neuropathic pain,

where patients were treated with spinal cord stimulation (SCS). Forty-seven inflammatory

and neurotrophic proteins were measured in samples from 20 ALS patients and 15 neuro-

pathic pain patients, and compared to normal concentrations in CSF from control individu-

als. Nineteen of the 47 proteins were detectable in more than 95% of the 72 controls. None

of the 21 proteins detectable in CSF from neuropathic pain patients were significantly

altered by SCS. The levels of the three proteins, follistatin, interleukin-1 alpha, and kalli-

krein-5 were all significantly reduced in the ALS group compared to age-matched controls.

These results demonstrate the utility of purpose designed multiplex SP-PLA panels in CSF

biomarker research for understanding neuropathological and neurotherapeutic mecha-

nisms. The protein changes found in the CSF of ALS patients may be of diagnostic interest.
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Introduction
Many neurological conditions would benefit from molecular biomarkers for improved under-
standing of diseases and their susceptibility to treatment. Measurements of proteins in cerebro-
spinal fluid (CSF) provide valuable insights into the state of the central nervous system during
disease and treatment [1]. However, adequate tools for parallel and sensitive protein analysis
and biomarker discovery have been lacking. Optimal methods for analysis of precious CSF
samples should provide high sensitivity, target selectivity, detection of multiple targets in paral-
lel, and be sample sparing. The solid phase proximity ligation assay (SP-PLA) [2] and other
high-performance DNA-assisted proximity assays [3, 4], meet these requirements [5–7] by
using pairs or trios of antibodies with attached oligonucleotides. These technologies have iden-
tified biomarker candidates for cardiovascular diseases [6] and cancers [4, 8] using only 1–5 μL
samples of blood plasma. Here we apply the technology for neurological investigations via CSF.
We designed a novel multiplex SP-PLA (S1 Fig) protein panel for application in neurological
research and tested its validity by applying it to two neuropathological and -therapeutic
research questions as a proof of principle. Although each neurological disease and treatment
can ultimately be expected to have a unique profile/fingerprint, several proteins appear on the
“biomarker candidate hot list” of many neurological diseases. For example, a panel that
includes inflammatory, glial, and neurotrophic proteins may be relevant for discovery stage
investigations in several, if not most, diseases and treatments of the nervous system.

Amyotrophic lateral sclerosis (ALS) and neuropathic pain both lack established human CSF
biomarker profiles. The molecular underpinnings of the devastating disease ALS remain essen-
tially unknown despite extensive research efforts. Neuropathic pain, which affects 7–10% of
the general population [9], is usually resistant to treatment but spinal cord stimulation (SCS)–
with an unclear mechanism of action–tends to offer significant and prolonged pain relief for
60–70% of eligible neuropathic pain patients [10–13] where standard treatments fail. In spite
of the differences, ample evidence indicates that inflammation, glial activation and neuro-
trophic support may have central roles in the pathophysiological processes of both ALS [14–
24] and chronic pain [25–38]. We hypothesized that ALS as well as SCS-treatment of chronic
pain, while representing distinct neurological conditions, might nonetheless both alter concen-
trations of CSF proteins. We therefore developed a multiplex panel of assays for 47 proteins–
cytokines, glial markers, inflammatory mediators and neurotrophins human proteins (S1
Appendix). We applied this panel to CSF from ALS patients and neuropathic pain patients
treated with SCS, as well as to neurologically normal controls.

Materials and Methods

Subjects
CSF was collected from 92 individuals without known neurological disorders undergoing spi-
nal anesthesia for planned minor urology surgeries. Of these 92 controls, 20 were selected to
match the age and sex of 20 patients with ALS. The remaining 72 (mean age 59.7 (21–81), 68
males) were used to obtain concentration values of CSF protein ranges in neurologically
healthy individuals.

Twenty patients with confirmed ALS (mean age 64.9 (47–79), 8 males), and 20 age- and
sex-matched control samples (mean age 66.1 (51–84), 10 male) were selected (S1 Table). The
most common diagnosis was ALS with limb onset (n = 18), followed by ALS with bulbar onset
(n = 2).

Fifteen patients (mean age 56.9 (47–68), 4 males) with long lasting neuropathic pain
(median 10 years, range 3–23 years), and permanently implanted SCS since more than three
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months (median 3 years, range 1–10 years) with self-reported good pain relief, were included
in the study. Pain diagnoses were radiculitis (n = 11), post-surgical pain (n = 1), phantom limb
pain (n = 1), and polyneuropathy (n = 1). Neuropathic pain patients underwent two consecu-
tive lumbar punctures, resulting in 30 paired CSF samples. Before the first lumbar puncture
their stimulator was turned off for 48 hours (h) (except for one patient who chose 24h), keep-
ing medications constant. After three weeks of normal SCS use they returned for the second
lumbar puncture.

Standard protocol approvals, registrations, and patient consents
The study was conducted in accordance with the Declaration of Helsinki. CSF samples from
127 individuals were included in this study, which was approved by the Regional Ethical
Review Boards of Uppsala, Sweden and Cluj, Romania respectively, and undertaken with the
written consent of the individual donors.

CSF sample collection
All patient samples were collected using the same protocol. Briefly, fasting patients underwent
lumbar puncture. After removal of the first sample aliquots to avoid blood contamination of
the CSF from potential puncture bleeding, the samples were collected in polypropylene tubes,
which were sealed, gently mixed and put on ice. The samples were centrifuged at 1,300 g for 10
min at 4°C and decanted to remove cells, visually inspected for blood contamination, aliquoted
in 1 mL cryotubes and stored at -70°C until analysis.

CSF analysis
The 47 protein panel (S2 Table) for neurological biomarker discovery was based on our previ-
ous multiplex PLA panel [6] and selected according to broad neuropathologic or neurothera-
peutic relevance. This lead to a panel of inflammatory mediators (interleukins, cytokines,
chemokines), neurotrophic factors, glial markers, cell cycle regulators, adhesion proteins, solu-
ble receptors or as enzymes or modulators of such proteins. Preference was given to targets
with reported involvement in ALS or pain pathology (S1 Appendix), but technical aspects and
assay performance were also taken into consideration. PSA was included in the panel as a con-
trol marker since it is known to differ between women and men. For a more detailed descrip-
tion on the panel protein selection see S1 Appendix.

Preparation of capture beads and PLA probes. Fifty μg of each antibody (S2 Table) was
divided into one 10 μg aliquot and two aliquots of 20 μg. The 10 μg aliquot was immobilized on
2 mg of M-270 Epoxy Dynabeads using the antibody coupling kit (Life Technologies) accord-
ing to the manufacturer’s protocol. The two 20 μg aliquots were used to prepare PLA probes
(antibodies conjugated to oligonucleotides). The antibodies (2 mg/mL in PBS) were activated
by adding 1 μL 4 mM sulfosuccinimidyl-4- (N-maleimidomethyl cyclohexane-1-carboxylate
(sulfo-SMCC; Thermo Scientific) in DMSO (Sigma-Aldrich), and incubating at room tempera-
ture (RT) for 2 h. Oligonucleotides (S2 Table) for conjugation via sulphhydryl groups (15 μl,
20 μM)–purchased separately from IDT and Eurogentec to avoid contamination risks–were
reduced by adding 15 μL of 50 mM DTT (Sigma-Aldrich) in 2xPBS with 5 mM EDTA (Sigma-
Aldrich) and incubating at 37°C for 1 h. The SMCC activated antibodies and the reduced oligo-
nucleotides were purified separately using Zeba Spin desalting plates, 7 K MWCO (Thermo
Scientific) according to the manufacturer’s protocol. Each antibody preparation was mixed in
separate reactions with each of the two oligonucleotides, and incubated at RT for 1.5 h, fol-
lowed by dialysis overnight at 4°C against 5 l PBS with constant stirring by a magnetic bar in a
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25 kD dialysis plate (Harvard Apparatus). The dialyzed antibody-oligonucleotide conjugates
were diluted to 500 nM in PBS. Capture beads and PLA probes were stored at 4°C.

Multiplex SP-PLA. Twenty μL CSF samples were diluted by adding 25 μL PLA buffer
(1 mMD-biotin (Invitrogen), 0.1% purified BSA (New England Biolabs), 0.05% Tween 20
(Sigma-Aldrich), 100 nM goat IgG (Sigma-Aldrich), 0.1 g/l salmon sperm DNA (Life Technol-
ogies), 5 mM EDTA, PBS), containing 5 pMmouse IgG (as a positive control). For purposes of
methods evaluation, each sample was run in 4 technical replicates consuming a total of 80 μL
of CSF. To make standard curves for quantification and determination limits of detection
(LOD), solutions containing all 47 proteins were diluted in 10-fold steps from 500 pM to 5 fM
in PLA buffer containing 5 pMmouse IgG, with one negative control (with none of the 47 pro-
teins, denoted “blank”). Capture beads for all target proteins were combined, and 2.4 μL com-
prising 0.05 μL of each bead, was incubated with 45 μL of the diluted patient samples or with
the dilutions of recombinant proteins. Reactions were incubated at RT for 1.5 h on a rotator.
The beads were then washed once with washing buffer (PBS with 0.05% Tween 20), and mixed
with 50 μL PLA buffer containing the PLA probes (500 pM of each) and incubated at RT for
1.5 h on a rotator. After washing, 50 μL ligation mix (1x ampligase buffer (Epicentre Biotech-
nology), 100 nM connecting oligo, and 0.02 U/μl ampligase (Epicentre Biotechnology)) was
added, and the mixture was incubated at 37°C for 15 min. The microparticles were washed
once and 50 μL PCR mix (1xPCR buffer (Invitrogen), 3 mMMgCl2 (Invitrogen), 0.2 mM d(A,
U,G,C)TP mix (Fermentas), universal primers (S2 Table) 1 and 2 (100 nM each), 0.03 U/μl
Platinum Taq DNA polymerase, 0.01 U/μl uracil-N-glycosylase (Fermentas)) was added to
each reaction well. The ligation products were then amplified by PCR using the following pro-
gram: 95°C for 10 min, followed by 15 cycles of 95°C for 15 sec, 62°C for 1 min, 72°C for 1min,
and a final incubation at 8°C. The universal PCR product for each sample was diluted 25-fold
into a new PCR mix (2xPCR buffer, 4 mMMgCl2, 0.4 mM d(A,U,G,C)TP, 1xSYBR Green,
0.06U/μl Taq DNA polymerase). Then 5 μL of each mixture was aliquoted into a 384-well plate
in which each well was pre-spotted with 5 μL of a specific primer pair (S2 Table) for amplifying
ligation products from each one of the protein detection reagents (200 nM of each primer) in
water. The real time PCR was performed as 1 cycle at 95°C for 2 min, followed by 40 cycles of
95°C for 15 sec and 60°C for 1 min using an ABI-7900 instrument (Life Technologies).

Data analysis. A five parameter log-logistic function was fitted to the standard curve mea-
surements, after outliers had been removed in a procedure based on Grubb's [39] test (for
details see S2 Appendix). The LOD was defined as the protein concentration in the fitted stan-
dard curve that corresponded to the PCR cycle threshold mCtblank—2sCtblank where mCtblank

and sCtblank denote the mean and the standard deviation for threshold cycle (Ct) for the blank,
respectively. The Ct is the threshold cycle, the real time PCR fractional cycle, where fluores-
cence reaches a preset threshold.

The variation of replicate samples was expressed as the robust coefficient of variation
(robust CV), defined as the median absolute deviation divided by the median value for the rep-
licate measurements.

As the data were not normally distributed, non-parametric testing was used. Ct values for
each protein were compared between the ALS group and the control group using the Mann-
Whitney U-test. To account for multiple comparisons, p-values less than 0.001 (significance
level 0.05, Bonferroni correction 0.05/47�0.001) were considered significant. The fold differ-
ence of patient sample to control was calculated as 2-ΔCt (ΔCt = median (Ctpatient)-median
(Ctcontrol)) where median(x) denotes the median of the individual values in the list x, one for
each patient sample. The samples from patients with neuropathic pain were compared using
Wilcoxon signed-rank test, which is the paired version of the Mann-Whitney U test. To inves-
tigate whether the level of any protein marker was influenced by the sex of the patients,
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measurements of all 47 proteins were compared between males (n = 20) and females (n = 20)
in the ALS patients and controls using Mann-Whitney U test. All reproducible data were
included in the statistical analyses, including values below the LOD calculated for the recombi-
nant proteins in the standard curves.

To further evaluate how well the four identified ALS biomarker candidates could distinguish
between ALS patient and control samples, multivariate prediction models were built using ran-
dom forests [40]. The models were built through a repeated holdout procedure including a step
where variables were selected based on Mann-Whitney U test statistics (for a detailed descrip-
tion see S2 Appendix).

Results

Assay performance
Of the 47 standard curves, all except interleukin-18 (IL-18) displayed a clear dose-response (S2
Fig) with a median dynamic range of 4 orders of magnitude and a median LOD of 2 pg/mL.

Assessment of CSF proteins levels in 72 neurologically healthy controls
Of the 47 investigated proteins, 19 of them (cathepsin S, CCL2, CCL4, CCL16, CFIII, cystatin
B, E-selectin, Fas/TNFRSF6, follistatin, GDF-15, ICAM-1, IL8, KLK5, MMP2, MMP9, P-selec-
tin, sortilin, TIMP4 and VEGF) were detectable by multiplex SP-PLA in more than 95% (69) of
the 72 control samples. The concentration ranges and the average CV of all samples for the 19
proteins are shown in Fig 1. For all 72 CSF samples a majority (15) of the protein measure-
ments had an average CV below 10% (Fig 1). For four of the proteins the average CV values
were higher (E-selectin (11.1%), P-selectin (15.9%), sortilin (16.4%) and MMP9 (27.7%)).

Comparison of CSF protein levels in samples from ALS patients and
controls
Of the 47 investigated proteins, 20 (cathepsin S, CCL2, CCL4, CCL16, CFIII, cystatin B, E-
selectin, Fas/TNFRSF6, follistatin, GDF-15, GH, ICAM-1, IL7, IL8, KLK6, KLK14, MMP2, sor-
tilin, TIMP4 and VEGF) were detectable by multiplex SP-PLA in� 95% (39) of the ALS and
control samples (Fig 2A). Four proteins, follistatin, interleukin-1 alpha (IL-1 alpha), interleu-
kin-1 beta (IL-1 beta) and kallikrein-5 (KLK5), were found at significantly lower levels in the
ALS samples than in control samples (p<0.001) (Table 1 and Fig 3), but IL-1beta was below
LOD. Follistatin measurements were above LOD in all samples. KLK5 was above LOD in all
control samples, and in 85% of the patient samples. IL-1 alpha was above LOD in 80% of the
control samples, and in 5% of the patient samples.

The multivariate prediction models had a mean accuracy of 0.87 (over all holdouts) and a
mean area under the curve (AUC) of 0.95. The mean probability of detection (PD), i.e. classify-
ing a patient as a patient, is 84% and the mean probability of false alarm (PFA), i.e. classifying a
control as a patient, is 10%. The best single variable models were for IL-1 beta, follistatin and
IL-1 alpha with mean AUC, accuracy, PD and PFA; 0.93, 0.85, 0.86, 0.16 (IL-1 beta); 0.91, 0.81,
0.83, 0.21 (follistatin); and 0.89, 0.72, 0.76, 0.32 (IL-1 alpha), respectively. Hence, the perfor-
mances of the best single variable models were on the same level as the multivariate model. Per-
formance measures for all markers are given in Table 1.

Among the four proteins with significantly lower levels in CSF from ALS patients compared
to normal controls, follistatin had the lowest p-value, a high PD and low PFA as well as show-
ing importance in the multivariate model. As expected levels of prostate specific antigen (PSA)
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differed significantly between males and females, both in ALS samples and their age-matched
controls (p<1×10−10), but no other markers exhibited sex-dependent differences in expression.

Comparison of CSF protein levels in samples from neuropathic patients
with SCS on vs. off
Of the 47 investigated proteins, 21 (cathepsin S, CCL2, CCL4, CCL16, CFIII, CXCL5, cystatin
B, E-Selectin, Fas/TNFRSF6, follistatin, GDF-15, GH, ICAM1, IL8, KLK5, MMP2, MMP9,
P-Selectin, sortilin, TIMP4 and VEGF) were detectable by multiplex SP-PLA in� 95% of the

Fig 1. Protein variation among the investigated individuals. A) Boxplots showing protein concentrations ranges in CSF from 72 individuals
without neurological disorders. The concentration ranges between the upper and lower limits of detection for each marker are shown in grey. The numbers
below and above the boxplots show the number of patient samples (out of the total 72) that are outside the detection limits. B) Performance measures for
each protein assay. The 1st, 2nd (median) and 3rd quartile values of the robust % CV. The numbers of detectable samples out of a total of 72 samples are
found at the bottom line for each marker.

doi:10.1371/journal.pone.0149821.g001

Multiplex Protein Analysis Reveals Three Biomarker Candidates for ALS

PLOSONE | DOI:10.1371/journal.pone.0149821 February 25, 2016 6 / 17



neuropathic pain patient samples. In addition, CX3CL1 (fractalkine) was detectable in�80%
of the samples and Nt-3 was detectable in�50% of the samples. We found no significant differ-
ences in protein levels measured in the CSF of neuropathic pain patients between the SCS stim-
ulated and non-stimulated condition (Fig 2B).

Fig 2. Protein level comparisons for ALS patients andmatched controls (a) and neuropathic pain patients with SCS on and off (b). The y-axes
represent Ct-values. The detectable concentration ranges between the upper and lower limits of detection for each marker are shown in grey. The numbers
above and below the boxplots show the number of samples that are outside the detection limits.

doi:10.1371/journal.pone.0149821.g002
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Table 1. Results from univariate andmultivariate analysis of ALS patients compared to controls.

Marker p-value (Mann-
Whitney U test)

Fold difference
(patients/controls)

Mean
AUC

Mean
accuracy

Mean
PD

Mean
PFA

Fraction
selected

Permutation p-
value

Multivariate 0.95 87% 84% 10%

Follistatin 3.0x10-8 55% 0.91 81% 83% 21% 1 <0.001

IL1-alpha 3.9x10-8 20% 0.89 72% 76% 32% 0.93 0.0090

IL1-beta 1.3x10-7 28% 0.93 85% 86% 16% 0.91 0.0060

KLK5 1.6x10-4 38% 0.67 54% 50% 41% 0.75 0.032

Cystatin C 0.0026 121% 0.65 59% 66% 48% 0.70 0.031

GH 0.021 137% 0.62 52% 54% 51% 0.42 0.12

CCL5 0.056 82% 0.49 52% 45% 40% 0.19 0.18

CCL2 0.063 184% 0.70 68% 69% 34% 0.27 0.12

GDF-15 0.063 149% 0.50 44% 45% 57% 0.24 0.14

TIMP4 0.063 71% 0.53 48% 48% 52% 0.14 0.25

CCL3 0.068 125% 0.54 46% 54% 61% 0.28 0.10

CX3CL1 0.10 115% 0.69 60% 57% 36% 0.14 0.29

IL17 0.10 116% 0.56 50% 53% 54% 0.25 0.15

CXCL5 0.16 76% 0.42 44% 38% 51% 0.01 0.73

beta-NGF 0.19 104% 0.41 44% 46% 58% 0.05 0.43

VEGF 0.23 84% 0.50 49% 56% 59% 0.01 0.66

E-Selectin 0.30 114% 0.39 41% 40% 58% 0.01 0.79

Nt3 0.34 45% 0.49 50% 46% 47% 0 1

CFIII 0.35 80% 0.58 56% 59% 47% 0.01 0.63

Nt4 0.37 115% 0.42 39% 38% 59% 0 1

GDNF 0.41 102% 0.41 45% 42% 52% 0 1

CD40Ligand 0.43 63% 0.53 57% 53% 40% 0 1

TNFRSF6 0.44 129% 0.53 48% 48% 52% 0 1

ICAM1 0.49 104% 0.67 63% 65% 40% 0 1

TNF-alpha 0.51 113% 0.53 53% 58% 53% 0 1

EGF 0.55 96% 0.42 40% 43% 62% 0 1

Cystatin B 0.60 78% 0.53 59% 55% 37% 0 1

PSA 0.60 46% 0.37 40% 45% 65% 0 1

MMP2 0.60 111% 0.42 50% 49% 49% 0 1

IL6 0.62 85% 0.52 45% 40% 50% 0 1

p53 0.64 81% 0.53 55% 53% 44% 0 1

Cathepsin S 0.66 123% 0.43 45% 51% 61% 0 1

KLK14 0.66 96% 0.67 62% 63% 38% 0 1

MMP9 0.72 100% 0.35 39% 33% 55% 0 1

IL18 0.74 101% 0.41 43% 42% 56% 0 1

CCL4 0.80 86% 0.64 64% 66% 39% 0 1

IL10 0.80 101% 0.39 49% 49% 51% 0 1

IL4 0.80 105% 0.48 54% 55% 47% 0 1

KLK6 0.80 98% 0.47 53% 59% 53% 0 1

IL8 0.82 101% 0.30 33% 40% 75% 0 1

IL7 0.86 100% 0.46 54% 49% 42% 0 1

Cathepsin B 0.88 100% 0.58 55% 58% 47% 0 1

Sortilin 0.90 108% 0.64 62% 65% 41% 0 1

TIMP1 0.95 99% 0.38 36% 43% 70% 0 1

Artemin 0.97 92% 0.28 35% 45% 75% 0 1

(Continued)
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Discussion
Firstly, we report decreased levels of follistatin, IL-1 alpha and KLK5 in CSF from ALS patients
compared to controls. Secondly, we report unaltered levels of 21 proteins in neuropathic
patients using SCS. Thirdly, we present 19 protein control concentration values, four of which
(sortilin, CCL16, cystatin B, KLK5) have not, to our knowledge, previously been reported for
adult individuals without neurological disease. We thereby illustrate the utility of multiplex
SP-PLA panels as tools for neurological biomarker research.

Ethical and practical considerations restrict CSF sampling from healthy and neurologically
healthy subjects [1, 41–43]. We provide 19 protein concentration ranges from 72 individuals
scheduled for minor urological procedures, without acute infections, or neurological symp-
toms. This may provide a useful reference interval in the growing bank of published normal
ranges of CSF protein concentrations.

Previous efforts to find biomarkers in CSF from ALS patients [44, 45] have identified glial
proteins that correlate with survival time [44], and revealed increased levels of several proteins
in ALS patients compared to neurological controls [45]. Follistatin [46, 47] is a multifunctional
protein [48] that inhibits tissue remodeling, actions, and formation of fibrosis by binding acti-
vin A [49, 50] during inflammatory responses. Furthermore, follistatin treatment improves
mean survival in another spinal motor neuron degenerative disease, spinal muscular atrophy
(SMA) [51], probably by rescuing skeletal muscle. It is possible that the relatively lower level of

Table 1. (Continued)

Marker p-value (Mann-
Whitney U test)

Fold difference
(patients/controls)

Mean
AUC

Mean
accuracy

Mean
PD

Mean
PFA

Fraction
selected

Permutation p-
value

CCL16 0.97 93% 0.39 41% 36% 54% 0 1

P-Selectin 0.99 109% 0.24 35% 31% 62% 0 1

Columns 1 and 2 indicate p-values and fold differences for each marker. Columns 3, 4, 5 and 6 show mean AUC, mean accuracy, mean probability of

detection (PD) (sensitivity) and probability of false alarm (PFA) (1-specificity) respectively for both the multivariate model and for the univariate models.

Columns 7 and 8 reflect the variable importance for each marker (i.e. the fraction of models in which the particular variable was included) and the

corresponding permutation p-values.

doi:10.1371/journal.pone.0149821.t001

Fig 3. ALS Biomarker candidates. Boxplots showing the CSF levels for follistatin, IL1-alpha and KLK5 for ALS patients and matched controls. The protein
levels are compared using the Mann-Whitney U-test and p-values are displayed in the Figures. The limits of detection are indicated by dashed horizontal
lines. The y-axes represent Ct-values.

doi:10.1371/journal.pone.0149821.g003
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follistatin we observe in the ALS patient CSF is a reflection of a generally lower follistatin con-
centration also in their blood and skeletal muscle tissue. On the other hand levels of follistatin
mRNA have been shown to be overexpressed in skeletal muscle biopsies from a group of three
ALS patients [52]. Activin A has been identified as a neuroprotective factor in nervous tissue
and cell cultures [53–55].

IL1 (both alpha and beta) are produced by astrocytes [56–58], microglia [59–61], oligoden-
drocytes [62] and neurons [63–65] of the CNS, and can trigger responses in the same cell types
[62, 66–76]. IL1 can have a protective or deleterious effect in the CNS [76]. For instance,
IL1-beta has been shown to protect against oxidative stress [77]. The molecular protein pathol-
ogy of ALS has earlier been studied using various proteomic approaches [78, 79]. Both follista-
tin [52, 80] and inflammation have previously been implicated in the pathology of ALS [45, 81,
82]. However, clinical trials using anti-inflammatory drugs against ALS have failed [83, 84],
and may even have aggravated disease progression [85]. Here we show decreased levels of IL-1
alpha, which points to a possible exhaustion of these inflammatory mediators rather than an
upregulation. A recent investigation of spinal microglia in a rat model of ALS found a previ-
ously unusual microglial phenotype with down-regulated expression of inflammatory media-
tors including TNF-alpha and IL-6 [24] (the level of these proteins were below the LOD in our
assays). These two findings together with the failure of clinical trials targeting neuroinflamma-
tion in ALS [83, 86] point to the interesting hypothesis that ALS involves a reduction or imbal-
ance in the microglial inflammatory response rather than an increase in inflammation, which
would be in agreement with our findings. Recently several reports have highlighted the tempo-
ral [87] and spatial [24, 88] complexity of ALS neuroinflammation. Although studies give what
appears to be contradictory results regarding the role of inflammation in ALS, we hope our
data will contribute to clarification and progress in ALS mechanism research.

KLK5 expression has been found to be decreased in the gray matter of post-mortem human
tissue after spinal cord injury [25, 89]. The decrease levels of KLK5 may serve as a marker for
ongoing destruction and repair in the insulted nervous tissue. Although IL-1 beta was consis-
tently found at levels below the LOD in all samples, the differences between the levels of IL-1
beta in patient- and control samples were statistically significant (p<1.3×10−7). In view of pos-
sible differences between human samples and those used for generating standard curves with
recombinant E. coli-produced proteins and buffers for dilution we consider that the lower IL-1
beta levels found in patients may be meaningful, despite being below the LOD.

The levels of mRNA and secreted protein have been reported to be reduced for follistatin in
peripheral blood mononuclear cells of relapsing-remitting multiple sclerosis (MS) patients
[89], while the CSF level of follistatin protein is increased during meningitis [90]. Polymor-
phisms in IL-1alpha have been associated with increased risk of MS as well as its clinical course
[91, 92]. KLK5 is a member of the kallikrein subgroup of the serine protease family of enzymes
found in many different tissues including brain. Their roles in CNS are being mapped and they
have been described as promising drug targets [93, 94].

Although cathepsin S [95], CCL2 [96], CCL4 [97], CFIII [98], E-Selectin [99], ICAM1
[100], IL8 [101], MMP2 and MMP9 [102], P-Selectin [103], sortilin [104], VEGF [105],
CX3CL1 [106] and Nt-3 [107] have been implicated in neuropathic pain pathophysiology, our
results suggest that SCS most likely does not change the CSF concentrations of these markers.
It cannot be excluded that the pathways of these proteins may nonetheless be involved, since
altered levels in the brain or spinal cord need not be reflected in CSF, and changes in post-
translational modifications–which do not necessarily alter the affinity of the antibodies for the
protein–would probably not be picked up by our assay. Another possible explanation for the
negative result is that the time period of 48 hours when the SCS was turned off prior to sample
collection–which also might bring severe pain for the patients–was not long enough to record
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any possible changes in the levels of protein concentrations. However, other studies showed
increased VEGF levels in CSF after only 5 minutes of SCS in nine patients with failed back sur-
gery syndrome (FBSS) [108]. The discrepancy between the results may be due to the differences
in study designs and the patient populations, or perhaps there is an initial release of VEGF in
CSF in response to SCS but levels stabilize overtime.

Conclusions from our findings must necessarily be tempered due to the modest sample
sizes. In the case of the SCS patients results are strengthened by the opportunity for intra-indi-
vidual comparisons, reducing influence by genetic or environmental influences that may
account for some differences between individuals [109]. It should also be noted that the con-
trols here were not healthy individuals, but they did lack manifest neurological symptoms or
neurological disease as samples were collected in anaesthesia before urologic surgery. We there-
fore find it reasonable to assume that consistent differences in CSF protein levels compared to
those of individuals with manifest ALS may in deed be related to ALS disease. There was a con-
siderable overrepresentation of males in the reference cohort. However, no differences in pro-
tein level were observed in comparisons between males and females with the expected
exception for PSA, indicating that CSF concentrations are not sex specific for any of the other
investigated proteins.

In conclusion, by applying for the first time a 47-plex SP-PLA panel in analysis of CSF sam-
ples from individuals with neurological disease, we identified four ALS biomarker candidates.
We demonstrated unchanged levels of 19 relevant CSF proteins during SCS treatment of neu-
ropathic pain, and we report reference values for neurologically healthy controls. Further
investigations are required to confirm or refute the potential value of decreased follistatin,
IL1-alpha and KLK5 CSF levels as biomarkers of ALS disease. Our results illustrate the poten-
tial of multiplex SP-PLA and versions of these panel technologies as tools for neurological bio-
marker investigations.
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beads, each equipped with one immobilized capture antibody against one of the 47 target pro-
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