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Abstract

In order to assess the efficacy of novel HIV-1 treatments leading to a functional cure, the

time to viral rebound is frequently used as a surrogate endpoint. The longer the time to viral

rebound, the more efficacious the therapy. In support of such an approach, mathematical

models serve as a connection between the size of the latent reservoir and the time to HIV-1

rebound after treatment interruption. The simplest of such models assumes that a single

successful latent cell reactivation event leads to observable viremia after a period of expo-

nential viral growth. Here we consider a generalization developed by Pinkevych et al. and

Hill et al. of this simple model in which multiple reactivation events can occur, each contribut-

ing to the exponential growth of the viral load. We formalize and improve the previous deri-

vation of the dynamics predicted by this model, and use the model to estimate relevant

biological parameters from SIV rebound data. We confirm a previously described effect of

very early antiretroviral therapy (ART) initiation on the rate of recrudescence and the viral

load growth rate after treatment interruption. We find that every day ART initiation is delayed

results in a 39% increase in the recrudescence rate (95% credible interval: [18%, 62%]),

and a 11% decrease of the viral growth rate (95% credible interval: [4%, 20%]). We show

that when viral rebound occurs early relative to the viral load doubling time, a model with

multiple successful reactivation events fits the data better than a model with only a single

successful reactivation event.

Author summary

HIV-1 persists during suppressive antiretroviral therapy (ART) due to a reservoir of

latently infected cells. When ART is stopped, HIV generally rebounds within a few weeks.

However, there is a small fraction of patients that do not rebound over a period of months

or years. A variety of treatments are being tested for their ability to reduce the size of the
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latent reservoir, to induce effective immune responses against the virus, or to prevent or

prolong the time to viral rebound after ART interruption. These novel treatments are typi-

cally first tested in SIV infected macaques, and the efficacy of the treatment assessed by

interrupting ART and measuring the time to viral rebound. Here, we develop and test a

mathematical and statistical model that describes the process of viral rebound. The model

can be used for statistical inference of the efficacy of newly developed treatments. Impor-

tantly, the model takes into account that multiple recrudescence events can precede

rebound. We test the model using data from early treated SIV infected macaques.

Introduction

HIV and SIV are able to persist despite antiretroviral therapy (ART) because of a long-lived

reservoir of latently infected CD4+ T cells [1]. Recent studies have shown that the latent reser-

voir is established very early after infection [2–4], and that the seeding of the reservoir can

only be prevented when ART starts extremely early [5]. Other studies have focused on the

effect of potentially curative treatment strategies that might extend remission after interrup-

tion of ART [6–8].

In all these studies an important observable is the time between treatment interruption and

viral rebound, i.e. the first time the viral load (VL) becomes observable. Under the common

assumption that rebound results from reactivation of latently infected cells [9–11], and that the

rate at which the latent population reactivates is proportional to the size of the latent reservoir,

the time to viral rebound can be used to gauge the reservoir size. Some curative strategies aim

to reduce the size of the reservoir by administering latency reversing agents such as vorinostat

[12], romidepsin [13], and TLR7 agonists [8], but also gene editing [14], so-called block-and-

lock strategies [15], and anti-proliferative therapy [16, 17] are being considered. The time to

rebound can then be used as an indication of the effectiveness of the treatment, consistent with

the aforementioned assumption [9, 18, 19].

The simplest model of rebound combines an exponentially distributed waiting time for a

recrudescence event with subsequent exponential growth of the VL (henceforth, this is

referred to as the “single-reactivation model”). Such a model has been used to estimate the

reactivation rate of cells from the reservoir in HIV-1 patients undergoing ART interruption

[10]. The main conclusion of this study—reactivation occurs on average every 5-8 days—

resulted in some discussion about the sensitivity of the aforementioned result to inter-patient

variability of the model parameters [20, 21]. From this discussion, an interesting and slightly

more complex model of viral rebound emerged [20, 21] that takes into account the possibility

that multiple latently infected cells reactivate within a short time interval, and that each of

these reactivation events contributes to VL growth (we hereafter refer to this model as the

“multiple-reactivation model”). We refer to a reactivation event that leads to an exponentially

growing and potentially observable lineage of actively infected cells as a “successful reactiva-

tion event” or “recrudescence event”, since reactivation can also lead to extinction of the line-

age by chance [11, 18, 22, 23].

The occurrence of multiple recrudescence events is not merely a theoretical hypothesis, but

has recently been observed in vivo. In one study, phylogenetic analysis has revealed that HIV-1

rebound is seeded from multiple anatomical sites [24]. In another study, treatment interrup-

tion experiments with macaques infected with a genetically barcoded SIV strain showed that

many cells successfully reactivate from the latent reservoir [25]. In the latter study, the multi-

ple-reactivation model was used to analyze the viral rebound data [25, 26], underpinning the
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current interest in this model. Moreover, in a recent analysis of potentially curative treatment

effects the multiple-reactivation model was used as a bridge between stochastic and determin-

istic reactivation domains [19]. Here we present an improvement of the multiple-reactivation

model that we derive using a Poisson counting process. Although the average behavior of our

improved model is only marginally different from the previous version, our approach allows

us to not only model the expected viral load rebound curve, but also the deviation from this

expectation. Most importantly, this enables us to derive a parametric expression for the distri-

bution of the time-to-rebound, that can be used for parameter inference from rebound data.

We test the improved model using data from SIV infected macaques that are put on ART at

different times post infection and exhibit varying viral rebound dynamics [2, 5]. We find very

strong statistical evidence in favor of the multiple-reactivation model over the single-reactiva-

tion model. We attribute this superior model performance to the fact that it better explains the

data from macaques that rebound soon after ART cessation and exhibit relatively slow expo-

nential growth of the VL. We argue that whenever such data is used for inference about the

effects of experimental curative treatments in delaying viral rebound, the multiple-reactivation

model should be used to estimate the relevant parameters. Our refined multiple-reactivation

model fits the data only slightly better than the approximation developed earlier by Pinkevych

et al. [21]. However, using an example, we show that our model can be generalized further to

include more complex features of reservoir and rebound dynamics, such as heterogeneity of

the reservoir in terms of clone-specific growth rates.

Results

We start by mathematically defining the multiple-reactivation model and deriving the mean

behavior and deviation from the mean of this model. We then use these quantities to derive an

approximate probability distribution of the time to viral rebound, and assess whether this

approximation is reliable. This time-to-rebound distribution is then used to infer the rate of

recrudescence from a heterogeneous set of SIV rebound data. This inference allows us to quan-

tify the effect of ART initiation time on the recrudescence rate and viral growth rate, and to

compare our multiple-reactivation model with the simpler single-reactivation model. We

identify two mechanisms that make the multiple-reactivation model better suited for modeling

rebound data than the single-reactivation model. Finally, using simulated data sets, we test

how sensitive the model is to parameter and model misspecification.

The multiple- and single-reactivation models

We start by constructing a model that predicts the short-term SIV or HIV viral dynamics fol-

lowing the cessation of ART including viral rebound to detectable viremia and subsequent

exponential growth of the VL. In our modeling we rely on the common, central assumption

that activation of latently infected cells drives viral rebound [9–11]. Specifically, we assume

that the activation of a latently infected cell can be followed by viral production, which in turn

may lead to infection of additional cells. Viral rebound is caused by exponential growth in

resultant viral lineages. We refer to a latent cell reactivation that leads to exponential growth as

a “successful reactivation event” or a “recrudescence event”, to explicitly make the distinction

with reactivation events leading to a viral lineage that by chance goes extinct while the popula-

tion size is still small. We provide an overview of the models we employ in this study with full

details in Materials and methods. A synopsis of the parameters and variables used is given in

Table 1.

Mathematically, the multiple-reactivation model is a combination of a stochastic Poisson

counting process Nt with rate or intensity λ and deterministic exponential viral growth v0 egt
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with growth rate g and initial value v0. The Poisson process Nt counts the number of latently

infected cells that have been reactivated and successfully establish a lineage of exponentially

growing infected cells at time t after treatment interruption. Under the assumption that such

successful reactivation events start occurring after therapy interruption at time t = 0, we have

N0 = 0 and Nt* Poisson(λt). The exponential curve v0egt describes the contribution to the

total VL of such a lineage. The total VL at time t is the weighted sum of such exponential func-

tions:

Vt ¼ v0

X1

i¼1

1½Ti ;1ÞðtÞe
gðt� TiÞ ð1Þ

Here, the indicator function 1½Ti ;1ÞðtÞ equals 1 if t� Ti and 0 otherwise. The random times Ti
are the jump times of the Poisson process, corresponding to the times that different latently

infected cells successfully reactivate. An example realization of the random process Vt given by

Eq 1 is shown in Fig 1A. Notice that there might be some delay between the moment of reacti-

vation and successful reactivation. For instance, it might be possible that the reactivation of a

latently infected cell happens before treatment interruption. The times Ti correspond to the

moments that lineages initiated by reactivation become large enough, the meaning of which

we explore in the Discussion.

In previous analyses of Eq 1 by Pinkevych et al. [21] and others [19, 25, 26], the dynamics of

the process Vt after the initial reactivation event T1 = t0 was simplified using a deterministic

approximation. The subsequent recrudescence times T2, T3, . . . were assumed to be exactly 1/λ
days apart, which is the average time between two succeeding jumps of the Poisson process.

Table 1. An overview of the parameters and variables.

symbol unit description

Nt - number of recrudescence events at time t post treatment interruption

Vt copies mL−1 VL at time t post treatment interruption

Ti d time of the i-th successful reactivation event.

g d−1 exponential growth rate of the VL

v0 copies mL−1 average initial viral concentration caused by a single successful reactivation

λ d−1 recrudescence rate, the number of latently infected cells that successfully reactivate per

day.

K(θ) - cumulant-generating function of the viral load Vt.
κ1 copies mL−1 first cumulant, equal to the expectation of the VL (E½Vt�).

κ2 copies2mL−2 second cumulant, equal to the variance of the VL (Var[Vt]).
~V t copies mL−1 conditionally deterministic approximation of the viral load process Vt.

ℓ copies mL−1 limit of detection of the VL assay.

τ d viral rebound time, satisfies the equation Vτ = ℓ
S(t) - fraction of subjects in remission at time t post treatment interruption

f(t; λ, g, v0,

ℓ)
d−1 approximation of the probability density function of the rebound time τ

T̂ 1
d first recrudescence time extrapolated from the rebound time using the growth rate and

the initial VL, assuming simple exponential growth.

tART d days post infection that ART was initiated

Gi d−1 random, clone-specific exponential growth rate.

σG d−1 standard deviation of the growth rates Gi of the clones comprising the SIV reservoir

See also Table 2 for additional parameters of the Bayesian mixed-effects model.

https://doi.org/10.1371/journal.pcbi.1008241.t001
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With the aid of some further simplifications (see Materials and methods [19, 21, 25]), the fol-

lowing expression was obtained for the total VL at time t� t0 after ART suspension:

~Vt � v0

egðt� t0Þ � e� g=l

1 � e� g=l
ð2Þ

where the tilde over the V is used to indicate that this is an approximation. In the Materials

and methods section, we use the cumulant-generating function (CGF), together with some

basic facts about the Poisson process to derive a functional form for the expectation of Vt,
which is given by

E½Vt� ¼
v0l

g
egt � 1ð Þ ð3Þ

Importantly, we no longer have to constrain recrudescence times to be 1/λ days apart. More-

over, the same CGF technique allows us to find all other cumulants (or moments) of the distri-

bution of Vt. For instance, we show the variance is given by

Var½Vt� ¼
lv2

0

2g
e2gt � 1ð Þ

and the third cumulant, which has the same sign as the skewness, equals k3ðtÞ ¼
lv3

0

3g ðe
3gt � 1Þ.

The expected trajectory of Vt and the standard deviation are shown in Fig 1B. To compare the

difference between Eqs 3 and 2, the graph of ~Vt is shown as a thick dashed curve in Fig 1B.

This example shows that the approximation ~Vt slightly under-estimates the expected VL (the

thick black line in Fig 1B). However, the primary advantage of our improvement comes from

the additional statistical properties of viral rebound dynamics that it allows us to compute,

which is useful for the estimation of parameters such as the recrudescence rate λ (see below).

Fig 1. Simulations of the multiple-reactivation model. (A) Graphical representation of Eq 1. The gray lines indicate the exponential growth

curves of individual clones that originated from a single successful reactivation from the latent reservoir. The blue curve represents the total VL,

i.e. the sum of the gray lines. (B) Comparison between the expectation of the process Vt (in black) and realizations sampled from this process (in

blue). The mean ± standard deviation (sd) of Vt is shown as a gray band. The dashed thick curve corresponds to the approximation ~V t with t0 =

1/λd. Parameters: g = 0.5 d−1, λ = 1.0 d−1, and v0 = 0.1 copies mL−1

https://doi.org/10.1371/journal.pcbi.1008241.g001
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We term this model the “multiple-reactivation model” since viral load is modeled as the

sum of viral lineages generated by multiple recrudescence events. In the following we contrast

predictions from our refined multiple-reactivation model with the “single-reactivation

model”, in which rebound VL is assumed to be associated with the viral lineage resulting from

a single latent cell activation only [10]. Hence, for this single-reactivation model we consider

only the first recrudescence event at time T1 * Exp(λ), and ignore the effects of any subse-

quent reactivations from the reservoir. Given that T1 = t0, we therefore get the following simple

expression for t� t0:

V single
t � v0egðt� t0Þ

The distribution of time-to-rebound

In treatment-interruption experiments, the main quantity of interest is the time-to-rebound,

which we denote by τ. In order to properly infer the recrudescence rate λ—a proxy for the

replication competent reservoir size—from viral rebound data, a statistical model that

expresses the likelihood of the time-to-rebound in terms of the model parameters is desirable.

The predicted distributions of the time-to-rebound under the multiple-reactivation model

and single-reactivation model naturally differ, because multiple reactivation events, early

after treatment interruption, skew the time-to-rebound towards lower values. This means

that because of these multiple recrudescence events prior to viral rebound, each of which

causing a jump in the viral load, the growth of the still unobservable VL is faster than expo-

nential growth at rate g. We refer to this as “early faster-than-exponential growth”. Using an

exponential distribution for the first recrudescence time T1, and the approximation ~Vt given

in Eq 2, the rate of successful reactivation λ [21, 25], and the initial contribution v0 of such a

reactivation event [26] have been estimated with likelihood-based methods. However, this

conditionally deterministic approximation does not take the uncertainty due to secondary

recrudescence events occurring at different intervals into account, a shortcoming which we

fix with our fully stochastic model.

Using a diffusion approximation of the process Vt allows us to derive a convenient paramet-

ric form of the distribution of the time-to-rebound (given by Eq 6 in Materials and methods).

The time-to-rebound (τ) is defined as the first time the virus load crosses a threshold ℓ corre-

sponding to the limit of detection (LoD; typically 50 RNA copies per mL) of the assay used to

measure SIV or HIV RNA. Our parametric distribution depends on ℓ and the parameters v0,

λ, and g and can be used to estimate these parameters directly from time-to-rebound data

using methods such as maximum likelihood. In order to test if the diffusion approximation is

justified, we simulated the process Vt and compared the empirical distribution of the time to

rebound with the parametric approximation (see Fig 2). When successful reactivation is fast (λ
� 1 d−1), the simulations and our approximation are in excellent agreement (by visual inspec-

tion; Fig 2 top and middle panels).

However, when the successful-reactivation rate is small (λ = 0.2 d−1), the diffusion approxi-

mation breaks down (Fig 2 bottom panels), as the time to rebound is mostly determined by the

first successful reactivation, and hence by the exponentially distributed initial recrudescence

time T1. Further, the distribution of the diffusion approximation of Vt at time t is a Gaussian

N ðk1ðtÞ; k2ðtÞÞ, which is symmetric. As κ3(t)> 0 for t> 0 the exact distribution of Vt is in

fact right-skewed. When we fit the multiple-reactivation model to data below, we account for

these discrepancies by explicitly modeling the first reactivation time T1 as a so-called latent

variable of the statistical model, which is exponentially distributed with rate λ. The diffusion
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approximation for the time-to-rebound distribution (Eq 6) is then used to model the differ-

ence τ − T1, and we set an initial condition VT1
¼ v0. This ensures that the model can be used

for inference irrespective of whether remission is short or long, and even with data sets con-

taining heterogeneous rebound times, as we will demonstrate below.

In the S1 Text we explore two other approximations of the rebound-time distribution that

behave better for small values of λ. First, we replaced the Gaussian distribution N ðk1; k2Þ with

a Gamma distribution, for which we matched the mean and variance with κ1 and κ2, respec-

tively. Like the distribution of Vt, the Gamma distribution has a positive skewness, which

results in a greater similarity between the approximate rebound-time distribution and simula-

tions when the recrudescence rate is small (S3 Fig). Second, instead of diffusion, we applied

the so-called WKB approximation to the process Vt, which gave even better results for small

recrudescence rates than the Gamma-law approximation (S4 Fig). Unfortunately, both these

improved approximations are more difficult to implement in standard parameter-inference

frameworks. For this practical reason, we use the more tractable diffusion approximation in

our data analysis below.

Fig 2. Comparison between the approximation for the time-to-rebounddistribution and simulated rebound times. The simulated empirical

distributions are shown in color, and our approximation is shown in black. (A) The probability density function (PDF; defined by Eq 6). (B) The

survival function (i.e. the fraction of subjects S(t) that do not have a detectable VL at time t). For the top, middle, and bottom panels different

values of λ are used (λ = 5 d−1, 1 d−1, and 0.2 d−1 respectively). Notice the different time scale on the horizontal axes. For the remaining

parameters, we used the values: g = 0.5 d−1, v0 = 0.1 copies mL−1, LoD ℓ = 50 copies mL−1.

https://doi.org/10.1371/journal.pcbi.1008241.g002
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Analysis of SIV rebound data

To assess the performance of the multiple-reactivation model and our diffusion approximation

with respect to actual data, we employ the results of treatment interruption experiments with

the macaque SIV model [2, 5]. This data set consists of longitudinal VL measurements from

macaques for whom treatment was initiated early and at varying time points after SIV chal-

lenge in different groups of animals. The time of ART initiation has been shown to be a predic-

tor for the time-to-rebound with early SIV treatment leading to delayed rebound [2].

Moreover, in the same study [2] it was found that the rate of exponential growth of the VL

after viral rebound is decreased when ART is initiated later, perhaps because immune

responses develop due to higher antigen concentrations. Hence, the data set contains SIV

rebound time series with varying exponential growth rates and rebound times.

Of the 36 macaques in the data set, n = 25 showed viral rebound during the 16 week obser-

vation period after treatment interruption. As VL is measured at discrete times, the actual time

of viral rebound (τ) has to be interpolated from these VL measurements. In addition, estimat-

ing the recrudescence rate (λ) requires that we also estimate the viral growth rate (g), and since

we expect g and λ to be correlated, additional data that informs the growth rate helps to esti-

mate both g and λ more accurately. In order to infer τ and estimate g from the VL time series

for each macaque, we fit a logistic growth model [2] to the initial VL data points of the time

series. We manually selected time points that are consistent with logistic growth (the gray data

points in Fig 3A and S1 Fig were excluded). We opted for logistic instead of exponential

growth because fitting an exponential growth model to non-linear rebound data (Fig 3A and

S1 Fig) can result in an under-estimation of the growth rate [19]. Because for many macaques

the number of observations that can inform these estimates is limited, we used a mixed effects

model to estimate the growth rate g, using the time of ART initiation (tART) as a covariate. Sim-

ilarly, tART is used as a covariate for estimating the recrudescence rate λ, which again has a

Fig 3. Representative examples of the fits of the mixed-effects modelto the VL rebound time series. (A) The top panels show the VL data (black dots

connected by black lines, with red dots for left-censored observations; the grey dots are ignored) taken from macaques where ART was started at

different days post infection (DPI), and the model prediction (blue lines: posterior mean; dark blue band: 50% credible interval (CrI), light blue band:

50% posterior predictive interval). The estimated time-to-rebound (τ) is given by the vertical black line (gray band: 50% CrI). (B) The bottom panels

show posterior predictive distributions of the time-to-rebound. The green distributions (c) are conditioned on the estimated time of the initial

recrudescence event, the purple distributions (u) are unconditional. Model fits and posterior predictive distributions for all 25 macaques are shown in S1

Fig.

https://doi.org/10.1371/journal.pcbi.1008241.g003

PLOS COMPUTATIONAL BIOLOGY SIV rebound after treatment interruption

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 8 / 25

https://doi.org/10.1371/journal.pcbi.1008241.g003
https://doi.org/10.1371/journal.pcbi.1008241


random effect for each macaque. The statistical model is defined in full detail in the Materials

and methods.

Following Pinkevych et al. [26], we fit the logistic growth model to the VL data in a Bayesian

framework using MCMC (Fig 3A and S1 Fig). This way we are able to naturally factor the

rebound time distribution for the multiple-reactivation model (Eq 6) into the likelihood. We

have to fit the model to the data from all 25 macaques simultaneously, as it contains fixed and

random effects. We write αλ (and αg) for the fixed effect of tART on λ (and g, respectively; see

Eq 9 in Materials and methods). In accordance with previous analyses [2], we find that the

time of ART initiation is a strong predictor of both the rate of reactivation and the exponential

growth rate after rebound. The posterior probability P½al < 0� < 10� 3 strongly suggests that

αλ> 0, i.e. that rebound occurs more rapidly when ART is initiated later. For the fixed effect

αg of the time of ART initiation on the growth rate g we find the posterior probability

P½ag > 0� ¼ 0:002, suggesting that it is highly likely that the growth rate after rebound will

slow down with later ART initiation. Here the statistical significance of the effect of treatment

initiation time is much larger than found previously [2]. This increased significance is due the

inclusion of data from additional macaques [5], as exclusion of this data gave a posterior prob-

ability P½ag > 0� ¼ 0:36.

The estimates of λ and g for individual macaques are shown in Fig 4A and 4B as a function

of ART initiation time, and also listed in S1 Table. The recrudescence rate is clearly influenced

by the ART initiation time. We predict that each day ART is delayed, the recrudescence rate is

increased by 39%, with a 95% credible interval (CrI) of [18%, 62%]. Even though we find that

the time ART starts is a significant predictor for the growth rate g after rebound, the standard

deviation of the growth rate’s random effects (σg) is about 5 times larger than that of the reacti-

vation rate (σλ; see S1 Table). Nonetheless, we can estimate that each day ART is delayed, the

growth rate decreases by 11% (95% CrI: [4%, 20%]).

The latter observation is remarkably consistent with acute VL dynamics. As none of the

macaques that were treated on day 0 (6h post-infection) showed viral rebound after ART ces-

sation [5], we could not directly estimate the viral growth rates for these animals. However, we

could compare the estimated growth rates after viral rebound with growth rates in the acute

phase. Using again a simple random-effects logistic growth model, we were able to estimate

viral growth rates during acute infection for the 13 out of the 25 macaques that showed observ-

able viremia prior to ART initiation. These estimates are added to Fig 4B (cyan markers,

located at “acute”). Our estimates for the acute growth rates are slightly higher than reported

previously [2], possibly due to the use of a logistic growth model (see Materials and methods).

Using our estimates from the rebound data of the population-level growth rate (μg, see

Table 2) and fixed effect of tART (αg), we extrapolated the population-level growth rate for sub-

jects treated at day 0 (using Eq 9). Our estimate of the population-level growth rate for the

acute infection (m̂g ¼ 0:67 log d� 1
; S1 Table) falls within the 50% CrI of the extrapolated

growth rate ([0.28, 0.76] log d−1). This suggests that viral dynamics after rebound in very early

treated subjects resembles acute infection dynamics.

We then used model selection theory to compare the multiple-reactivation model to the

single-reactivation model (see Methods). Using the Watanabe-Akaike information criterion

(WAIC; see Materials and methods and [27]) for model comparison, we find “very strong evi-

dence” (sec. [28]) in favor of the multiple-reactivation model (ΔWAIC = 11.5). The superior

performance of the multiple-reactivation model can be explained by two mechanisms that

were mentioned above: (i) the stochasticity of secondary recrudescence events and (ii) early

faster-than-exponential growth. We will now look closer into the effects of these mechanisms

in the context of our SIV data set.
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Uncertainty due to secondary recrudescence events. According to the multiple-reactiva-

tion model, successful reactivation events that follow the first event lead to faster-than-expo-

nential growth of the VL during the early stages of rebound (Fig 1). However, these secondary

reactivation events can only contribute noticeably to the viral load when the VL is still rela-

tively low and close to the initial value v0. This most likely happens when the reactivation rate

is large or the exponential growth rate is small. In order to quantify these effects, we can

Fig 4. Estimates of recrudescence and growth rates from the SIV rebound data and the percentage of the variance of the time-to-rebound. (A)

Point estimates (posterior modes; red) and 50% CrIs (black) of λ for each macaque as a function of the time ART was initiated. (B) Estimates of g. The

cyan markers denote estimates of the growth rate for acute infections of 13 of the 25 macaques. These acute VL growth rates cluster around 2 d−1. (C)

Proportion of the total variance due to secondary reactivation events. The heat map shows Var[τ1]/Var[τ0] � 100%, where τi≔ inf{t : Vt� ℓ, V0 = i � v0} is

the rebound time (i = 0) or the time between the first successful reactivation and rebound (i = 1). Additional parameters are v0 = 0.1 copies mL−1 and ℓ =

50 copies mL−1. The markers indicate the estimates from macaque SIV rebound experiments in which the macaques were treated, starting tART days after

infection, with tART equal to 1 day (●), 2 days (+), 3 days (▲), 7 days ($), 10 days (×), or 14 days (♦).

https://doi.org/10.1371/journal.pcbi.1008241.g004

Table 2. Prior distributions of the Bayesian mixed-effects model.

parameter description prior hyper-prior

σ VL measurement error jN ð0; 0:5Þj -

�g random effect VL growth rate (g) N ðmg ; sgÞ mg � N ð0; 1Þ, sg � jN ð0; 1Þj

αg fixed effect of tART on g N ð0; 1Þ -

�λ random effect recrudescence rate (λ) N ðml;slÞ ml � N ð0; 1Þ, sl � jN ð0; 1Þj

αλ fixed effect of tART on λ N ð0; 1Þ -

log10(K) carrying capacity VL N ðmK ; sKÞ mK � N ð5; 2Þ, sK � jN ð0; 2Þj

log(v0) initial VL equivalent N ð� 1; 1Þ -

The notation x* |D| for probability distribution D means that x is positive and that D is truncated at zero. The normal distribution is parameterized with the mean and

standard deviation. The time tART denotes the number of days post infection at which antiretroviral treatment was initiated.

https://doi.org/10.1371/journal.pcbi.1008241.t002
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decompose the variance of the time-to-rebound (τ) as the sum of the variance of the first reac-

tivation time (T1), and the variance due to all subsequent reactivation events. The proportion

of the total variance that is due to secondary reactivation events is shown in Fig 4C for different

values of the growth rate g and the recrudescence rate λ. The dark region in this heat map cor-

responds to a part of the model’s parameter space where it is indistinguishable from the single-

reactivation model. On the contrary, the light region corresponds to parameter combinations

for which most of the variance in the time-to-rebound is due to the secondary successful reac-

tivation events. In this parameter regime the model is most relevant.

The superior performance of the multiple-reactivation model can be explained by having

data from macaques with a high recrudescence rate λ and a small exponential growth rate g.
Point estimates (i.e., modes of the marginal posterior distributions) of λ and g for each

macaque are projected onto the heat map in Fig 4C. The macaques that were treated starting at

7, 10 and 14 days after infection fall into the parameter domain where the multiple-reactiva-

tion model is most relevant.

To further assess the effect of multiple reactivation events for each macaque, we sampled

from the posterior predictive distribution of the time-to-rebound (Fig 3B, purple distribu-

tions). This distribution indicates when viral rebound is most likely to take place, given esti-

mates for the growth rate g, the rate of successful reactivation λ and the initial VL v0 when

exponential growth begins. The actual estimates for the rebound time τ (Fig 3A and S1 Fig,

black vertical lines) correspond well with the posterior predictive distributions, as all 25 esti-

mates of τ fall within the 2.5 and 97.5 percentiles of the posterior predictive distributions and

21 out of 25 estimates fall within the interquartile range. In the model, we explicitly estimate

the first recrudescence time T1 (see Materials and methods) and hence, we can also sample

from the posterior predictive distribution of τ conditioned on T1 (Fig 3B, green densities).

These second posterior predictive distributions indicate the uncertainty in the rebound time

due to secondary recrudescence events (in addition to uncertainty in the parameter estimates).

Hence, by comparing the conditional (Fig 3B, green) and unconditional (Fig 3B, purple) poste-

rior predictive distributions of τ, we see what effect multiple recrudescence events have on the

uncertainty of the rebound time. For early treated macaques (ART� 3 days post infection),

most uncertainty in the rebound time comes from the first successful reactivation, as illus-

trated by the purple densities being much wider than the green densities. On the other hand,

for the macaques treated later the subsequent reactivation events determine the rebound time

distribution, as illustrated by the purple and green densities overlapping.

Early faster-than-exponential growth. When the recrudescence rate is large, and before

the VL has become detectable, the multiple-reactivation model predicts that the VL grows

faster than exponentially (Fig 1). To demonstrate the effect of this faster-than-exponential

growth, we can use the regular exponential growth model to extrapolate what the first reactiva-

tion time would have been under the single-reactivation model. This time is denoted T̂ 1, and

can easily be calculated using the model’s parameters as T̂ 1 ¼ t �
1
g log ð‘=v0Þ. The marginal

posterior densities of the first reactivation time T1 and the extrapolated initial recrudescence

time T̂ 1 are nearly identical for the early treated macaques (S2 Fig). However, for the macaques

that are treated later, the extrapolated recrudescence time becomes negative (i.e. successful

reactivation is predicted to occur before treatment interruption), while, according to our mod-

els, the first recrudescence time T1 has to be positive. This shows that given the estimates of g,
v0, and τ, faster-than-exponential growth as predicted by the multiple-reactivation model is

required to explain the VL data.

To identify which of the two mechanisms (uncertainty due to secondary recrudescence

events or early faster-than-exponential growth) described above is the most important for
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explaining the difference in WAIC between the single and multiple-reactivation model, we

also fit the “conditionally deterministic” multiple-reactivation model (see Materials and meth-

ods and [21]) to our SIV data set. Recall that in this model all secondary recrudescence events

occur at fixed intervals. Again using WAIC, we find that our fully stochastic multiple-reactiva-

tion model fits the data better than the conditionally deterministic version, but only with lim-

ited statistical significance (ΔWAIC = 2.1 and see S2 Table). As our fully stochastic model

differs from the conditionally deterministic model in that it describes uncertainty in the

rebound time due to secondary recrudescence events, we find that for this data set the ran-

domness of these secondary events may be of limited importance.

Sensitivity to parameter and model misspecification

Next, we investigated the effects of uncertainty in the initial viral load parameter (v0) and het-

erogeneity of the exponential viral growth rate, which can exist when the reservoir is com-

prised of a variety of phenotypically distinct SIV clones, on the estimates of the recrudescence

rate λ.

Uncertainty in the initial viral load equivalent. The meaning of the parameter v0 is bio-

logically ambiguous. Previously, this parameter has been described as the initial “plasma viral

load equivalent” [26] and estimates of v0 are at least roughly compatible with the number of

virions produced by one productively infected cell, the clearance rate of virions [29] and the

blood volume of a macaque [26]. Another interpretation is linked to extinction probabilities of

a recently reactivated lineage. In this case v0 is the viral load at which extinction of an exponen-

tially growing lineage is extremely unlikely [18, 20]. The actual model is agnostic with respect

to the interpretation of v0, which can be thought of as the effect size of the multiple-reactiva-

tion model. This means that v0 simply provides a measure of the effect of each independent

recrudescence event, each possibly originating from a separate anatomical site [24], on the VL

dynamics and time-to-rebound. However, as it is difficult to estimate both the recrudescence

rate g and the initial viral load v0 simultaneously, we investigated the effect of a misspecified v0

on the estimate of the recrudescence rate λ.

To assess the bias due to misspecification of v0, we simulated large data sets (n = 200) with

various ground-truth parameter values and fit our model to the synthetic data. For simplicity,

we used an exponential growth model instead of logistic growth, and removed the random

effects from the statistical model. Hence, all simulated subjects share the same parameter val-

ues. The ground-truth v0 was kept constant to 0.1 copies mL−1, while in the statistical model,

the assumed constant value of v0 was varied from 0.02 to 0.5 copies mL−1. Assuming an erro-

neous value of v0 resulted in a sizable bias in the estimate of λ (Fig 5A). When v0 is assumed

smaller than the ground truth value, the model requires a larger recrudescence rate in order to

fit the data, and vice versa. This is especially clear when the ground-truth reactivation rate is

large (λ = 5 d−1). This is as expected, because again, v0 can be interpreted as the effect size of

the multiple-reactivation model, and becomes more important when secondary recrudescence

events are more frequent.

Within-host heterogeneity of the exponential growth rate. Throughout the paper, we

have made the strong assumption that within one subject all successfully reactivated lineages

have the same exponential growth rate g. In natural infections, ART is only rarely started dur-

ing hyper-acute infection and this means that the latent reservoir consists of a diverse archive

of proviral sequences [30], probably varying in their growth rate due to intrinsic fitness costs

of mutations or escape mutations from immune responses [31]. To measure the effect of this

potential model misspecification, we performed a sensitivity analysis with simulated data sets

as before. In this case, we had to generalize the multiple-reactivation model (Eq 1) and replace
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the growth rate g with a clone-specific random variable Gi, representing the random growth

rate of the i-th clone (see Eq S12 in S1 Text). Example trajectories of this generalized model are

shown in S5 Fig. This generalized multiple-reactivation model requires that we specify a distri-

bution for the random growth rates Gi. In the S1 Text we developed a simple example provid-

ing a model for an SIV reservoir in which the frequency of a clone is proportional to its fitness

(see the inset of S5 Fig). The most fit and abundant clone has growth rate g and we write σG for

the standard deviation of the random growth rate Gi.
As in the sensitivity analysis described above, we simulated large data sets (n = 200), varying

the recrudescence rate λ and the standard deviation σG of the random growth rates. We then

estimated the model parameters g and λ with the simplified statistical model (i.e. exponential

growth instead of logistic growth and no random effects). The initial viral load v0 was kept

constant to the true value. The estimated reactivation rates are shown in Fig 5B. This shows

that a non-zero standard deviation in the within-host growth rate introduces a bias in the esti-

mate of λ. When σG is large, the estimate of the recrudescence rate is smaller than the ground-

truth value. We can understand this intuitively, because clones that reactivate early might have

a growth rate that is significantly smaller than the maximum growth rate g, which delays the

time of rebound, while the observed growth rate is dominated by fitter clones that have suc-

cessfully reactivated after the first clone. This effect is most pronounced when the ground-

truth recrudescence rate is intermediate or large (λ = 1 or 5 d−1). Again, this is in line with

Fig 5. Sensitivity of the multiple-reactivation model to misspecification. (A) A misspecified initial viral load v0 can lead to a biased estimate of the

recrudescence rate λ. Rebound data sets (n = 200) were simulated by sampling from the viral load process (Eq 1) using different values of the recrudescence

rate λ (horizontal dashed lines), and different assumed values of v0 (horizontal axis). The ground truth value of v0 equals 0.1 copies mL−1 (vertical dashed

lines). Shown are the 95% CrIs of the estimate l̂ of λ (black bars) and the posterior medians (red). (B) Intra-host variation in the exponential growth rate of

the VL can lead to a biased estimate of the recrudescence rate λ. Data sets of rebound time series were now simulated from a viral load process with within-

host variability of the growth rate Gi (Eq S12 in S1 Text, S5 Fig), using different values of the recrudescence rate and the standard deviation of the viral

growth rate (σG, horizontal axis), ranging from 0% to 20% of the most likely growth rate g = 0.5.

https://doi.org/10.1371/journal.pcbi.1008241.g005
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expectations, because when the recrudescence rate is small, the growth rate of the total VL is

mostly determined by the clone that successfully reactivates first.

In the case of the SIVmac251-infected macaques analyzed here that are treated within 2

weeks of infection, we expect that the phenotypic variation in the reactivating strains is limited

and that using a constant growth rate g is a valid simplification. However, when a data set con-

tains subjects that are put on ART relatively late in the acute infection, or during chronic infec-

tion, recrudescence rates estimated with the multiple-reactivation model will likely be biased

towards lower values, due to longer rebound times. We therefore investigated if our parametric

rebound-time distribution can be adjusted to account for situations when σG> 0. In the S1

Text, we derive the CGF for the generalized multiple-reactivation model described above (Eq

S13). In particular, the first and second cumulants can be used to derive an approximate sur-

vival function for the fraction of subjects in remission, which is in excellent agreement with

simulated rebound times (S6 Fig). This shows that our probabilistic methodology can be used

to extend the multiple-reactivation model to account for important biological aspects as het-

erogeneity of the reservoir.

Discussion

We carefully analyzed a model for SIV and HIV rebound after treatment interruption devel-

oped by Pinkevych et al. [21] and Hill et al. [20] that takes into account the potential effect of

the reactivation of multiple latently infected cells on the rebound time. In doing so, we were

able to derive a relatively simple statistical model that can be used for the inference of the rate

of recrudescence after treatment cessation, the viral growth rate after recrudescence, and per-

haps ultimately the efficacy of novel HIV treatments in delaying viral rebound. Moreover,

using our mathematical formulation, the model can be compared to similar models of viral

rebound in a statistically rigorous manner. We were able to find strong statistical evidence

(ΔWAIC = 11.5) in favor of the multiple-reactivation model over a simple model with only

one reactivation event using previously published data from treatment-interruption experi-

ments performed in SIV-infected macaques [2, 5]. We argued that the multiple-reactivation

model is most relevant for data sets that contain subjects with early viral rebound, as our SIV

data set. This is often the case for human data sets as well. For example in a pooled data set of

six ACTG studies [32], 6–63% of subjects showed detectable viremia within a week, and 21–

74% within 2 weeks of ART cessation [11].

Our method captures the uncertainty in SIV rebound times that is due to the stochastic

nature of any recrudescence events that follow the initial activation of a latently infected cell

that led to remission failure. This feature is not present in the approximation derived by Pinke-

vych et al. [21]. This novel aspect slightly improves the model’s ability to describe experimental

data; when we compared our fully stochastic multiple-reactivation model with the condition-

ally deterministic model in the context of our SIV rebound data set, we found a small ΔWAIC

of 2.1 in favor of the fully stochastic model. This indicates that the most important advantage

of the multiple-reactivation model is the ability to explain fast rebound due to early faster-

than-exponential viral growth.

Our fully stochastic multiple-reactivation model suffers from some of the same limitations

as previous approximations [19, 25, 26]. The exact biological meaning of the initial viral load

parameter v0 is ambiguous, and as we have shown with our sensitivity analysis, the estimate of

the recrudescence rate is biased when the value of v0 is misspecified. In our Bayesian data anal-

ysis, we resolved this issue by choosing a broad prior distribution for v0, such that uncertainty

in this parameter is propagated to uncertainty in the recrudescence rate λ. However, the model

is still sensitive to the exact location and spread of this prior distribution. In addition, we
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found that the multiple-reactivation model is also sensitive to within-host variation in the viral

growth rate. Even though this will likely not affect our estimates, because early treatment limits

the heterogeneity of the reservoir, this bias should be taken into account when the model is

applied to treatment interruption experiments with later-treated subjects, in particular in most

human studies.

By specifying the model in terms of the recrudescence rate λ, the recrudescence times Ti,
the initial viral load equivalent v0, and the exponential growth rate g, we have combined all

complex dynamics of reactivation and the initial stochastic growth into a single abstract recru-

descence event. In vitro experiments have pointed out that this may be an oversimplification

[33]. It is likely that a reduced exponential growth rate, for instance due to a therapeutic vac-

cine, also influences the rate of recrudescence, because the chances of successful reactivation

are dependent on the fitness of the clone, which will be influenced by the immune response.

Therefore our parameters λ and g are a priori dependent. A possible solution would be to

parameterize the model in terms of the reactivation rate instead of the recrudescence rate, and

add a parameter that determines the probability of successful reactivation. This parameter is

known as the “establishment probability”, and depends on the viral dynamics in a non-trivial

manner [18]. For the aims of our current analysis, the exact relation between the reactivation

and recrudescence rate are not important. However, when the multiple-reactivation model is

applied to novel HIV therapies that aim to (indefinitely) extend remission, it can be important

to distinguish the effects of therapies that reduce viral fitness, such as therapeutic vaccination

[7] or broadly neutralizing antibodies [8, 34, 35], and therapies that reduce the reactivation

rate, such as latency reversing agents [36].

In the presented model formulation and inference, we have ignored the period of drug

washout after treatment interruption. While pharmacokinetics and dynamics may be impor-

tant for precisely estimating the reactivation rate, and for instance the value of v0 [26], taking a

drug washout time of 0 days is a conservative assumption for the purpose of this study. Indeed,

incorporating a drug washout decreases the time available for exponential growth and hence

multiple reactivation events that lead to faster-than-exponential growth become more impor-

tant for rapidly rebounding macaques. We verified this by repeating the analyses with a fixed

drug washout period of 1 day, during which recrudescence is not allowed to occur. Compared

to the single-reactivation model, the evidence in favor of the stochastic multiple-reactivation

model increased (ΔWAIC = 14.3), and compared to the conditionally deterministic multiple-

reactivation model results were as before (ΔWAIC = 2.2).

Based on our estimates of the effect of the ART initiation time on the recrudescence rate

(αλ), we predict that each day that ART initiation is delayed, the recrudescence rate increases

by 36%. Recently, the aforementioned genetically barcoded SIV rebound experiments [25]

have been repeated with ART initiated at day 10 and 27 post infection as opposed to day 4

[37]. These barcoded experiments could in principle give a much better estimate of the recru-

descence rate, because for each macaque multiple successful reactivation events can be

observed by counting the frequencies of different SIVmac239M clonotypes. In the same study,

the size of the reservoir was also estimated more directly by measuring cell-associated (CA)

SIV DNA in peripheral blood mononuclear cells (PBMCs). Surprisingly, while the estimated

size of the reservoir based on SIV CA-DNA at the time of treatment interruption is increased

more than a 100-fold when ART is started at day 10 instead of day 4 post infection, the rate of

successful reactivation (inferred by counting clonotype frequencies) only increases 3.6-fold,

which would amount to a 25% increase per day. This rate falls within the 95% CrI of our esti-

mate (viz. [18%, 62%]). When treatment was initiated even later (day 27), the frequency of

CA-DNA at the time of treatment interruption appeared to plateau at the same level as the

day-10 treated macaques. Surprisingly, the inferred recrudescence rate dropped to only a
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2-fold increase compared to the day-4 treated macaques. This strongly suggests that our result

cannot be extrapolated to ART initiation beyond hyper-early infection, making it difficult to

compare these results to most human studies, because treatment almost never starts this early

for human subjects. For the early treated human cohort studies that do exist (e.g. [4]), the com-

parison between macaque and human data can be aided by the fact that macaques are chal-

lenged with a much higher infectious dose, leading to a shorter eclipse phase compared to

humans.

When we consider the 25 macaques used for this study, a large qualitative difference seems

to exist between the animals treated within 3 days and those animals treated after 7 days (S1

Fig). This can potentially be explained by the fact that in the early-treated macaques, no SIV-

specific antibody, CD4+, or CD8+ T-cell responses could be detected [2], contrary to macaques

treated from day 7 onward. One could even argue that as the time of ART initiation

approaches the time of infection, the viral rebound dynamics after ART interruption starts to

resemble those of an acute infection (Fig 4B). Similar patterns have been found for HIV-1,

where ART initiation during acute HIV infection can lead to an incomplete HIV-specific

humoral immune response, as measured by diagnostic assays [38, 39]. On the other hand,

patients treated during Fiebig stage I or II have been shown to develop detectable HIV-specific

CD8+ T-cell responses [40]. Although these responses are lower in magnitude and breadth

than CD8+ T-cell responses from untreated individuals, they show enhanced differentiation

into the effector-memory T-cell phenotype, leading to a more functional CD8+ memory T-cell

pool compared to patients for whom treatment was initiated later. The effects of early ART on

the formation of immunological memory and the subsequent impact on viral rebound dynam-

ics could be resolved by experimentally filling the gap between macaques treated at day 3 and

day 7, ideally incorporating immunological assays and using a barcoded strain. In order to

extrapolate beyond ART initiation within two weeks, we will likely need models that explicitly

incorporate immune responses and mechanisms like CD8+ T-cell exhaustion [41].

Mathematical models are required to bridge the gap between experimental observations

made during treatment interruption experiments and the effect induced by novel curative

treatments. A more accurate mathematical model will therefore increase the precision by

which we can estimate reactivation rates—and importantly the uncertainty of these estimates

—and infer the efficacy of such treatments. Here we showed that with the right mathematical

tools, models of rebound dynamics can easily be refined, and used to measure parameters rele-

vant for recrudescence. As we exemplified by incorporating within-host heterogeneity of the

exponential growth rate, we envisage that our framework can be extended to include many

other biological aspects, such as the pharmacodynamics of antiretrovirals or monoclonal anti-

bodies [34] and detailed reactivation mechanics. Hopefully, this will lead to a more accurate

understanding of SIV and HIV rebound kinetics and the efficacy of novel HIV therapies.

Materials and methods

Data

The collection of the data is described in detail by Whitney et al. [2, 5]. In short, 36 rhesus

macaques were infected with 500 TCID50 of SIVmac251. Combination antiretroviral treat-

ment (a cocktail of tenofovir, emtricitabine, and dolutegravir) was initiated at various times

post infection (6 hours, 1, 2, 3, 7, 10, and 14 days). Treatment continued for 24 weeks, and the

viral load (VL) was monitored for 16 weeks after treatment interruption, while taking weekly

measurements with a limit of detection of 50 RNA copies per mL.
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The cumulants of the process Vt

The VL is modeled by the process Vt given by Eq 1, where {Ti : i = 1, 2, . . .} are the jump times

of the Poisson process Nt, with each jump reflecting a successful reactivation event from the

reservoir. The derivation of the cumulants of the process Vt makes use of the fact that condi-

tioned on Nt = n, the random times {T1, . . ., Tn} are independent and uniformly distributed on

the interval [0, t] (see e.g. [42]). This simply means that if one knows that t days after treatment

interruption exactly n latently infected cells successfully reactivated, then there was no a priori
preference for when these reactivation events took place within the time window. Or course,

this is only true under the assumption that successful reactivation events can be accurately

modeled by a time-homogeneous Poisson process. An overview of the parameters and vari-

ables used is given in Table 1.

The cumulant-generating function (CGF) of Vt is defined as the logarithmic moment-

generating function KðyÞ ¼ logE½ exp ðyVtÞ� ¼ k1yþ
1

2
k2y

2
þ � � � where the first cumulant

k1 ¼ E½Vt� and the second cumulant κ2 = Var[Vt]. First, assume that Nt = n so that

E½ exp ðyVtÞ� ¼ E exp yv0

Xn

i¼1

egðt� TiÞ
 !" #

¼
Yn

i¼1

E exp yv0e
gðt� TiÞ

� �� �
¼

1

t

Z t

0

exp ðyv0e
gsÞ ds

� �n

where the expectations are conditional on Nt = n. In this derivation the second equality follows

from independence, and the third from the identical uniform distributions of the Ti. Next, we

drop the condition Nt = n, and use instead Nt* Poisson(λt) and hence

P½Nt ¼ n� ¼ e� ltðltÞn=n!. Using the law of total probability, we get

logE½ exp ðyVtÞ� ¼ log e� lt
X1

n¼0

ðltÞn

n!

1

t

Z t

0

exp ðyv0e
gsÞ ds

� �n
 !

¼ l

Z t

0

exp ðyv0e
gsÞ ds � lt

Suppose that m> 0. The m-th cumulant κm is now given by

km ¼
dm

dym
KðyÞ

�
�
�
�
y¼0

¼ l

Z t

0

ðv0e
gsÞ

mexpðyv0e
gsÞds

�
�
�
�
y¼0

¼ lvm
0

Z t

0

emgsds ¼
lvm

0

mg
ðemgt � 1Þ

ð4Þ

Notice that we could have used the moment generating function instead of the CGF, although

calculating Eq 4 would have been more involved. A derivation of formulae for the cumulants

of more general Poisson processes can be found in e.g. Privault [43].

Above we have focused on the statistics of the process Vt with initial condition V0 = 0. How-

ever, below we require arbitrary initial conditions V0 = v� 0. Fortunately our results easily

generalize to this situation. A VL process that starts at level v at time t = 0 can be written as vegt

+ Vt where Vt denotes the usual process with initial state V0 = 0. Because vegt is deterministic,

the cumulant generating function of vegt + Vt is simply given by

logE½ exp ðyvegt þ yVtÞ� ¼ yvegt þ KðyÞ, where K(θ) is again the CGF of Vt. Therefore, when

the initial condition equals V0 = v, only the first cumulant (the mean) of Vt changes from κ1 to

vegt + κ1, and all other cumulants remain unaffected.
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The derivation of the approximation ~Vt

In the analysis of Pinkevych et al. [21], the Poisson process Nt is replaced by a process ~Nt with

jump times T1, T2, . . . that is deterministic conditioned on T1 = t0; the time of the first success-

ful reactivation event. The subsequent recrudescence times T2, T3, . . . are spaced at regular

intervals, with Ti+1 − Ti = 1/λ for i� 1. The number of successful reactivation events at time t
> t0 is then given by 1þ blðt � t0Þc � ~Nt j fT1 ¼ t0g, where bxc denotes the largest integer

� x. Eq 2 can now be derived as follows:

Xblðt� t0Þcþ1

i¼1

v0e
g t� t0 � i� 1

lð Þ ¼ v0egðt� t0Þ
1 � e� g=lðblðt� t0Þcþ1Þ

1 � e� g=l

� v0

egðt� t0Þ � e� g=l

1 � e� g=l
� ~Vt

The first step follows from the identity for a geometric progression, and in the second step the

approximation bλ(t − t0)c � λ(t − t0) is used.

Another way to approximate the stochastic process Vt, is to assume that λ is very large, so

that latently infected cells are continuously reactivated. Each of these reactivations adds v0 SIV

RNA copies mL−1 to the total VL. In this case it becomes feasible to use an ordinary differential

equation (ODE) to describe the VL dynamics. The initial value problem (IVP) for the large-λ
approximation �Vt of Vt is given by

d
dt

�Vt ¼ lv0 þ g �Vt ;
�V 0 ¼ 0

and the solution to this IVP is given by the right-hand-side of Eq 3, which was also noted by

Prague et al. [19]. When λ is large, we can approximate 1 − e−g/λ with g/λ, and e−g/λ with 1 in

Eq 2. This implies that ~Vt �
�Vt when recrudescence is fast.

The first passage time of the limit of detection

Here, we derive a parametric probability distribution for the time to viral rebound after treat-

ment interruption, which is our main tool for analyzing viral rebound data. Above, we have

seen that the expectation of Vt is given by the first cumulant, k1ðtÞ ¼ lv0
1

g ðe
gt � 1Þ, and that

the variance equals k2ðtÞ ¼ lv2
0

1

2g ðe
2gt � 1Þ. A naive way to derive an approximation for the

time-to-rebound τ is to approximate the distribution of Vt with N ðk1ðtÞ; k2ðtÞÞ, a normal dis-

tribution with mean κ1(t) and variance κ2(t), and this is essentially what we will do below.

However, in the S1 Text, we will give a theoretical justification for this naive approach and use

the Kramers-Moyal expansion to replace Vt with a transient Ornstein-Uhlenbeck (OU) pro-

cess (see e.g. [44, 45]).

Armed with a Gaussian approximation of the distribution of Vt, we can derive an approxi-

mation of the distribution of the viral rebound time. Although numerical methods exist to

compute the density of the true first passage time of the transient OU process Vt [46], here we

make the assumption that the LoD ℓ for the VL is much larger than the initial value v0, such

that we can reasonably approximate the survival function SðtÞ � P½t � t� with the cumulative

density function (CDF) P½Vt < ‘� (cf. [18]). This is a valid approximation, since Vt grows

exponentially around the relatively large LoD ℓ. In order to get a probability density function
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for τ, we simply differentiate the approximated survival function S(t) with respect to t:

f ðt; l; g; v0; ‘Þ / �
d
dt
P½Vt < ‘� ¼ �

d
dt
F

‘ � ðk1ðtÞ þ V0egtÞffiffiffiffiffiffiffiffiffiffi
k2ðtÞ

p

 !

ð5Þ

where FðyÞ ¼ 1ffiffiffiffi
2p
p
R y
� 1

e� 1
2
x2 dx is the CDF of the standard normal distribution N ð0; 1Þ. By

expanding Eq 5, we get

f ðt; l; g; v0; ‘Þ ¼
1

Z
�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk2ðtÞ

p exp �
1

2

ð‘ � ðk1ðtÞ þ V0egtÞÞ
2

k2ðtÞ

� �

�

ðlv0 þ V0gÞegt þ
‘ � ðk1ðtÞ þ V0egtÞ

2k2ðtÞ
lv2

0
e2gt

� � ð6Þ

To prove that f is a proper probability distribution, we have to show that f is non-negative, and

we have to find a normalizing constant Z for Eq 6. The reason that the right-hand-side of Eq 5

does not automatically define a proper probability density function (i.e. Z 6¼ 1) is because the

diffusion approximation of Vt can become negative, and declines exponentially towards −1
with a non-zero probability. We have to condition that this non-biological event does not

occur. The normalizing constant Z is equal to the probability of ever reaching the LoD ℓ:

Z ¼ lim
t!1

Z 1

‘

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk2ðtÞ

p exp �
1

2

ð‘ � ðk1ðtÞ þ V0egtÞÞ
2

k2ðtÞ

� �

dx

¼ 1 � F lim
t!1

‘ � ðk1ðtÞ þ V0egtÞffiffiffiffiffiffiffiffiffiffi
k2ðtÞ

p

 !

¼ F

ffiffiffiffiffiffi
2l

g

s

þ
V0

v0

ffiffiffiffiffi
2g
l

r ! ð7Þ

The fact that f is non-negative follows from a simple calculation, where we have to make the

reasonable assumption the viral load at time t = 0 is below the limit of detection (V0 < ℓ):

f ðt; l; g; v0; ‘Þ � 0 , ðlv0 þ V0gÞk2ðtÞ þ ð‘ � ðk1ðtÞ þ V0egtÞÞ
1

2
lv2

0
egt � 0

, ðlv0 þ V0gÞðe2gt � 1Þ þ ð‘g � lv0ðegt � 1Þ � V0gegtÞegt � 0

(
V0<‘

ðlv0 þ V0gÞðe2gt � 1 � egtðegt � 1ÞÞ � 0

, egt � 1

which is true for all non-negative t.
The expression for the rebound-time distribution f, given ℓ, allows for estimation of the

parameters λ, v0 and g by maximization of the likelihood or other inference methods. Notice

that Eqs 6 and 7 somewhat simplify when we take the initial condition to be V0 = 0.

However, to justify that we can replace Vt with a recurrent OU process, and hence approxi-

mate its distribution with a Gaussian, we have to assume that v0 is relatively small compared to

Vt (see S1 Text). This means that taking the initial condition V0 = 0 might be problematic. In

Fig 2 we compare simulated rebound times with the approximated rebound-time distribution

f(t; λ, g, v0, ℓ) where we have taken V0 = 0. For large λ the approximation and simulations are

in good correspondence, but when λ is small we find a discrepancy. Below we solve this by tak-

ing an initial value V0 > 0.
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A mixed effects model for treatment-interruption data

Above, we derived our main tool for analyzing viral rebound data: a probability distribution

for the time to viral rebound. However, in order to apply this to our SIV rebound data, we

need additional statistical methodology, which we develop here. As the VL can only be

observed periodically, in any treatment-interruption study the time of viral rebound τ is

doomed to be interval-censored or right-censored. The viral dynamics after an interval-cen-

sored rebound event can be used to narrow the window in which this event occurred [19]. As

the VL reaches its peak, the growth rate slows down. Therefore, using a model of pure expo-

nential growth could easily underestimate the initial growth rate. To avoid this we use a logistic

growth model with carrying capacity K to infer the exponential growth rate g and the time-to-

rebound τ from the VL time series. Hence, at t days after treatment interruption, the model

predicts a VL equal to

V̂ ðtÞ ¼
‘

‘=K þ ð1 � ‘=KÞe� gðt� tÞ
ð8Þ

such that V̂ ðtÞ ¼ ‘. To model a proportional measurement error [47], we assume that the

observed VL has a log-normal distribution around the predicted value:

logVðtÞ � N ð log V̂ ðtÞ; s2Þ. The likelihood of a left-censored observation (i.e. the VL is below

the LoD) is replaced by the cumulative density of the normal distribution.

To account for the limited number of observations, we use random and mixed effects for

the parameters K, g and λ. Since we know that the time of treatment initiation (tART) is a pre-

dictor for both λ and g, we define

log g ¼ agt�ART þ �g ; logl ¼ alt�ART þ �l ð9Þ

where �g and �λ are normally-distributed random effects (a standard assumption), the variable

t�ART is the standardized treatment initiation time, and αg and αλ are fixed effects.

All we have to do now is describe a model for the parameter τ—the rebound time. For this

we consider three different scenarios.

The multiple-reactivation model. In order to split the effect of the first reactivation event

from subsequent events, we explicitly model the first reactivation time T1 * Exp(λ). The likeli-

hood of the difference τ − T1 is then given by Eq 6, with initial condition V0 = v0. The parame-

ter v0 is modeled as a fixed effect, and we chose a prior distribution around the estimates for

macaques reported previously [26]. The prior distributions and hyper-parameters for all the

model’s parameters are listed in Table 2. We chose broad prior distributions for all the (hyper)

parameters; notice that the prior distributions are defined on a logarithmic scale.

The single-reactivation model. Eqs 8 and 9 remain valid for the single-reactivation

model and the reactivation time T1 is again assumed to be exponentially distributed with rate

λ. However, the difference τ − T1 now has a Dirac-delta distribution, as it is completely deter-

mined by g, v0 and ℓ:

t � T1 ¼
1
g log

‘

v0

� �

ð10Þ

To account for this, the rebound time τ is no longer a free parameter in the single-reactivation

model, but instead defined by Eq 10.

The conditionally-deterministic multiple-reactivation model. The approximation for

the multiple-reactivation model that was developed by Pinkevych et al. [21] is deterministic

after the first recrudescence event. The time between this first event and rebound can be
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derived using Eq 2 from solving τ − t0 from ~V t ¼ ‘, which leads to

t � t0 ¼ 1
g log ð1 � e� g=lÞ‘v0

þ e� g=l
h i

As in the case of the single-reactivation model, we let t0 = T1 * Exp(λ).

Model comparison. In order to statistically compare the three different models, we calcu-

lated the Watanabe–Akaike information criterion (WAIC; [27]) as

WAIC ¼ � 2
X

i

ð log hLðDijpsÞis � Vars½ logLðDijpsÞ�Þ ð11Þ

where the index i runs though the observations (i.e. VL measurements), and s runs though the

Monte-Carlo samples from the posterior distribution. The function LðDijpsÞ denotes the likeli-

hood of observation Di given parameters ps. Moreover, we write hxsis for the sample mean of x
and Vars[xs] for the sample variance. The results of the model comparisons are listed in S2

Table.

The mixed-effects model is implemented in the probabilistic programming language Stan

[48]. For each model, we ran 4 independent chains of length 5000 and 1 : 20 thinning, resulting

in a 1000 samples from the posterior distribution. The Gelman-Rubin statistic R̂ was close to 1

for all parameters, indicating good convergence of the chains. The scripts and data used for the

analyses can be downloaded from https://github.com/lanl/multiple-reactivation-model.

Supporting information

S1 Fig. Model fits, used data points and posterior predicted rebound time distributions for

all macaques. The panels (DPI: days post infection) show the VL data (black dots connected

by black lines, with red dots for left-censored observations; the grey dots are ignored) taken

from all 25 macaques for whom rebound was observed, and the stochastic multiple-reactiva-

tion model prediction (blue lines: posterior mean; dark blue band: 50% credible interval (CrI),

light blue band: 50% posterior predictive interval). The estimated time-to-rebound (τ) is given

by the vertical black line. The density plots in the background indicate the posterior predictive

distribution of τ. The green distributions are conditioned on the estimated time of the initial

recrudescence event, the purple distributions are unconditional.

(PDF)

S2 Fig. Marginal posterior densities of the first recrudescence times. Marginal densities of

T1 (blue) and the extrapolated T̂ 1 (red) for each macaque are estimated with our multiple-reac-

tivation model. The numbers on top indicate the time of ART initiation.

(PDF)

S3 Fig. Comparison between simulated rebound times and an alternative approximation

for the time-to-rebound distribution. In this case, the law of Vt is approximated with a

Gamma distribution with mean κ1(t) and variance κ2(t). The simulated empirical distributions

are shown in color, and our approximation is shown in black. The predicted PDF (A) is calcu-

lated with numerical differentiation. (B) The survival function (i.e. the fraction of subjects S(t)
that do not have a detectable VL at time t) is defined by Eq S5 in S1 Text. For the top, middle,

and bottom panels different values of λ are used (λ = 5 d−1, 1 d−1, and 0.2 d−1 respectively).

Notice the different time scale on the horizontal axes. For the remaining parameters, we used

the values: g = 0.5 d−1, v0 = 0.1 copies mL−1, LoD ℓ = 50 copies mL−1.

(PDF)
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S4 Fig. Comparison between simulated rebound times and an alternative approximation

for the time-to-rebound distribution. In this case, the master equation is approximated using

the WKB ansatz. The simulated empirical distributions are shown in color, and our approxi-

mation is shown in black. (A) The probability density function (PDF; defined by Eq S11 and

Eq S10 in S1 Text). (B) The survival function (i.e. the fraction of subjects S(t) that do not have

a detectable VL at time t) is calculated with numerical integration. For the top, middle, and

bottom panels different values of λ are used (λ = 5 d−1, 1 d−1, and 0.2 d−1 respectively). Notice

the different time scale on the horizontal axes. For the remaining parameters, we used the val-

ues: g = 0.5 d−1, v0 = 0.1 copies mL−1, LoD ℓ = 50 copies mL−1.

(PDF)

S5 Fig. Example realizations (in blue) of the generalized viral load process Vt with clone-

specific growth rates given by Eq S12 in S1 Text. The black curve shows the expected value

E½Vt� ¼ k1 (Eq S15). The inset shows the probability density function of the random growth

rate Gi. The used parameter values are g = 0.5 d−1, σG = 0.05 d−1 (corresponding to u� 0.175),

v0 = 0.1 copies mL−1, and λ = 1 d−1.

(PDF)

S6 Fig. Comparison between simulated rebound times and an approximation for the time-

to-rebound distribution. This model allows for variation in the exponential growth rate. The

law of Vt is approximated with a Gamma distribution with mean κ1 (Eq S15 in S1 Text) and

variance κ2 (Eq S16). The simulated empirical distributions are shown in color, and our

approximation is shown in black. The predicted PDF (A) is calculated with numerical differen-

tiation. (B) The survival function (i.e. the fraction of subjects S(t) that do not have a detectable

VL at time t) is defined as S(t) = γ(k, ℓ/η) with γ the regularized incomplete Gamma function

with parameters η = κ2/κ1 and k ¼ k2
1
=k2. For the top, middle, and bottom panels different val-

ues of λ are used (λ = 5 d−1, 1 d−1, and 0.2 d−1 respectively). Notice the different time scale on

the horizontal axes. For the remaining parameters, we used the values: g = 0.5 d−1, σG = 0.05

d−1 (corresponding to u� 0.175), v0 = 0.1 copies mL−1, LoD ℓ = 50 copies mL−1. The gray

curves correspond to the approximate rebound time distribution with a constant growth rate

(G� g) and are identical to the black curves in S3 Fig.

(PDF)

S1 Text. Approximations of the process Vt. Here we derive the diffusion approximation of Vt
by applying the Kramers-Moyal expansion to the master equation of the stochastic process Vt.
Further, we explore two other approximations of Vt. First, we substitute the Gaussian distribu-

tion of Vt at time t with a Gamma distribution. Second, we replace the Kramers-Moyal expan-

sion with the Wentzel–Kramers–Brillouin ansatz. Finally, we consider a generalization of the

stochastic multiple-reactivation model that takes into account within-host variation in the

exponential growth rate. We first derive the CGF, and then use the Gamma-distribution

method to again derive an approximate rebound-time distribution for this generalized model.

(PDF)

S1 Table. Parameter estimates and credible intervals. Parameter estimates from the fully sto-

chastic multi-reactivation model (“rebound” columns). and the acute infection (“acute” col-

umns). The point estimates correspond to the mode of the marginal posterior distributions.

(PDF)

S2 Table. Watanabe-Akaike information criterion for the three models. The Watanabe-

Akaike information criterion (WAIC) is averaged over 10 MCMC runs to account for

Monte-Carlo error, which is indicated by the standard error of the mean (SEM). The variance
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k̂ � Vars½ logLðDijpsÞ� in Eq 11 can be interpreted as the effective number of parameters.

(PDF)
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