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Abstract: An orbital enucleation implant is used to compensate for the orbital volume deficits in
the absence of the globe. In this work, copper-doped bioactive glass in poly(ether-ether-ketone)
(CuBG/PEEK) composite scaffolds as an orbital enucleation implant were designed and fabricated by
cool-pressed sintering and particle-leaching techniques, the incorporation of copper-doped bioactive
glass in poly(ether-ether-ketone) (CuBG/PEEK) was expected to significantly improve the biocom-
patibility of the PEEK implant. The consequences after implantation of the CuBG/PEEK composite
scaffolds in experimental, eviscerated rabbits was observed and assayed in term of histopathological
examination. In detail, 24 rabbits were randomly divided into three groups: Group A, PEEK scaffolds;
Group B, 20% CuBG/PEEK composite scaffolds; Group C, 40% CuBG/PEEK composite scaffolds; the
rabbits were sacrificed at week 4 and week 12, followed by histochemical staining and observation. As
a result, the PEEK group exhibited poor material exposure and tissue healing, while the CuBG/PEEK
scaffolds showed good biocompatibility, and the 40% CuBG/PEEK composite scaffold exhibited the
best performance in angiogenesis and tissue repair. Therefore, this study demonstrates the potential
of CuBG/PEEK composite scaffolds as an orbital enucleation implant.

Keywords: bioactive glass; poly(ether-ether-ketone); scaffold; enucleation; orbital implant

1. Introduction

When an eye has become irreversibly blind or undergone severe injury/tumor, it is
removed by enucleation or evisceration to control pain or alleviate the infection. Following
the removal of the eye, an orbital implant is inserted into the ophthalmic socket in order to
provide satisfactory volume replacement and restore the aesthetic appearance of a normal
eye. An orbital implant can compensate for the orbital volume deficits in the absence of the
globe [1–3]. Over the past two centuries, an extensive variety of materials has been used to
fabricate orbital implants, some of which even resulted in disastrous results.

The unique structure of porous materials used as an enucleation implant allows vas-
cular and tissue ingrowth and, in turn, helps to anchor the implant and permits immune
surveillance [4]. Since their introduction as enucleation implants in the late 1980s, porous
materials have become widely used in clinical practice [5,6]. These would include hy-
droxyapatite [7], high-density polyethylene [8], aluminum oxide [9], bone cement [10],
etc. Despite the initial success of porous implants and reports of low extrusion rates, a
number of problems, such as the risk of infection, the development of late exposures, and
the formation of pyogenic granuloma, remain unsolved, and there is a growing urge for
biocompatible orbital implants [11,12]. An ideal material for orbital enucleation should
better possess a similar density/weight to the natural globe, proper porosity, apprecia-
ble histocompatibility, and cost-effectiveness, and is expected to achieve minimal rates
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of migration, extrusion, exposure, and infection [13]. Poly(ether-ether-ketone) (PEEK) is
a semicrystalline, thermoplastic polymer, and it is usually synthesized by Friedel-Crafts
polycondensation of 4,4′-difluorobenzophenone with disodium salt of hydroquinone [14].
As a high-performance polymer, PEEK is known for its excellent mechanical properties,
as well as extraordinary thermal stability and chemical resistance against oils, acids, and
biological fluids [14]. With a continuous use temperature of 260 ◦C, PEEK is suitable for
most clinical sterilization techniques; moreover, it did not cause artifacts in computed
tomography (CT) images [15]. Because of its excellent biocompatibility in vitro and in vivo,
PEEK is already used for long-term medical implant applications. However, the biological
inertness of PEEK has hindered its wide application. Therefore, it is highly desirable to
enhance the bioactivity of PEEK via the introduction of bioactive ingredients/components
to the PEEK matrix [16].

As an eminent biomaterial for bone repair/regeneration, bioactive glass (BG) is
known for its superior bioactivity and biocompatibility and has been used in clinical
practice [17–19]. The introduction of bioactive materials in PEEK can significantly improve
its biocompatibility, making it more suitable for orbital implant. Copper is involved in
the angiogenesis process [20–22], and copper ions are known to not only improve the anti-
infective ability of biomedical materials, but also to induce the proliferation of endothelial
cells, and blood vessel formation mainly depends on the activity of endothelial cells [20–22].

In the present study, we aimed to design a PEEK-based implant material with enhanced
bioactivity and evaluate its applicability as the orbital implant. To this end, copper-doped
bioactive glass nanoparticles (CuBG) were prepared and incorporated into the PEEK matrix
to fabricate CuBG/PEEK composite scaffolds; the scaffolds were implanted into experimen-
tal, eviscerated rabbits to observe the consequences and histopathological changes after
implantation. Such an investigation will help establish a substantial foundation for the
design and manufacture of new orbital implants with multifunctional properties.

2. Materials and Methods
2.1. Materials

PEEK powder (99%, Junhua PEEK, Changzhou, China), tetraethyl orthosilicate (TEOS,
Tianjin Zhiyuan Reagent, Tianjin, China), ammonium hydroxide (NH3·H2O, 28%, Tian-
jin Zhiyuan Reagent, Tianjin, China), calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 99%,
Aladdin, Shanghai, China), copper tetrahydrate (Cu(NO3)2·3H2O, 98%, Macklin, Shang-
hai, China), paraformaldehyde solution (4%, Seville Creature, Beijing, China), hema-
toxylin/eosin (H&E) staining kit (Solarbio, Beijing, China), and Masson’s trichrome staining
solution (Solarbio, Beijing, China) were used as received. All other solvents were of analyti-
cal grade and used without purification.

2.2. Synthesis of CuBG

CuBG was synthesized through the typical sol–gel method according to previous
studies [23]. The solution, containing 3.6 mL of tetraethyl orthosilicate (TEOS, >99%),
7 mL of ammonium hydroxide, and 33 mL of deionized water, was placed in a constant-
temperature water tank at 35 ◦C. The mixture was allowed to react for 4 h after the addition
of 1.64 g of calcium nitrate tetrahydrate and 0.56 g copper nitrate trihydrate. The suspension
was centrifuged at 8000 rpm (Centrifuge 5430R, Eppendorf, Hamburg, Germany) for 10 min
to collect deposits, which were further washed twice with ethanol and once with deionized
water. Afterwards, the deposits were dried at 60 ◦C for 24 h before calcination at 600 ◦C for
3 h in a muffle furnace (heating rate of 2 ◦C/min).

2.3. Fabrication of CuBG/PEEK Scaffolds

The CuBG/PEEK composite scaffolds were prepared using the cool-pressed sintering
and particle-leaching method [24]. Briefly, the PEEK powder and CuBG powder were
mixed at a certain ratio (80:20, 60:40), and ball-milled to obtain mixture powders. Then, a
predetermined quantity of sodium chloride particles (with a particle size of 400–500 µm)
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was added into the mixture powders at a weight ratio of 1:8; the mixture was then trans-
ferred to a stainless-steel mold (Φ: 12 mm) and pressed under 20 MPa for 8 min at room
temperature. The specimens were subjected to sintering in a furnace at 345 ◦C for 2 h,
and then rinsed in deionized water for 72 h to dissolve the NaCl particles. The obtained
scaffolds were then dried at 37 ◦C for 24 h and named CP20 and CP40 according to the
weight percentage of CuBG to PEEK. PEEK scaffolds (CP0) were prepared by the same
process as the control.

2.4. XRD Analysis

The phase composition and structural characteristics of the CuBG/PEEK composite
scaffolds were characterized by X-ray diffraction (XRD, Empyrean, Panaco, Almelo, The
Netherlands) in a 2θ range of 10–80◦ and Fourier transform infrared spectrometry (FTIR,
NICOLET 6700, Madison, WI, USA) using the KBr pellet method in a region between 2400
and 400 cm−1, with a resolution of 4 cm−1.

2.5. Morphological Study

The surface morphology and composition of CuBG/PEEK composite scaffolds (n = 3
per group) were observed by field-emission scanning electron microscopy (FESEM, Quanta
400F, FEI, Hillsboro, OR, USA) and energy-dispersive spectrometry (EDS, Quanta 400F, FEI,
Hillsboro, OR, USA).

2.6. Porosity Measurement

The porosity (P) of the CuBG/PEEK composite scaffolds was calculated according to
Archimedes’ principle via the use of a gravity bottle. Briefly, the dry mass of the scaffold
(Md) was recorded. Then, the scaffold was soaked in cyclohexane in a specific-gravity glass
bottle, and the submerged weight of the scaffold sample was recorded (n = 3 per group).
The scaffold was then taken out, and the weight of the scaffold (containing cyclohexane
in the void volume) was recorded. The porosity of the scaffold was calculated using the
following equation:

Porosity% = (Mw −Md)/(Mw −Msub) × 100 (1)

where Mw is the cyclohexane-saturated scaffold, Md is the dry mass of the scaffold, and
Msub is the submerged mass of the scaffold.

2.7. In Vitro Mineralization

The in vitro mineralization of the composite scaffolds in simulated body fluid (SBF,
Gibco, Thermofisher, New York, NY, USA) was assayed. Scaffolds were immersed in SBF
at 37 ◦C. The SBF was replaced every 3 days. At a pre-determined time, the samples were
taken out of the SBF, gently rinsed with deionized water, and dried at 60 ◦C for 24 h. The
surface morphology and composition of the scaffolds were characterized using FESEM
and EDS. In addition, the concentrations of ions (Ca, P, Cu, and Si) after soaking in SBF
were determined by inductively coupled plasma–atomic emission spectroscopy (ICP–AES,
Agilent IC, Palo Alto, Santa Clara, CA, USA).

2.8. In Vitro Cytocompatibility

The scaffolds were autoclaved and placed in 24-well plates. Rat bone marrow stro-
mal cells (rBMSCs) were obtained from the central laboratory at the Southern Medical
University and cultured in Dulbecco’s Modified Eagle Medium (DMEM, Hyclone, Logan,
UT, USA) supplemented with 10% fetal bovine serum (FBS, Hyclone, Logan, USA), and
1% penicillin/streptomycin (Pen/Strep, Gibco, Thermofisher, New York, NY, USA) in a
humidified CO2 (5%) incubator at 37 ◦C. The medium was changed every two days during
cell culture. After 1, 4, and 7 days of incubation, the proliferation of BMSCs on different
scaffolds was performed using cell counting Kit-8 (CCK-8, Beyotime, Shanghai, China)
according to the manufacturer’s instructions. The CCK-8 suspension cells were incubated
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for 2 h in 5% CO2 at 37 ◦C. Then, the absorbance of the solution at 450 nm was measured
on a Synergy4 microplate reader (BioTek, Winooski, VT, USA).

The morphology of the cells on the scaffolds was observed by FESEM. Briefly, after
culturing for 24 h, each sample was collected and fixed in 4% paraformaldehyde for 24 h.
Then, the samples were dehydrated by gradient ethanol solution (10, 30, 50, 70, 90 and
100%) for 15 min, followed by air-drying. Finally, the scaffolds were sputter-coated with
gold and observed under FESEM.

2.9. Animal Model

This study involved 24 5-month-old New Zealand white rabbits obtained from the
Center of Experimental Animals, Southern Medical University (Guangzhou, China). All
rabbits (male, body weight 2.0–3.0 kg) were obtained from the same animal holding facilities
and were free from any eye disease. The rabbits were randomized into three groups, and
each group comprised eight rabbits. The procedure was performed on one eye only. The
rabbits were anesthetized with isoflurane inhalation, taking the side decubitus. When skin
preparation and draping were completed, a wire eyelid speculum was applied. A 360◦

fornix-based conjunctival peritomy was performed at the limbus. Extraocular muscles were
isolated and severed. The optic nerve was identified and then cut with enucleation scissors.
The globe was completely removed. The anophthalmus model was built in all of the
24 rabbits, and then the orbital implant was carried out using sphere composite scaffolds
(Φ = 12 mm). (The operation process is shown in Figure S1 of the Supplementary Materials)
The rabbits were randomized into 3 groups: Group A (CP0), PEEK scaffolds; Group B
(CP20), 20% CuBG/PEEK composite scaffolds; and Group C (CP40), 40% CuBG/PEEK
composite scaffolds. After the scaffolds were implanted in the socket, the fascia and
conjunctiva were sutured with 5-0 threads. Postoperative antibiotic ointment was used in
the conjunctival sac for 5 days.

The three groups of rabbits were kept in different cages in the SPF laboratory. The
presence of eye infection, implant extrusion or migration, ocular motility, and any evidence
of wound breakdown were examined every week. In addition to two cases of material
extrusion in Group A at 2 weeks, there was no material pull-out, migration, or incision
infection during the period of feeding. (The postoperative situation is shown in Figure S2
of the Supplementary Materials.) The protocols of the animal test were approved by
the Southern Medical University Experimental Animal Ethics Committee (NFYY-2019-73)
and carried out in accordance with the institutional guidelines. All surgical procedures
for evisceration and orbital implantation were conducted by a single surgeon and were
required to follow standard ophthalmic surgical procedures.

2.10. Histochemical Staining

Animals were sacrificed by air embolization at the end of 4 weeks and 12 weeks. After
that, enucleation with histopathological assessment was done to determine the presence
of fibrovascular ingrowth and the rate of inflammatory reaction. The orbital implant of
each group was fixed in 4% paraformaldehyde for at least 24 h before the gross sectioning
was performed. The horizontal section was performed using a sharp surgical blade in a
sawing motion from back to front. The interior of the implant was examined. After that,
the horizontal section of the implant was placed in 4% paraformaldehyde, decalcified with
10% EDTA for 3 weeks, embedded with paraffin, and sliced into 5-µm-thick transverse
sections following the standard method. Hematoxylin and eosin (H&E) staining and
Masson staining were performed at room temperature. The slices were examined on a Leica
DM5000 B (Leica, Wetzlar, Germany) microscope. The sections were examined under the
microscope and were evaluated for the rate of inflammation and presence of fibrovascular
ingrowths within the orbital implant. Semi-quantitative expression experiments of collagen
fiber were performed with an inverted microscope. Each tissue slice was randomly counted
by 15 high-power fields (×100), and images were acquired. They were measured using
an Image-Pro Plus 6.0 color image analysis system. The integrated absorbance value and
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image area (S) of the blue regions were measured, the ratio of the absorbance of each field
of view to the image area was obtained, and the average value was taken.

2.11. Statistical Analysis

Normality and homoscedasticity tests were carried out before applying ANOVA tests.
The Kolmogorov–Smirnov normality test was used to test for normality. The homoscedas-
ticity of the variables was tested by Levene’s test. One-way ANOVA tests were used to
detect differences between groups. A p-value of less than 0.05 (p < 0.05) was considered sta-
tistically significant. Data were analyzed using SPSS 22.0 statistical software (IBM, Armonk,
New York, NY, USA) and presented as mean ± SD.

3. Results
3.1. Characterization of CuBG/PEEK

The composite CuBG/PEEK material samples are shown in Figure 1. The surface
microstructure of the composite scaffolds was observed and analyzed by FESEM. The
microscopic morphology of each sample is shown in Figure 2A–C. It can be seen that all
3 groups of samples have a distinct pore structure (pore size > 400 µm) and high porosity
(>70%, seen in Table 1), which is consistent with the particle size of the porogen (NaCl)
used in the preparation of the scaffolds. As seen in Figure 2D, besides the C and O peaks
belonging to the PEEK, Ca, Si, and Cu peaks were observed in the composite scaffolds by
SEM–EDS, confirming the incorporation of CuBG into PEEK.

Figure 1. Digital photos of composite PEEK material samples (CP0, CP20, and CP40).

Figure 2. FESEM images of CP0 (A), CP20 (B), and CP40 (C), and EDS analysis (D) of the elemental
composition of the scaffolds.
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Table 1. The porosity of scaffold materials with different percentages of CuBG.

Samples Porosity (%) Pore size (µm)

PEEK (CP0) 72.1 ± 2.7 413.2 ± 7.6
20% CuBG/PEEK (CP20) 74.7 ± 3.1 435.9 ± 8.7
40% CuBG/PEEK (CP40) 75.3 ± 3.3 478.1 ± 6.1

Figure 3A shows the XRD of the 3 groups of scaffolds. The 3 diffraction peaks at 18◦,
22◦, and 28◦ were characteristic peaks of PEEK. After CuBG was added, the positions of the
diffraction peaks of the composite scaffolds (CP20 and CP40) did not shift significantly, but
the intensity gradually decreased due to the slight decrease in the intensity of PEEK caused
by the incorporation of CuBG. The FTIR spectrum shows the vibration peaks of PEEK in all
3 groups of scaffolds in Figure 3B. In the composite scaffolds, the peak at 1093 cm−1 was
attributed to the Si-O-Si of CuBG, indicating that the composite scaffolds contained both
PEEK and CuBG.

Figure 3. XRD (A) and FTIR (B) of CP0, CP20, and CP40.

The three groups of scaffolds were immersed in SBF solution to observe the surface
morphology changes to characterize the in vitro biological activity of the materials. As
shown in Figure 4A–C, the surface of the PEEK scaffolds was still smooth. However, worm-
like substances were found on the surface of the composite scaffolds, and the amount of
them increased with the increase in CuBG content. It can be seen in Figure 4D that the
peaks of Ca and P elements could be detected from the EDS spectrum of the composite
scaffolds. The results showed that the introduction of CuBG significantly promoted the
apatite-formation ability of the scaffolds, showing excellent bioactivity.

Figure 5 shows the ion concentration (Ca, P, Si, Cu) of the solution of the CP40 material
in the SBF solution up to 14 days. It can be seen that the concentration of Ca and P elements
continued to decrease during the whole soaking period, while the Si and Cu elements
showed an upward trend, which might be caused by the degradation of CuBG.

As shown in Figure 6A–C, the rBMSCs showed better cell expansion and pseudopod
growth on the surface of the composite scaffolds than did the PEEK scaffolds. Figure 6D
shows the results of CCK-8 analysis of rBMSCs cultured on 3 groups of scaffolds for 1,
4, and 7 days. The cell viability of each group of scaffolds gradually increased with the
culture time, while at the same culture time point, cell viability increased with the increase
in CuBG content in the scaffolds. The results demonstrated that the addition of CuBG could
improve cell adhesion and proliferation as compared with PEEK scaffolds.
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Figure 4. FESEM images of CP0 (A), CP20 (B), and CP40 (C) after immersion in SBF for 7 days, and
EDS of scaffolds (D) after immersion.

Figure 5. The changes of ion concentrations after 40% CuBG/PEEK (CP40) soaking in SBF solution
for different amounts of time (means ± SD, n = 5).
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Figure 6. FESEM images of rBMSC cultured on CP0 (A), CP20 (B), and CP40 (C) at 24 h, and cell
proliferation on the scaffold surfaces by the CCK-8 assay (D) (means ± SD, n = 5). The * p < 0.05 and
** p < 0.01 are the CP20 group vs. the CP0 group; ## p < 0.01 are the CP40 group vs. the CP0 group at
the same time.

3.2. General Observation Property

The densities of the fibrous vascular growth on the surfaces of the 3 groups of implants
at 4 weeks post-evisceration are shown in Figure 7. It can be seen that the surface of the
scaffolds of Group A is relatively smooth, but different degrees of new granulation tissue
can be seen in Group B and Group C. The granulation tissue was bright red, granular,
soft, and moist to the naked eye. This indicates that the formation of granulation tissue
is facilitated by the addition of CuBG. However, a higher percentage of CuBG causes a
slight decrease in the intensity of the composite PEEK. The surface of the composite PEEK
may fragment over time, so it can be seen from the figure that the volume of composite
PEEK in the orbit may be reduced slightly. After incising the scaffolds, it was observed that
the three groups of scaffolds had fibrous vascular ingrowth. Compared to Group A, more
fibrous tissue was seen in Group B and Group C.

Figure 7. The density of fibrous vascular growth on the surface of 3 groups of implants at 4 weeks
with CP0 (Group A), CP20 (Group B), and CP40 (Group C).
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3.3. H&E Staining

In order to observe the interaction between the scaffolds and the host tissue, H&E
staining was conducted with an inverted microscope. The results of the H&E staining
showed that only a small number of cells and collagen fibers were distributed in Group
A, and the components were mainly inflammatory cells and foreign-body giant cells,
which were consistent with obvious inflammatory reactions and foreign-body reactions.
The degree of the growth of the new tissue in Group B and Group C was significantly
increased. The main component was the new granulation tissue, which consisted of new,
thin-walled capillaries and proliferating fibroblasts with a small number of inflammatory
cells. The degree of growth, the number of new endothelial cells, and the number of
functionally active fibroblasts also increased in Groups B and C, which indicated a time-
and concentration-dependent manner (Figure 8).

Figure 8. H&E staining of implant scaffolds at 4 weeks (A) and 12 weeks (B). Inflammatory
cells (dark-blue arrows), giant cells (yellow arrow), and bone marrow-derived mesenchymal
cells (light-blue arrows).

3.4. Masson Staining

Masson staining is used to dye fiber in tissues. The collagen fiber shows as blue,
the muscle fiber as red, and the nucleus as blue-violet [25]. The results suggest that
collagen fibers in Group A were only present at the edge of the scaffolds. The distribution
of collagen fibers in Groups B and C was more extensive with increasing content and
time. Compared with Group A, the number and activity of fibroblasts in Groups B and C
increased significantly and were positively correlated with content and time (Figure 9).

At 4 weeks, the results showed that the total amount of collagen fiber in Groups B
and C increased significantly and did so with the increase in CuBG content. At 12 weeks,
the results showed that the total content of collagen fiber in Group A was lower, in line
with the fact that collagen fiber only existed on the edge of the scaffolds. The collagen fiber
content of Group B and Group C increased with time (Figure 10).
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Figure 9. Masson staining of implant scaffolds at 4 weeks (A) and 12 weeks (B). The blue area
represents collagen fiber, and the distribution of collagen fiber in Groups B and C was more extensive.

Figure 10. Semi-quantitative expression experiments of collagen fibers. The * p < 0.05 CP20 group
vs. CP0 group and # p < 0.05 CP20 group vs. CP40 group. The values are represented as mean ± SD
(n = 8).

4. Discussion

Porous implants have been widely adopted by surgeons performing enucleation and
evisceration since the late 1980s, using materials such as hydroxyapatite, high-density
polyethylene, aluminum oxide, etc. [5,6] However, those materials have usually been
accompanied by the risks of bacterial penetration and implant exposure [12]. Thus, the
search for the ideal orbital implant for the anophthalmic socket continues to evolve. The
ideal orbital implant must have good histocompatibility and should have minimal rates of
migration, extrusion, exposure, and infection [13].

PEEK is considered an advanced biomaterial used in medical implants, but it is a
biologically inert material, which has limited its extensive biomedical application. There-
fore, improving the bioactivity of PEEK is a crucial challenge that must be solved to fully
realize its potential benefits [13]. At present, surface modification or compositing with
bioactive ingredients has been widely harnessed to improve the bioactivity of PEEK. BG
has good bioactivity and biocompatibility; in addition, copper ions are involved in the
angiogenesis process. The introduction of bioactive materials in PEEK can significantly
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improve the bioactivity and biocompatibility of materials, making them more suitable for
orbital implants in the present work.

In this study, we prepared a series of CuGB/PEEK composites with different levels
of CuGB content. Compounding CuBG with PEEK is a physical process that would
not change any chemical structure of PEEK. In consequence, the proper biocompatibility
of CuGB/PEEK composites is foreseeable. CuBG particles were well-dispersed in the
PEEK matrix, which was confirmed by the XRD and FTIR results. FESEM and EDS were
used to analyze the topography and elemental distribution features of the sample surface.
It is obvious that the pure PEEK scaffolds display the smoothest morphology, and the
CuGB/PEEK scaffolds possess a rougher surface with micron-sized features, which may
be the CuBG particles or their aggregates. The results showed that impregnating CuGB
into the PEEK matrix significantly altered the surface morphology of the scaffolds, and the
possible presence of CuBG particles could consequently improve the bioactivity of PEEK.

Besides in vitro evaluation, in vivo tissue response to the CuBG/PEEK scaffolds is cru-
cial to the success of implantation. This is an experimental and observational study on the
composite scaffolds and their consequences as orbital implants and the histopathological
changes that occur in experimental, eviscerated rabbits. The PEEK composite with different
concentrations of CuBG was used as the experimental group, with a pure PEEK counterpart
serving as the control group. There were interconnecting pores of about 500 µm in diameter
in the CuGB/PEEK orbital implant. The pores allowed for vascular tissue ingrowth and
anchoring to the ocular socket. The introduction of bioactive materials can significantly
improve the biocompatibility of materials. In addition, copper can also promote angiogene-
sis. This histopathological study evaluated the scaffolds, which were removed at 4 weeks
and 12 weeks after implantation in the enucleated sockets of rabbits. Except for the pure
PEEK group, some of the CuBG/PEEK implants had achieved complete vascularization at
4 weeks after implantation, and by 12 weeks, all of the 40% CuBG/PEEK implants were
completely vascularized. Histological evidence shows that CuGB/PEEK scaffolds have
good biocompatibility in rabbit eyes. There was good fibrovascular ingrowth and minimal
to moderate inflammatory reaction observed. In this study, we found that CuGB/PEEK
scaffolds successfully show fibrovascular ingrowth between and within the micropores of
CuGB/PEEK architecture. Observations did not show any sign of rejection throughout this
study. This phenomenon proves that there is a biocompatible environment at the host. The
surface roughness of the scaffolds would allow a more stable fixation when fibrovascular
ingrowth has occurred.

5. Conclusions

This study was carried out to assess the biocompatibility of CuGB/PEEK as an orbital
implant in rabbits. Besides that, the histopathological reactions towards CuGB/PEEK
orbital implants were also determined. There was good fibrovascular ingrowth, and a
minimal inflammatory reaction was observed, as well as histological evidence of fibrovas-
cularization within the implants as early as 4 weeks. This indicates a low risk of rejection
and extrusion. With the increase in CuBG content, biocompatibility was enhanced. Taken
together, in vitro and in vivo experiments here have showcased that 40% CuBG/PEEK
composite scaffolds had the strongest ability in angiogenesis and tissue repair, and it was
the most suitable and effective candidate as the orbital implants. Therefore, this study
demonstrates the feasibility and possibility of using CuGB/PEEK for orbital implants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15134410/s1: Figure S1: The operation process: (a) Scaffold
materials implanted in rabbit anophthalmus in animal models the complete enucleation of the eyeball;
(b) Exposure of the eye socket; (c) Scaffold materials implanted into the orbit; (d) Suture conjunctiva;
Figure S2: Postoperative: (a) Conjunctival sac morphology; (b) The morphology after eyelid opening;
(c) After conjunctival incision, the material fused with intraorbital tissue; Figure S3: The review list of
the protocol.

https://www.mdpi.com/article/10.3390/ma15134410/s1
https://www.mdpi.com/article/10.3390/ma15134410/s1
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