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Obtaining information from the world is important for survival. The brain, therefore, has
special mechanisms to extract as much information as possible from sensory stimuli.
Hence, given its importance, the amount of available information may underlie aesthetic
values. Such information-based aesthetic values would be significant because they
would compete with others to drive decision-making. In this article, we ask, “What
is the evidence that amount of information support aesthetic values?” An important
concept in the measurement of informational volume is entropy. Research on aesthetic
values has thus used Shannon entropy to evaluate the contribution of quantity of
information. We review here the concepts of information and aesthetic values, and
research on the visual and auditory systems to probe whether the brain uses entropy
or other relevant measures, specially, Fisher information, in aesthetic decisions. We
conclude that information measures contribute to these decisions in two ways: first, the
absolute quantity of information can modulate aesthetic preferences for certain sensory
patterns. However, the preference for volume of information is highly individualized,
with information-measures competing with organizing principles, such as rhythm and
symmetry. In addition, people tend to be resistant to too much entropy, but not
necessarily, high amounts of Fisher information. We show that this resistance may
stem in part from the distribution of amount of information in natural sensory stimuli.
Second, the measurement of entropic-like quantities over time reveal that they can
modulate aesthetic decisions by varying degrees of surprise given temporally integrated
expectations. We propose that amount of information underpins complex aesthetic
values, possibly informing the brain on the allocation of resources or the situational
appropriateness of some cognitive models.

Keywords: aesthetic value, value function, expected utility hypothesis, Shannon entropy, Fisher information,
Kalman filtering (KF), surprise and expectation, survival-relevant information

INTRODUCTION

Obtaining information from both society and the environment is essential for the survival of
humans and other living beings. From the smallest to the largest creatures, extraction and
communication of information helps perform essential functions, such as feeding, mating, or
avoiding danger. For example, while exchange of information between ants helps with feeding
(Greenwald et al., 2019) whales’ songs help with mating (Suzuki et al., 2006; Smith et al., 2008).
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Even more prominently, the evolution of sensory systems to
help extract key information from the world has been essential
to natural selection (Kaas, 1989; Kalmijn, 1989; Endler, 1992;
Ellegren, 2008). In a seminal book, Ayres (1997) identifies several
types of relevant information. Among the most relevant are those
types that serve to reduce uncertainty or were directly relevant
to survival. Ayres further classifies the latter type of information
as either survival useful or harmful. Frank (2009) shows that the
flow of information from the environment to the genome by the
process of natural statistically maximize the amount of survival-
useful stored knowledge. However, natural selection works at a
slow time scale and thus, brains have evolved to get information
and make decisions faster.

Over evolution, important tricks were added to the repertoire
of animals’ brains to ensure that as much survival-useful
information was obtained. For example, animals became experts
at using information to adapt to evolving surroundings and
overcoming difficulties under rapidly changing conditions
(Mobbs et al., 2015). To do so, the brain added knowledge in
“improvisation,” with neurons adaptively coding up-to-date
information relevant to current surroundings (Duncan, 2001;
Grzywacz and Balboa, 2002; Grzywacz and De Juan, 2003). An
even more advanced form of adaptability was predictive coding
(Srinivasan et al., 1982). With this predictive computation,
the brain actively began to extrapolate sensory input,
disambiguating present from future information, permitting
speedier and optimal reactions to danger (Summerfield et al.,
2006; Summerfield and Koechlin, 2008; Mobbs et al., 2015).
Furthermore, future-leaning encoding led to better memory
retrieval for survival-relevant information (Nairne et al., 2007;
Klein et al., 2010). Consequently, given the significance of
information, certain circuitries in the brain evolved to process
as much information as possible under the constraint of limited
neural resources. This was particularly true for the visual
system of the brain (Atick and Redlich, 1992; Bialek et al., 1993;
Stemmler and Koch, 1999; Balboa and Grzywacz, 2000a,b). And
this was pertinent to the evolutionary framework because of the
predisposition of the brain to obtain the maximum amount of
comprehensible information from natural images (Kaplan and
Kaplan, 1989; Heerwagen and Orians, 1995). However, the visual
system did not just maximize information, but the kind that
was useful for survival in nature (Grzywacz and Balboa, 2002).
Brain networks worked best with image statistics associated to
natural scenes, which were well-ordered (Field, 1987; Ruderman
and Bialek, 1994; Balboa and Grzywacz, 2003). Similarly, the
auditory systems of the brain functioned as efficiently as possible
with regards to information. The auditory system was matched
to characteristics of natural auditory scenes such that naturalistic
inputs significantly enhanced the rate of transmitted information
in the brain (Attias and Schreiner, 1997, 1998). Moreover, brain
employed well-organized encoding mechanisms that expended
less computational resources when less information existed in the
signal (Overath et al., 2007). Thus, auditory neurons maximized
the information of neuronal firing, but considering limits of the
energy (Tsubo et al., 2012).

With information being so important and having dedicated
neural circuits, one may posit that its amount underlies an

aesthetic value. The link to aesthetic value could be direct or
through sensory pleasure, with a later conversion to value.
A reason for postulating this link is the Processing Fluency theory
(Winkielman et al., 2003; Reber et al., 2004). It proposes that
the ease of sensory information processing in the brain facilitates
aesthetic pleasure. Accordingly, the theory would predict that the
quantity of information or a measure related to it, like complexity,
underlies an aesthetic value (Aleem et al., 2017, 2019; Correa-
Herran et al., 2020). More evidence suggesting that informational
volume may underlie an aesthetic value is related to addiction.
Most of us have noticed how we are addicted to information
through the internet (Widyanto and McMurran, 2004; Ferraro
et al., 2006; Byun et al., 2009), social media (Van den Eijnden et al.,
2016; Blackwell et al., 2017), and our smartphones (Kwon et al.,
2013). Addictive and aesthetic gratifications are linked (Mathis,
2015; Mathis and Han, 2017; Gribkova et al., 2020) through
common neural pathways (Adinoff, 2004; Esch and Stefano,
2004; Naqvi and Bechara, 2010), with the connection apparently
extending to the realm of information (Chou et al., 1998; Chou
and Hsiao, 2000; Song et al., 2004). Addiction to information
in the modern world may have a link to the exploration versus
exploitation dilemma (Gupta et al., 2006; Dayan and Daw, 2008;
Laureiro-Martínez et al., 2015). For example, rodents will change
their behavior to exploit or explore more depending on the
type of reward (Roesch et al., 2007; Cinotti et al., 2019; Wilson
et al., 2021). If the internet makes exploration easy, perhaps
information becomes addicting.

That amount of information possibly underlies an aesthetic
value is important because values are essential components of
decision making (Basten et al., 2010; Glimcher and Fehr, 2013;
Ruff and Fehr, 2014). With aesthetic values, decision-making
boils down essentially to choice or appraisal. We can decide
whether we like this song enough to download, whether we
should buy the blue or red shirt, whether that special someone
is “our type” enough for dating, or deciding which painting
by this up-and-coming artist is our favorite. However, aesthetic
choices and appraisal go beyond these categories, extending to
everyday life. For example, sociological studies have suggested
that all work is like art, with each occupation maintaining a sense
of superior production, that is, an occupation aesthetics (Fine,
1992). And sociology and business scholars actively investigate
the aesthetics of the workplace (Karlsson, 2012; Sheane, 2012;
Sklar and DeLong, 2012). Therefore, aesthetic values are not
merely concerned with esoteric or hedonistic aspects of our lives.
These values influence many aspects, some essential to survival.

Through review and analysis of the literature, this article
primarily asks whether amount of information is an aesthetic
value. Our approach to this analysis is proposing questions
and then attempting to answer them. Many of the questions
are substantial and thus, the literature may not answer them
satisfactorily. For each question, we attempt to review the
literature thoroughly and then comment on its limitations,
specially with an eye toward establishing a link between amount
of information and aesthetic values. Here, we do not take the
narrower view of aesthetics as only pertaining to art (Hegel,
1998; Danto, 2003; Gaut and Lopes, 2013). Instead, we embrace
the broader naturalistic or everyday aesthetics, which allows
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for influence on appraisal of objects (Saito, 2007; Ratiu, 2013;
Mandoki, 2016; Skov and Nadal, 2018). To be able to take
this broader view, our review draws from a wide spectrum
of disciplines. They include cognitive and computational
neuroscience, biology, sociology, economy, business, philosophy,
and computer science. The review begins by addressing in Section
“What Are Aesthetic Values?” the definition of aesthetic value
itself. Then, Section “What Is Information and How Do We
Measure It?” addresses the quantification of information. In
particular, we will tie the amount of information to surprise,
or violated expectation. One of the key concepts in that same
section will be Shannon entropy as a measure of information,
but inspired by Ayres (1997), we will also address other forms
of quantification, specially, Fisher Information. After these
background sections on the definitions of information and
aesthetic values, Section “Amount of Information As a Possible
Aesthetic Value” will review the relevant literature on aesthetic
preference based on visual and auditory signals. We will probe
whether we can say that their amount of information underlies
aesthetic values. We will see that much but not all information has
this characteristic, and that its contributions to aesthetic values
are highly individual and under social influence.

WHAT ARE AESTHETIC VALUES?

To facilitate reading, we organize this section as follows: The
main theoretical concepts are first reviewed (see Sections “A
Definition of Values” and “Is Our Definition of Value Compatible
With Aesthetic Values?”), with mathematical developments
following (see Section “A Brief Mathematical Interlude on
Aesthetic Values”). Finally, a recapitulation subsection then
provides a brief summary of all these materials.

A Definition of Values
Values are a central component of decision-making, one of the
most important functions of the brain. The goal of decision-
making is to choose an action among alternate possibilities.
To do so, decision-making invokes a cognitive process based
on inputs from the external world, interoceptive information,
and assumptions of values of the person making the choice
(Simon, 1977; Brown et al., 2011; Aleem et al., 2020). One
can study this process from either a psychological/cognitive
or normative perspective (Kahneman and Tversky, 2000). The
latter often uses expected-value optimization, that is, selecting
the alternative with the largest utility, perhaps considering also
risk aversion (Fishburn, 2013; Schoemaker, 2013). An alternative
that is formally identical, but more commonly used in fields
like cognitive science and machine learning is minimization of
expected loss (Berger, 2013).

Because expected-value optimization addresses values
formally, it is a good starting point for us to consider what
they may be in general. The Expected-Utility hypothesis
postulates that an agent selects among prospects by calculating
expected utility values (Fishburn, 2013; Schoemaker, 2013).
These expected values are the sum of predicted payoffs of
outcomes weighed by their probabilities. The value function may

change depending on the individual. For example, individuals
may be risk-averse (Christopoulos et al., 2009; Dohmen et al.,
2010; Albert and Duffy, 2012) and the Expected-Utility theory
considers this possibility (Hershey and Schoemaker, 1980; Segal
and Spivak, 1990; Karni and Schmeidler, 1991). Risk aversion
occurs when the value function is concave, that is, it shows
diminishing marginal utility (Hanoch and Levy, 1975). Thus,
risk-neutral, risk-seeking, and risk-averse people have linear,
convex, and concave value functions, respectively.

Therefore, if we follow the ideas of expected-value
optimization, we should define value as the prediction of
payoff or reward (Figure 1). As such, value may be positive or
negative. Crucially, the determination of total value depends
on the motivation because it signals how often probabilistically
the individual will act (Aleem et al., 2020; Grzywacz, 2021).
Consequently, value can be calculated as a function of inputs
from the external world and interoceptive information, which
often also signals the motivation to act (Pessoa, 2009; Brown
et al., 2011; Wager and Barrett, 2017).

Some readers may object to a definition of value as a
payoff or reward. Instead, these readers may think of value
in socio-psychological terms, such as humanitarianism and
hedonism, or other like concepts. We grant along with others
that this is as deep and complex discussion (Viner, 1925).
It allows for other definitions of value that are valid and
important. For now, we mention humanistic psychologists
have stressed the positive effects of enjoyment as emphasized
by Utilitarian philosophers (Veenhoven, 1988). Moreover, a
quantitative psychological studied has confirmed factors such
as humanitarianism, hedonism, formalism, and dialectics as
important utilitarian elements for people (Cheung, 1997). That
study suggests that a utilitarian perspective of value may not be
incompatible with other socio-psychological points of views.

Is Our Definition of Value Compatible
With Aesthetic Values?
In the context of aesthetic values, this simple definition may
be somewhat surprising to most people. It implies that value
not only can be positive or negative, but also a non-monotonic
function of the underlying variable. Arguably, the misconception
about aesthetic values as positive can be “blamed” on some
philosophers from ancient Greece until the Enlightenment. Their
emphasis is on beauty not ugliness, making us think that positive
valence is important, but not negative ones (Gaut and Lopes,
2013; Sartwell, 2017; Aleem et al., 2019). However, negative
valence is important, too! The brain must code for things that
we both like and do not like. Not only that, but reaching positive
and negative values is not a necessarily a linear or monotonic
process. Thus, if for example, symmetry is good, it should be
a positive value in the sense that the more symmetry a piece
has, the better it is. But empirical research shows that this is
not always true (Pombo et al., 2021). Instead we should think
of aesthetic processing as a two-sided computation, with positive
(good) and negative (bad) complements (Brown et al., 2011).
The dependence of aesthetic value on, say, variables like amount
of symmetry or information, may be a complex, non-linear

Frontiers in Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 805658

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-805658 March 22, 2022 Time: 18:14 # 4

Grzywacz and Aleem Information as Aesthetic Value

FIGURE 1 | Illustration of proposed relationship between the expected utility hypothesis and aesthetic values. Suppose that a person is seeing a mushroom. The
person has many actions from which to choose. The possible actions include, among others, using the mushroom as fuel, topical medicine, food, or fertilizer. When
trying to decide what action to take, the person must see to what outcomes an action may lead. For example, the action of eating a mushroom can provide positive
or negative utilities such as calories, vitamins, antioxidants, nausea, or death. The Expected Utility Hypothesis proposes to decide what action to take by finding the
mean utility of each action and using the optimum. The mean utility considers the probability that an action will lead to each outcome given the sensory input. The
probabilities for eating the leftmost mushroom are indicated by the thicknesses of the curved arrows. We propose to equate aesthetic value is a special case of
expected utility. For aesthetic values, the only action is evaluation. If the statistics of the sensory input are like those of objects with high expected utility, the aesthetic
value of the input is high (Aleem et al., 2019, 2020).

manifold (Grzywacz, 2021). Thus, aesthetic values do not have
to be simple. Notably, non-linear values also play a role in one of
the criticisms of the Expected-Utility hypothesis (Kahneman and
Tversky, 1979; Aleem et al., 2017; Correa-Herran et al., 2020).

But if this definition of aesthetic values is surprising to
some people, others go farther and reject it. A claim is made
by some scholars that aesthetic values are socially constructed
and thus, they should be discredited as true entities (Bourdieu,
1979; Eagleton, 1983; Eaton, 1995). To these scholars, aesthetic
values are significant merely to a social class at a particular
historical moment to maintain prominence. We accept and
have also argued for the influence of social construction on
aesthetic values (Aleem et al., 2019, 2020; Grzywacz, 2021).
However, we now contend that this influence is just that, an
influence. Moreover, the constraints of the influence of social
information are well understood, being most powerful for objects

with ambiguous values (Park and Lessig, 1977; Griskevicius et al.,
2006; Goldstein et al., 2008).

Instead, we argue that aesthetic values are built-in in
specialized brain mechanisms, which are under the influence
of evolution, development, and social and environmental
learning. To begin with, evidence is now available that genetic
predispositions contribute to the sensation of aesthetic chills
(Bignardi et al., 2021). Another strong line of evidence comes
from development. If aesthetic values are significant merely
to maintain social status, then we should not see them early
in human development, that is, in babies. However, evidence
from many fields shows that babies are born with certain
innate preferences. For example, 4-month-old infants have
similar aesthetic preferences of facial attractiveness as adults
(Samuels et al., 1994). In addition, like adults, 6-month-old
infants favor abstract art with contrast and complexity intact
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(Krentz and Earl, 2013). And although infants do not always have
the same visual aesthetic values as adults, babies still have clear
preferences (Cacchione et al., 2011; Taylor et al., 2013). Similar
results are obtained in the domain of music. Infants just 6 months
old pay longer attention to attend to consonant musical intervals
than to dissonant ones (Trainor and Heinmiller, 1998). Such
evidence suggests that aesthetic values cannot be merely a social
construct, but have some biological component.

Neuroimaging and evolutionary studies support the
conclusion that biology predisposes humans to have aesthetic
values. A major meta-analysis of positive-valence aesthetic-
appraisal neuroimaging across four sensory modalities shows the
involvement of dedicated centers in the brain. Thus, whether one
is appraising visual art, music, gourmet food, or a sophisticated
perfume, the same brain areas participate in the aesthetic
evaluation (Brown et al., 2011). These kinds of meta-analysis
were extended with focuses on faces, visual art, and visual and
olfactory aesthetic experiences with similar results (Boccia et al.,
2016; Zou et al., 2016; Chuan-Peng et al., 2020; Feng et al.,
2021). For good early reviews on the neuroimaging of aesthetic
experiences, see the articles by Nadal (2013), and Chatterjee
and Vartanian (2014). Brown et al. (2011) gives an excellent
summation of the implication of such neuroimaging studies.
They write, “one way to naturalize aesthetics is to argue that
such a system evolved first for the appraisal of objects of survival
advantage, such as food sources, and was later co-opted in
humans for the experience of artworks for the satisfaction of
social needs.”

This summation begs the question: did aesthetic experiences
evolve before humans (O’Hear, 2005)? Evolutionary studies
suggest that strategies of animal mate selection underlie the
biology of natural aesthetics (Zaidel, 2019). The best example
is females of certain species grounding their choice for mating
in exaggerated physical characteristics (phenotypes) of males.
There has been much debate as to whether these characteristics,
such as the peacock’s tail, are purely aesthetic or present an
adaptive advantage. A possible reconciliatory perspective is
the Fisherian Runaway principle (Fisher, 1915, 1930), which
states that certain phenotypes initially disclose significant health-
associated information. And females can strongly be claimed
to pick the right males, using aesthetic judgment of these
phenotypes (Welsch, 2004). This advantage comes at a cost
because maintaining these exaggerated phenotypes requires
much effort (Zahavi, 1978). However, over time as more mating
decisions made based on these phenotypes, they may become
uncoupled from their underlying signal, and be chosen for their
own sake, leading to a runaway cycle of further exaggeration
and uncoupling, sometimes even to a detrimental effect. Darwin
himself proposed the existence of an aesthetic sense in animals,
introducing the idea of mating selection in his “The Descent
of Man” (Darwin, 2008). According to Darwin, an animal’s
judgmentis founded on pleasure or attraction, not on an idea
or dispassionate analysis (Van Dyck and Darwin, 1882; Welsch,
2004; Darwin, 2008). See Prum (2017) for a historical perspective.

Because we take the position that aesthetic values exist and are
not just social constructs, we must ask how our simple definition
of value as prediction of payoff or reward compares to others

in the literature. A definition like ours has been used before,
especially in neuroscience (O’Doherty et al., 2003; Schultz, 2016;
Sutton and Barto, 2018) and artificial-intelligence (Alpaydin,
2016; Agrawal et al., 2018; Sutton and Barto, 2018). However,
not all definitions are like ours. In Philosophy, for instance,
the definitions tend to be broader. For example, (Beardsley,
1979) defined, “the aesthetic value of anything is its capacity
to impart-through cognition of it a marked aesthetic character
to experience.” This definition broadens the scope of aesthetic
value beyond that of our definition to incorporate more than
preference. Aesthetic experience also comprehends emotions
that range from beauty to wonder, and others (Dufrenne, 1973;
Pelowski and Akiba, 2011; Vessel et al., 2013). Therefore, a
definition like Beardsley’s is more general than the narrower
scope of our definition of aesthetic value, but ours allows for
precise quantification and measurement. We feel that we can
stick with our definition not because of a criticism of Beardsley,
but because we restrict the scope of our work.

A more recent philosophical definition of aesthetic experience
is closer to the operational way that we see aesthetic value
working (Stecker, 2006). Stecker’s definition maintains that
aesthetic experience is, “attending in a discriminating manner
to forms, qualities or meaningful features of things, attending to
these for their own sake or for the sake of this very experience.”
Like Stecker, for us, aesthetic experience is discrimination.
It is performed by comparing aesthetic values arising from
“forms, qualities or meaningful features of things.” Information,
symmetry, and rhythm are examples of these features, each
capable of contributing to aesthetic value. However, when Stecker
mentions “for their own sake or for the sake of this very
experience,” he is raising the issue of disinterest first discussed by
Kant (1987). Kant states that the pleasure in the judgment that
an object is beautiful generates no interest because the judgment
leads to no desire to act (Zangwill, 2021). This statement has been
influential (Kemal, 1997), as seen in its use by Stecker. However,
the statement is not compatible with our definition of aesthetic
values and has been criticized (Guyer, 1978; Nietzsche, 1989;
Zangwill, 2021). The main criticism, among others, is that the
pleasure in the beautiful can possibly produce desire.

This discussion on Stecker’s ideas leads naturally to an
extension of our simple definition of value to the aesthetic realm.
Aleem et al. (2019, 2020) proposed that aesthetic value arises
from the same brain mechanisms as those predicting reward
(Figure 1). To illustrate this point, these authors distinguish
two situations: First, when facing an object (for example, an
apple), a person may decide to act on it (eat it) if the prediction
is of high reward and the motivation is high (hunger). The
prediction of reward is based on physical characteristics of the
object (for example, shape, color, and absence of smudges in
the apple). Thus, if the object is beautiful and the motivation is
high, the person will act (eat the apple). Second, when facing
a painting of the object (of the apple) or a painting that has
the visual statistics of the object, the stimulus will act on the
same brain areas. They, in turn, will respond with a prediction
of reward. However, the person cannot eat the object (apple) in
the painting and thus, has Kantian disinterest. The bottom-line
is that, according to Aleem et al. (2019, 2020), beauty can lead

Frontiers in Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 805658

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-805658 March 22, 2022 Time: 18:14 # 6

Grzywacz and Aleem Information as Aesthetic Value

to interest or disinterest depending on the situation. Different
situations do not employ different brain mechanisms. Hence,
from an everyday-aesthetics perspective, all-around disinterest
would not be justified. But as stated above, Kant worked at a
time when art was the realm of aesthetics and it referred only
to beauty, not to ugliness. Consequently, Kant (and Stecker) was
justified under this narrower definition of aesthetics to speak of
disinterestedness.

A Brief Mathematical Interlude on
Aesthetic Values
As we have pointed out in Section “Is Our Definition of Value
Compatible With Aesthetic Values?”, our definition of value
“allows for precise quantification and measurement.” In this
section, we briefly show how some authors have performed
this quantification. In this review, we adapt the aesthetic-value
notation used by Grzywacz (2021).

The goal of values is to help select the best option among many
candidate actions. The Expected-Utility hypothesis proposes
that an agent selects between the candidates by comparing the
expected (mean) values. To show how to calculate expected
values, we begin by denoting the kth possible action by ak. Each
action may lead probabilistically to different possible outcomes,
which we represent by oi, 1 ≤ i ≤ M.

The probability that the Action ak leads to Outcome oi is pk,i, a
function of the sensory signals −→u , with −→w being the parameters
of the function. The sensory signals, −→u (t), are represented as a
vector, with the components being the variables that characterize
the external world. For example, components of the stimulus
vector may be the amount of information, color, or average
rhythm. The vector of parameters, −→w , may not have the same
size as−→u .

The follow example illustrates how pk,i works. What is the
probability that if I eat this apple (action) with 7-cm diameter and
this particular tone of red (sensory stimuli), I get 19 g of sugar
(reward)? Thus, each possible outcome oi of the action leads to a
reward, whose value (predicted reward) is v∗ (oi).

The probably pk,i and the value of the outcomes v∗ (oi) allows
to compute the expected utility as

U
(
ak,
−→u (t) : −→w (t)

)
=

M∑
i=1

pk,i
(−→u (t) : −→w (t)

)
v∗ (oi) (1)

where the colons in Equation 1 designate parameters and thus,
for example, pk,i

(−→u (t) : −→w (t)
)

indicates that pk,i has −→u as
variables and −→w as parameters. The reason −→w varies with time
is that learning may operate to optimize the parameters – (Sutton
and Barto, 2018; Aleem et al., 2020; Grzywacz, 2021). Different
models of learning have been proposed, with the most common
being in the form of differential equations (Rescorla and Wagner,
1972; Pearce and Hall, 1980; Sutton and Barto, 2018) or Bayesian
updating (Strens, 2000; Ghavamzadeh et al., 2015; Vlassis et al.,
2021). All these models learn parameters by comparing the value
v (t), that is, the prediction of reward, with the actual reward.

According to the discussion in Section “A Definition of
Values,” we define value function, µG, as the expected utility in

Equation 1:

UG
(
ak,
−→u (t) : −→w (t)

)
= µG

(
ak,
−→u (t) : −→w (t)

)
(2)

where the subindex G indicates that we are talking about
value in general, not just aesthetic (Figure 1). Therefore, the
value function is the expected utility with an action and the
sensory stimulus given.

For aesthetic experiences, the only action is the evaluation
itself. This is not a trivial point because we could consider
actions like continue looking at an object of interest, touching
it, buying it, or going to the museum. What must consider what
the primary action caused by aesthetic value is. Is it evaluation,
as we suggest, which then leads to other actions, or are aesthetic
values leading directly to other actions, bypassing evaluation as a
first step? More research will be needed to settle these questions.
However, we take the evaluation-first approach because it both
makes the theory simpler and leads to similar results. Thus, in
our mathematical development, ak is not a variable. We should
then replace Equation 2 with

UA
(−→u (t) : −→w (t)

)
= µA

(−→u (t) : −→w (t)
)

(3)

where the subindex A indicates that we are talking about
aesthetic value (Figure 1). The article by Grzywacz (2021)
presents many examples of µA, some simple and linear, and some
complex and non-linear.

The only thing missing to calculate the aesthetic value is the
insertion of motivation into the mix. This is done as follows:

v (t) = m (t) µA
(−→u (t) : −→w (t)

)
(4)

where 0 ≤ m ≤ 1 is the motivation function (interpreted as the
probability of acting). Because the motivation function m causes
v ≤ µA, we must interpret µA as the fully motivated value.

Recapitulation of Section “What Are
Aesthetic Values”
This section grounds aesthetics as values, indifferent from other
values that enable decision-making. This grounding allows us to
take ideas from well-established theories, such as the Expected
Value Hypothesis, and apply it to the aesthetic domain. Thus,
extending aesthetic values to both positive and negative realms,
as required by decision-making models, may be necessary to
understand aesthetic phenomena. We then extend this approach
by looking back to the roots of value itself, exploring the role
of value as a component of appraisal mechanisms underlying
survival. This extension shows us that aesthetic values are not
purely social constructs. Instead, aesthetic values have roots in
essential human behavior through evolution, as supported by
genetic and developmental evidence. To quantify aesthetic values,
we look at different philosophical and technical definitions. From
this look, we come to a definition fit for our scope, namely, that
aesthetic value has a positive relation to expected reward. This
definition allows us to work with useful models in neuroscience
and economics, and apply them to aesthetics.
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WHAT IS INFORMATION AND HOW DO
WE MEASURE IT?

The organization of this section is like that in Section “What
Are Aesthetic Values?”. The main theoretical concepts related
to amount of information (see Sections “Information Versus
Amount of Information,” “The Nature of Information,” and
“Amount of Information”) are followed by the corresponding
mathematical developments (see Section “A Brief Mathematical
Interlude on Amount of Information”). Finally, a recapitulation
subsection then provides a brief summary of all these materials.

Information Versus Amount of
Information
In this article, we review and discuss the literature to
probe whether the amount information, not information
itself, underpins aesthetic values. This may seem strange
to some who may argue that the semantic meaning of
information is what moves us. For example, many people cannot
see Michelangelo’s La Pietà (Pope-Hennessy, 1970) without
experiencing meaningful feelings. They involve the blend agony
of a mother over the death of her son, and her tenderness
and heroic resignation. Tenderness and heroism are values for
most of us. Hence, one can write books and articles about these
values in the aesthetic domain (Feldman, 2002; Brattico et al.,
2013; Starr, 2013). However, this article asks whether amount
of information in itself supports aesthetic values, not whether
information or specific messages are values. In a sense, all sensory
signals carry information. Consequently, asking whether it has
values in itself is meaningless because it would be the same as
saying that all sensory stimuli are equally valuable. However,
amount of information may support a value because when the
quantity is high, it can alert the brain that it may find valuable
messages in the incoming information. If one reasonably assumes
that the chance of finding such valuable messages has a positive
correlation with the amount of information, thus, this amount
becomes a prediction of reward. With more information, the
brain should thus devote more resources to process the incoming
sensory signals. Thus, the amount of information may be valuable
as a type of attentional mechanism, as proposed previously by
several authors (Stolnitz, 1960; Nanay, 2015, 2016; Fazekas, 2016).

The Nature of Information
The concept of information is so important that many books
and articles have been written on the subject (Lombardi, 2004;
Floridi, 2010; Israel and Perry, 2012; Adami, 2016; Janich, 2018).
This literature often points out that although most of us has
an intuitive feeling about what information is, its connection
to knowledge is not always transparent. This connection is
clarified in one of three ways: (1) information is the resolution of
uncertainty; (2) information is what lets us make predictions with
reasonably good accuracy; (3) information is data that empower
decision making. These are not independent. For example,
the resolution of uncertainty cannot happen without making
predictions from data. An important question thus becomes,
what should we be predicting? To this, Adami (2016) elaborates,

“Well, in general, when we make predictions, they are about a
system that we do not already know. In other words, another
system. . . I have to specify this ‘other system’ as precisely as I can.
I have to specify, in particular, which states the system can take
on . . . information . . . [depends on] . . . the number of unknown
states [of this other system].”

The concept of information has diverse significances in
different backgrounds (Lombardi, 2004; Floridi, 2010; Israel and
Perry, 2012). At the simplest level, information has become
tantamount to communication, data, education, knowledge, and
entropy, among other concepts. This multiplicity of meanings
may occur because if the same event occurs in two different
backgrounds, where dissimilar constraints exist, it might yield
two different information contents (Israel and Perry, 2012).
Lombardi (2004) went deeper into problem and identified three
major approaches to understand information. She called them the
semantic, syntactic, and interaction-information approaches.

Arguably, the most appealing approach for aesthetic
experiences comes from the semantic theory of information
(Dretske, 1981). This theory emphasizes the necessity of theories
of information to express something about its content. Semantic
aspects of information have undeniable effects on aesthetic
experiences (Locher et al., 2008; Kirk et al., 2009; Krishna
et al., 2010; Chatterjee and Vartanian, 2014). However, despite
efforts by Dretske (1981; Lombardi, 2004), no complete method
is available to measure the amount of semantic information,
although some recent significant progress in this direction is
worth mentioning (Kolchinsky and Wolpert, 2018). A similar
limitation applies to the interaction-information interpretation of
scientific observation developed by Kosso (1989) and emphasized
by Lombardi (2004). As the name of the interpretation implies,
this approach defines information through the observable
interactions between entities that ultimately allow us to make
scientific inferences. This is insightful, but does not lead to a
concrete method to measure the amount of information.

The only approach among those highlighted by Lombardi
(2004) that can lead to measurement of the amount
of information is the syntactic approach of Cover and
Thomas (2006). In this information-science perspective,
the characterization of information has nothing to do with
communication, transmission, and reception of messages. And
information has nothing to do with the knowledge of an event
acquired by observing another. Random variables and their
correlations are the substances of this approach to information.
Thus, unfortunately, this approach lacks the elementary insight
of information augmenting the recipient’s knowledge. However,
on the other side, the approach transforms information
into a syntactic idea, allowing application to multiple areas
of study.

Amount of Information
Shannon Entropy
The most common way to apply the syntactic approach to
information mentioned in the previous section has been through
principles of Information Theory (Shannon, 1948; MacKay,
2003; Cover and Thomas, 2006). Multiple examples of such
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applications exist in the area of aesthetic values in both the
visual (Arnheim, 1974; StampsIII., 2002; Rigau et al., 2007, 2008;
Aleem et al., 2017; Correa-Herran et al., 2020) and auditory
(Meyer, 1957; Knopoff and Hutchinson, 1981; Temperley, 2007;
Rohrmeier and Koelsch, 2012; Agres et al., 2013; Miles et al., 2017,
2021a; Delplanque et al., 2019) domains.

The core of the application of Information Theory to the
measurement of the amount of information is Shannon entropy.
This statistical measure is called entropy because of its similarity
to equations of entropy in statistical mechanics (Ellis, 2006). In
Physics, entropy is commonly associated with randomness and a
state of disorder. Relatedly, Shannon entropy measures statistical
uncertainty. To be precise, the Shannon entropy of a random
variable is the mean amount of uncertainty in the potential
outcomes of the variable (Figure 2). If so, entropy captures the
available information, because Shannon proposed that the role of

information is to reduce uncertainty. As such, the entropy-based
implementation of amount of information is compatible with the
Ayres’s uncertainty-reducing type discussed in the Introduction
(Ayres, 1997).

To explain in more detail how to use Shannon entropy in
the visual domain, we follow the presentation of Aleem et al.
(2017). For a similar presentation in the auditory domain, see
the work of Miles et al. (2017, 2021a). They wanted to measure
complexity in visual images, especially in paintings. In many
of the past studies, visual complexity was defined in simple
terms, such as the number of features or a perceptual scale
(Berlyne, 1973; Aitken, 1974; Nicki and Moss, 1975; Imamoglu,
2000). Aleem et al. (2017) wanted to define complexity more
rigorously and in a way that would be consistent across studies.
They then realized out that complexity and entropy had a
strong connection.

FIGURE 2 | Illustration of the differences between Shannon entropy, amount of surprise, and Fisher information. (A) Shannon entropy captures the spread of the
statistics of the population (red and blue curves), such that with more spread, we have more Entropy. In turn, amount of surprise captures how unusual a sample is.
For example, the left sample in the figure has elements that are relatively common (red vertical lines) and highly unusual (blue lines), that is, in the fringe of the
distribution. By contrast, the right sample only has common elements. Therefore, the left and right samples have high and low amount of surprise, respectively.
(B) Fisher Information captures how much information the likelihood function has about its parameter (w). For range of parameters causing great changes of the
likelihood function, the Fisher Information is high. The opposite occurs for a range of parameters where the likelihood function is relatively constant. Consequently,
while Shannon entropy and Amount of Surprise capture properties of the sensory inputs, Fisher Information captures properties of parameters of cognitive models in
the brain.
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To apply Shannon entropy to an image, one must define
random variables applicable to it. Aleem et al. (2017) chose
pixel intensities as such variables. First, they considered the
probability distribution of intensities in each of their images and
measured entropy from this distribution. However, entropy was
an extensive variable (Tsallis, 1988, 2009), that is, it differed with
the quantity of material (pixels, in our case). Aleem et al. (2017)
thus proceeded to normalize the entropy by dividing it by its
largest possible value given any arbitrary image of the same size.
This largest entropy came from images for which the pixels had
intensities randomly picked from all possible values. They called
this normalized entropy the Complexity of Order 1. Second,
Aleem et al. (2017) realized that a limitation of Complexity of
Order 1 was that it did not account for modifications in entropy
due to spatial organization. If one scrambled the pixels in an
image, it looked more complex, but the Complexity of Order
1 stayed the same. To incorporate the spatial modification of
complexity, Aleem et al. (2017) performed arbitrary isometric
(that is, distance preserving) transformations of the image. Then,
they asked if two juxtaposed pixels predict the intensities of
each other after the transformations. This method was also
normalized, but this time using conditional probabilities of the
intensity of a pixel predicting the intensity of another after the
transformation. Because they used two pixels, they called the
emerging quantity Complexity of Order 2.

Degree of Surprise Given Temporally Integrated
Expectations
Surprise has been an important concept in aesthetics research,
specially in the realm of music (Huron, 2008; Meyer, 2008). In
that realm, surprise has been used with two different meanings.
First, surprise appears as an emotion (Barto et al., 2013).
This is the emotion that ensues from a discrepancy between
an expectation and an observation. In the music-cognition
literature, this emotion is even more complex, with surprise
often having a negative connotation (Huron, 2008). This happens
because surprise or violation of expectation is equivalent to
“something is wrong here.” Thus, part of the pleasure in music is
thought to be due to the discharge from the tension prompted by
surprise. Second, surprise appears as a quantity (Miles et al., 2017,
2021a). Basically, a surprise is a violation of expectation and thus,
one can define it precisely in terms of an underlying probability
distribution (Egermann et al., 2013). In Information Theory, the
amount of surprise is minus the logarithm of the probability of
an event and thus, the smaller its probability, the larger is this
amount. In the rest of this article, we will use “amount of surprise”
to refer to this Information Theory quantity or averages of it
instead of just “surprise,” which will refer to the emotion.

In this article, we will consider amount of surprise over
temporally integrated expectations. As we will see in Section
“Shannon-Entropy Measures,” Shannon Entropy is simply
amount of surprise averaged over the population. However,
when we discuss average amount of surprise in this article, we
do not mean Entropy. We mean amount of surprise averaged
over the members of a sample. The surprise of each member
is always relative to the population not to the statistics of
the sample (Figure 2). In general, one cannot talk about the

entropy of a sample because it may only have one member. An
example of a sample used in the literature is the set of chords
in a section of a song (Miles et al., 2021a,b). In this case, the
population probabilities could arise from “all” songs in a year or
integrated over several years. Because amount of surprise is the
property of a sample, one can say that it carries large amounts
of unusual information when the amount of surprise is high. In
aesthetics, the probabilities underlying amount of surprise are
often instantaneous, for example, the distribution of intensities
in a painting. However, in the case of amount of surprise over
temporally integrated expectations, one instead uses statistics that
accumulate over time and thus, possibly changes continuously.
For example, when Miles et al. (2021a) studied surprise in songs
released in, say, 1980, they compared them to songs released
for many years before that time point. Because they did the
same for 1990, the underlying statistics could be different. What
was surprise in 1980 might not be surprise in 1990. Thus, these
authors still used entropy to measure amount of surprise but did
so in terms of temporally integrated statistics.

These examples highlighted that depending on the variables
that one chose, one could emerge with different types of
entropy. Our examples involved intensities and positions, but
others could involve colors, textures, shapes, or other visual
properties. The same applied to the auditory domain. For
example, Miles et al. (2017, 2021a) used harmony as their
variable in the analysis of surprise in popular music. In contrast,
Delplanque et al. (2019) used pure tones as their variable.
And one can conceive more complex distribution involving a
multidimensional auditory space, such as combining harmonies
and time intervals (rhythm), to obtain measures like the
Complexity of Order 2 of Aleem et al. (2017).

Fisher Information
The measures of information above address Ayres’s uncertainty-
reducing type of information, but not necessarily his survival-
relevant type (Ayres, 1997). This is important because Shannon
entropy measures all available information regardless whether
it is useful. However, the visual system does not just maximize
processed information, but the kind that is useful for survival
in nature (Grzywacz and Balboa, 2002). Brain networks work
best with natural statistics regardless if they are visual (Field,
1987; Ruderman and Bialek, 1994; Balboa and Grzywacz, 2003)
or auditory (Attias and Schreiner, 1997, 1998). Furthermore, the
brain may work best in tasks with naturalistic statistical structure
(Botvinick et al., 2015, 2019, 2020). Hence, we ought to consider
an information measure focused on natural-survival statistics
rather than on all information.

We propose that the best alternative in terms of survival-
relevant amount of information is Fisher Information (Rissanen,
1996; Frieden and Gatenby, 2007; Ly et al., 2017). The starting
point for this proposal is the work of Frank (2009). He shows that
natural selection maximizes Fisher Information. From this result,
we have asked whether Fisher Information captures valuable
information better than does Shannon entropy. This is not an
easy question to answer because Fisher Information and Shannon
entropy have important differences. The main difference, as we
will see next, is that Fisher Information but not Shannon entropy
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is model dependent. We propose that a possible function of Fisher
Information is to help the brain decide on the resources necessary
to establish good parameters for its cognitive models. As the
social or environmental situation changes, the parameters of
some perceptual brain models may momentarily not be ideal. To
correct this parametric deficiency, the brain may trigger learning
(Sutton and Barto, 2018; Aleem et al., 2020; Grzywacz, 2021)
or sensory adaptation (Duncan, 2001; Grzywacz and Balboa,
2002; Grzywacz and De Juan, 2003). Fisher Information helps
in determining how much sensory data the brain must integrate
during the learning or adaptation process.

Formally, Fisher Information is the mean amount of
information that discernable random variables, sensory and
interoceptive signals in our case, convey about parameters of
a distribution, the likelihood function (Myung, 2003), of the
random variables (Figure 2). Thus, Fisher Information models,
and accordingly, our models of cognition, must be probabilistic.
Fortunately, many models of visual and auditory cognition
have been appropriately Bayesian for over 25 years (Knill and
Richards, 1996; Kersten et al., 2004; Knill and Pouget, 2004;
Colombo and Seriès, 2012; Cusimano et al., 2018). Any of these
Bayesian models are appropriate for the applications of Fisher
Information. However, in this article, we will focus on examples
of learning models of aesthetic values. Many models for learning
and adaptation in the brain are Bayesian. In the learning domain,
the area most appropriate for aesthetic values is model-based
Bayesian reinforcement learning (Strens, 2000; Ghavamzadeh
et al., 2015; Vlassis et al., 2021). Such Bayesian models of
learning typically take the form of Kalman filtering (Sutton,
1992; Dayan and Kakade, 2000; Kakade and Dayan, 2002).
Similarly, Kalman filtering is also the basis for Bayesian models
of sensory adaptation (Grzywacz and De Juan, 2003; Barraza
and Grzywacz, 2008). The commonality of mechanisms for the
learning and adaptation processes is not surprising. The study
of both processes begins by building the probability function
of the parameters of a brain model given the history of the
incoming sensory stimuli. When one applies Bayes’ Theorem to
this probability function, the result is the typical multiplication of
the likelihood function by the prior distribution. In this case, the
condition of the likelihood function contains the parameter of the
brain model as required by the equations of Fisher Information.

A related concept is Observed Fisher Information (Efron and
Hinkley, 1978; Palmgren, 1981). While the Fisher Information is
information averaged over all possible values of the discernable
random variables, Observed Fisher Information is information
obtained for just the last measurement. Because the brain has
access to each measurement, the process to estimate Fisher
information may be through a sequential sampling based on
the Observed Fisher Information (Grambsch, 1983). Such a
sequential procedure would potentially have a benefit. The
Observed Fisher Information could provide a rapid test of
whether the current parameters of the likelihood function are
good. Thus, the Observed Fisher Information would help the
brain determine whether what it currently believes is appropriate
for the present situation. With some exceptions (Efron and
Hinkley, 1978), this information would not normally be as
good as the full Fisher Information. However, the speed of the

estimation of the Observed Fisher Information may still make
it worthwhile as a survival type of information. This speed
could also be useful for rapidly changing artistic stimuli, such as
movies or dance.

A Brief Mathematical Interlude on
Amount of Information
The goal of this section is to define amount of information as a
possible basis for aesthetic values. We thus must ensure that the
definitions are compatible with the notations in Section “A Brief
Mathematical Interlude on Aesthetic Values”. In this section,
we begin with concepts around Shannon entropy (see Section
“Shannon-Entropy Measures”) and conclude with ideas related to
Fisher Information (see Section “Fisher-Information Measures”).

Shannon-Entropy Measures
As in Section “Amount of Information,” we illustrate the use
of Shannon entropy for aesthetic values in the visual domain,
following the presentation of Aleem et al. (2017). They began by
measuring in Image Q (t) the probability P(1)

Q(t)
(
l
)

of Intensity l.

The amount of surprise due to this intensity is −log2

(
P(1)

Q(t)
(
l
))

and its expectation is the Shannon entropy of Order 1 (Figure 2):

H1 (Q (t)) = −
I∗∑

l=0

P(1)
Q(t)

(
l
)

log2

(
P(1)

Q(t)
(
l
))

(5)

where I∗ was the maximally possible intensity [255 for Aleem
et al. (2020)]. To create an index of complexity out of this entropy,
they divided H1 (Q) it by its largest possible value given any
arbitrary image. The result was the Complexity of Order 1:

uC1 (Q (t)) = −
I∗∑

l=0

P(1)
Q(t)

(
l
)

log
I∗+1

(
P(1)

Q(t)
(
l
))

(6)

where uC1 was the variable used in value function as in Equation
3. Because of the division of H1 (Q) by its largest possible value,
0 ≤ uC1 (Q (t)) ≤ 1, with 0 happening for single-tone images
(that is, the simplest ones) and 1 happening for images whose
intensities are spread homogeneously and randomly through all
possible values.

Aleem et al. (2020) also defined Complexity of Order 2
by considering complexity due to both intensities and spatial
organization. The generalized the procedure used for Equation 5
by first measuring in Image Q (t) the probability P(2)

Q(t)
(
l2
∣∣ l1, T

)
that a pixel with Intensity l1 was juxtaposed with a pixel with
Intensity l2 after the isometric transformation T. From this
measurement, they defined Shannon entropy of Order 2 for
Image Q (t) and Transformation T as

H2 (Q (t) , T) = −

I∗∑
l1=0

P(1)
Q(t)

(
l1
) I∗∑

l2=0

P(2)
Q(t)

(
l2
∣∣ l1, T

)
log2

(
P(2)

Q(t)
(
l2
∣∣ l1, T

))
(7)

Finally, they got the Complexity of Order 2, uC2 (Q (t) , T), by
again dividing by the maximally possible value of H2 (Q (t) , T).
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Again, because of this division, 0 ≤ uC2 (Q (t) , T) ≤ 1. In the
figure reporting Complexity of Order 2 in this article, we follow
Aleem et al. (2020) and obtain the mean over all possible T′s.

The examples in Equations 5–7 are just to show the path
for further calculations using Shannon entropy. Many other
similar examples are possible, such as chromatic and visual-
texture complexity.

Grzywacz (2021) proposed a value function for uC1 and uC2
based on experimental results in the literature and the work of
Aleem et al. (2020). In the notation of this paper (Equation 4),
this value function is

µale
(
uCi :
−→w
)
= −w1θ (w2, w3)+ w1e

−

(
uCi−w2

)2

2w2
3 (8)

where the subscript ale stands for Aleem et al. (2020) and
θ (w2, w3) is a constant ensuring that the integral of over the
range of uCi is zero. The Gaussian in Equation 8 helps capture
the inverted-U-shape dependence of aesthetic preference on
complexity as we will explain in Section “Amount of Information
As a Possible Aesthetic Value.”

Fisher-Information Measures
Different from Shannon entropy, the application of Fisher
Information to model aesthetic values is in its infancy. However,
Section “Amount of Information” describes the principles of this
application (Figure 2), whose basis is Kalman filtering models
of reinforcement learning (Sutton, 1992; Dayan and Kakade,
2000; Kakade and Dayan, 2002). One can express these models
as the multiplication of the likelihood and prior functions. As
mentioned in Section “Amount of Information”, the likelihood
function is the one that is key for Fisher Information.

When talking about aesthetic values, the likelihood function
underlying the Fisher Information must be related to Equation
4. The inputs in that equation are m (t) and −→u (t), and the
output is the value. During learning, this value is compared
to the actual reward, r (t), with the error being reduced over
time. Consequently, we have three inputs, m (t), −→u (t), and r (t),
providing Fisher Information on the parameters −→w (t), making
the likelihood function PL

(−→u (t) , m (t) , r (t)
∣∣ −→w (t)

)
. In most

Kalman models of reinforcement learning, this probability is a
decreasing function of the error, that is,

PL
(
r (t) , m (t) ,−→u (t)

∣∣ −→w (t)
)

= PL
(
r (t)−m (t) µA

(−→u (t) : −→w (t)
))

(9)

Not only that, but in most Kalman models of reinforcement
learning, the function PL is Gaussian (Gershman, 2015; Foley and
Marjoram, 2017; Piray and Daw, 2020).

Because −→w (t) can include many parameters, Fisher
Information will not be a single number but a matrix. The
Fisher Information Matrix is defined as the covariance of
the partial derivatives of the log-likelihood function by its
various parameters. However, here, we will assume well-
established regularity conditions (Lehmann and Casella, 2006;

Schervish, 2012) to simplify the Fisher Information Matrix to

[
F
(−→w )]i,j = −

∫
−→u ,m,r

PL
(
r, m,−→u

∣∣ −→w ) ∂2

∂wi∂wj

logPL
(
r, m,−→u

∣∣ −→w ) (10)

We assume the regularity conditions because value functions
(for example, Equation 8) and likelihood functions (for example,
Equation 9 as a Gaussian) typically used in aesthetic-value
research obey such conditions (Grzywacz, 2021).

As discussed in Section “Amount of Information,” a related
measure of importance is the Observed Fisher Information. It
captures an easier-to-measure, though rougher, estimation of the
information that the input variables provide about the parameters
−→w . This estimation is easier to measure because it bypasses the
integral in Equation 10. The estimation uses part of the integrand
in that equation and is

[
FO

(−→w )]i,j = −
∂2

∂wi∂wj
logPL

(
r, m,−→u

∣∣ −→w ) (11)

To summarize, the application of Fisher Information to
aesthetic-value research would proceed by combining either
Equation 10 or Equation 11 with a suitable likelihood function
in the form of Equation 9 and an appropriate value function
(for example, Equation 8). These calculations would provide
a Fisher Information Matrix (or its observed version) at all
moments of the learning process. What is the interpretation
of this matrix and why is it called information? Equation 10
shows that the matrix is the negative expected Hessian of
the log-likelihood function. Therefore, the Fisher Information
Matrix is a curvature matrix of the log-likelihood. What is
the interpretation of the various entries of this matrix? From
the explanation before Equation 10, the diagonal elements of
the matrix are the variances of the first partial derivatives of
the log-likelihood function by its various parameters. If one
of these variances is near zero, then the partial derivative
by this parameter is essentially constant in the range of
important values of (r, m,−→u ). Hence, these values carry little
information about the parameter. The oppositive is true when
a diagonal entry is large. What do the off-diagonal elements
represent? If one of these elements is large, it indicates a high
degree of covariance between partial derivatives of the log-
likelihood function by two different parameters. Consequently,
large off-diagonal terms mean that

(
r, m,−→u

)
carry high amounts

of information about parametric co-dependence. In contrast,
when an off-diagonal term is near zero, the corresponding
parameters do not co-depend significantly in the range of
important values of (r, m,−→u ). Similar arguments would apply
to the diagonal and off-diagonal entries of the observed
matrix Equation 11.

Recapitulation of Section “What Is
Information and How Do We Measure
It?”
To analyze the possible connection between amount of
information and aesthetic values, we first dive into the nature of
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information itself. We probe through many formal definitions
of information, and settle on one, the syntactic approach,
which allows us to make quantitative approximations. The most
influential quantitative exploration of information has been
Shannon’s Entropy. It can provide a measure of the amount
of information available in the sensory input. This definition
of information has been widely useful across many scientific
disciplines, including aesthetics. As an example, we describe a
case-study of how visual complexity (amount of information)
of an image can be measured through an analog of Shannon
entropy. Furthermore, an extension of Shannon entropy, known
as surprise, has been influential in music research. In simple
terms, surprise increases as the likelihood of a musical event
decreases. However, these definitions of amount of information
and surprise are indifferent to the relevance to survival of parts
of that information. To overcome this difficulty, we propose
to use a definition where the amount of information is a
quantity contingent on the observer, in our case, the brain.
This viewpoint brings us to a measure of information called
Fisher information. Fisher’s definition differs from Shannon’s
in that Fisher views information through a likelihood model.
Thus, only information that helps improve the parameters of
the model is useful information. While scholars have not yet
studied Fisher Information extensively in cognitive science,
evidence suggests that natural selection aims to increase this type
of information.

AMOUNT OF INFORMATION AS A
POSSIBLE AESTHETIC VALUE

We organize this section in a fashion like in Sections “What
Are Aesthetic Values?” and “What Is Information and How
Do We Measure It?”. In the first subsections (see Sections
“When More Information Increases Aesthetic Values,” “When
More Information Reduces Aesthetic Values,” and “Amount of
Surprise Over Temporally Integrated Expectations”), we describe
the dependence of aesthetic values on the amount of information.
Then, in Subsections “Why Aesthetic Values Show an Inverted-
U-Shape Dependence on Amount of Information” and “Fisher
Information: Appraisal of Brain Models and Inverted-U-Shape
Behavior,” we address why the dependence looks like it does.
Finally, again, a recapitulation subsection then provides a brief
summary of all these materials.

When More Information Increases
Aesthetic Values
The best starting point to review amount of information as
possibly supporting aesthetic values is to consider its connection
to complexity. As seen in Sections “Amount of Information” and
“A Brief Mathematical Interlude on Amount of Information,”
complexity has a formal connection to Shannon entropy.
Moreover, complexity has historically been thought to be one
of the factors underlying aesthetic experiences (Fechner, 1876;
Gilbert and Kuhn, 1941; Rist, 1967).

The link between information and aesthetic preference
is solidified through the finding that in many studies,
aesthetic preferences are increased with complexity. This
increase certainly occurs in the visual domain for abstract art
(Osborne and Farley, 1970; Mayer and Landwehr, 2014),
and the perception of visual textures (Bies et al., 2016;
Friedenberg and Liby, 2016) and snowflakes (Adkins and
Norman, 2016). These studies computed complexity using
variables like density, fractal dimensionality, and the size of
the ZIP compressed file. The increase of aesthetic preferences
with complexity also occurred with music, using chords
as the variable (Miles et al., 2017, 2021a). Finally, in the
arts, the effect happened with dance, as measured by image
velocities (Orlandi et al., 2020). In the consumer domain, a
complex interface design for smartwatches is more likely to
cause emotional arousal and valence than simple interface
(Wang and Hsu, 2020).

More evidence for amount of information supporting
aesthetic values emerges from a scientific analysis of art history.
Leonardo da Vinci (Jones, 2012; Perloff, 2013) and Michelangelo
(Eknoyan, 2000; Suk and Tamargo, 2010) went to the extreme
of dissecting corpses to increase the realism and thus the
complexity of their art. A discernable increase in the amount
of complexity in paintings during the Renaissance ensued, with
striking results (Figure 3). New concepts were continuously
discovered or rediscovered, and introduced in the work of
artists (Alberti, 2013). These concepts included ideas that
evolved throughout the Renaissance, such as harmony, golden
ratio, naturalism, anatomical studies, linear perspective, aerial
perspective, and chiaroscuro (Janson et al., 1997). tested whether
artists in the Early Renaissance had indeed complexity as a
possible aesthetic value. To perform this test, Aleem et al.
(2017) measured Complexity of Order 1 (Equation 6) and
Complexity of Order 2 (Equation 7) in portraits from the period.
These authors compared the results with the same complexities
from modern spontaneously obtained portraits. Spontaneous
and Early-Renaissance portraits with the highest Complexities
of Order 1 were equivalent. However, the highest Complexities
of Order 2 were larger in Early-Renaissance portraits than in
modern spontaneous ones. Hence, Renaissance artists appear to
put so much value in amount of information that they made
portraits with more complexity than in everyday life.

A possible counterargument to amount of information
subserving aesthetic values emerges from the work of Franke
(1977). He argued that working memory cannot take in more
than 16 bits/s of visual information. He then proposed that artists
should provide information along these lines for their works to
be aesthetically pleasing. With such low amounts of information,
one could think that increasing them further would be ineffectual
in raising aesthetic value. However, Franke was discussing, “the
brain can consciously process no more than 160 bits at a
time.” Therefore, because the literature places aesthetic values
mostly in the subconscious realm (Ramachandran and Hirstein,
1999; Brown et al., 2011; Redies, 2015), Franke’s arguments
do not derail the belief that amount of information supports
aesthetic values.
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FIGURE 3 | The amount of information in paintings increased through deliberate effort from the middle ages to the renaissance. (A) Madonna and Child, Giotto di
Bondone, 1320. (B) The Lamentation Over the Dead Christ, Andrea Mantegna, 1490. These paintings were obtained from public domain sites in the internet with
links: https://upload.wikimedia.org/wikipedia/commons/e/e3/Giotto_di_Bondone_090.jpg and
https://commons.wikimedia.org/wiki/File:Andrea_Mantegna_-_The_Lamentation_over_the_Dead_Christ_-_WGA13981.jpg.

When More Information Reduces
Aesthetic Values
Increasing amount of information through complexity does
not always result in an increase of aesthetic preferences. As
Figures 4A–D illustrates, too much information does not
necessarily make a scene more pleasant. More generally, aesthetic
preference drops when complexity becomes too high. Examples
of situations when this drop occurs include music (North
and Hargreaves, 1995; Gordon and Gridley, 2013; Chmiel and
Schubert, 2017), line drawings of house facades (Imamoglu,
2000), and language sequences and random shapes (Munsinger
and Kessen, 1964). Miles et al. (2021b) have extended this
conclusion from complexity to surprise in musical harmony.
They showed that two forms of very high amounts of surprise
reduce aesthetic preference: absolute and contrastive surprise.
The first is the total amount of unusual information and the
second is the contrast in unusual information between two
consecutive sections in a musical piece.

This decline of aesthetic preference with increasing
complexity might at a first suggest that amount of information
does not support aesthetic values. Further evidence apparently
making the same suggestion comes from a study of complexity
in portrait paintings of the Renaissance (Correa-Herran
et al., 2020). That study revealed that complexity declined as
the Renaissance progressed. This trend continued in some
art movements as the history of art progressed, arguably

reaching in Cubism, Constructivism, and Suprematism
(Henderson, 2009). These movements made art with very
low Shannon-entropy complexity.

Inverted-U-Shape Dependence of Aesthetic
Preference on Complexity
If amount of information underlies aesthetic values, then why
would it decline as the history of art progresses? We address part
of the answer to this question in Section “Is Our Definition of
Value Compatible With Aesthetic Values?”. In that section we
state, “The dependence of value on, say, variables like amount
of symmetry or information, may be a complex, non-linear
manifold.” Thus, a value function depending on complexity does
not always have to rise or be positive as it increases. The value
function must predict value correctly, whether it is good or
bad. As we now review, a complex value function capturing
the good and bad of amount of information seems to be what
the brain is using.

Because aesthetic preference drops when complexity becomes
too high and preference also rises with complexity (Figure 4,
compare panels A, E, and F), the full reported behavior is
often of an inverted-U shape. Thus, preference often rises
with complexity at low complexities and then falls at high
complexities. The mathematical model in Equation 8 is designed
to capture this rise-and-fall behavior, which was first predicted
by Berlyne (1971). Much of the evidence for the fall of

Frontiers in Neuroscience | www.frontiersin.org 13 March 2022 | Volume 16 | Article 805658

https://upload.wikimedia.org/wikipedia/commons/e/e3/Giotto_di_Bondone_090.jpg
https://commons.wikimedia.org/wiki/File:Andrea_Mantegna_-_The_Lamentation_over_the_Dead_Christ_-_WGA13981.jpg
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-805658 March 22, 2022 Time: 18:14 # 14

Grzywacz and Aleem Information as Aesthetic Value

FIGURE 4 | Natural image modified to have too much or too little information. (A) The original image is a of a forest during spring. (B) Image with the Pixels of the
Original Scrambled. (C) Image with the Hues of the Original Randomized. (D) Image with the Intensities of the Original Randomized. (E) Image with the Pixels of the
Original Moved Near Other Pixels with Similar Color and Intensity. (F) Monochromatic Image with the Mean Color of the Original. Most people like the original image
more than versions with too much spatial (A), chromatic (B), or intensity (C) complexity (amount of information). Most people like the original image more than
versions with too little spatial (E) or generic (B) complexity. These conclusions are statistical and one cannot generalize them to all people. Some people, specially
those educated in modern art, may like the images like (C) or (E) more than the original. Images used from Shutterstock royalty-free, by Dmitry Kovba: Washington,
USA: Fall colors at Paradise area at Mount Rainier National Park (https://www.shutterstock.com/image-photo/washington-usa-fall-colors-paradise-area-
1202207872).

preference with complexity in Section “When More Information
Reduces Aesthetic Values” was for this behavior (Munsinger and
Kessen, 1964; North and Hargreaves, 1995; Imamoglu, 2000;
Gordon and Gridley, 2013; Chmiel and Schubert, 2017; Miles
et al., 2021b). Other reports showing this inverted-U-shape
behavior include ones for car images (Chassy et al., 2015), color
combinations (Tsutsui and Ohmi, 2011), and music (Beauvois,
2007; Delplanque et al., 2019). Importantly, the position of the

peak of this behavior depends on the category of objects under
study (Sun et al., 2014).

Amount of Surprise Over Temporally
Integrated Expectations
Shannon entropy is the mean amount of surprise in the
population of inputs (see Section “Degree of Surprise Given
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Temporally Integrated Expectations”, and Equations 5 and
7). Consequently, although Shannon entropy and amount of
surprise are not the same thing (Figure 2), they have a strong
connection. This leads to the questions of whether they share
some properties like the inverted-U-shape relationship with
preference, and whether they have important differences. The
purpose of this section is to answer these questions. Because
the study of amount of surprise has focused on music, we will
concentrate on it here.

Meyer (2008) was the first to suggest that music elicited a
positive aesthetic outcome by employing satisfied or violated
expectations. These ideas around expectations and the notion
that music always implied “listening ahead” (Margulis, 2007)
were expanded by Huron (2008). Meyer’s satisfied expectations
leads to the concept of familiarity, which has been central to
the studies of emotions elicited by music (Pereira et al., 2011;
Madison and Schiölde, 2017). However, as discussed above,
the most important idea for this article is that of violated
expectations, that is, surprise, which has been studied as a type
of amount of information. Many studies have by now shown
that surprise indeed leads to musical pleasure (Kellaris and
Kent, 1993; Miles et al., 2017, 2021a; Cheung et al., 2019; Shany
et al., 2019). Hence, musical amount of surprise has the same
effect as Shannon entropy in this regard (see Section “When
More Information Increases Aesthetic Values”). This result shows
correspondence to the rising portion of the inverted-U-shape
behavior for musical surprise, but a systematic demonstration
of the falling portion is still lacking. Nevertheless, some initial
results suggest that the correspondence exists. Miles (2018) and
Miles et al. (2021b) have studied the dependence of aesthetic
preference on the amount of harmonic surprise. They found a
positive correlation when this amount is in the range of the
Amounts of Surprise found in popular music. However, when
the amount of surprise exceeds these values, preference stops
growing, turning downward. Thus, just like with amount of
information, people do not appear to like too much surprise.

However, in two ways, surprise does not yet have immediate
correspondence with complexity results: First, both absolute
and contrastive surprise appear to affect preference. Absolute
surprise is the average amount of surprise in a musical sample,
for example, in a chorus or verse section of a song. Listeners
probably like this kind of surprise because it suggests new
information (Meyer, 1957), thus probably being valuable to them.
In turn, the contrastive surprise is the change in amount of
surprise in two consecutive sections of the musical sample. In
an initially perplexing explanation, a contrastive-surprise boost
of aesthetic preference occurs because the brain may consider
surprise as bad. This is so because high amount of surprise
may indicate to the brain a failure of the prediction ability
for the data under consideration. But why would something
that is bad increase aesthetic preference? The answer is Huron’s
notion of contrastive valence, in which part of a listener’s musical
pleasure is due to a discharge from the tension caused by surprise
(Huron, 2008). Meyer expressed a similar idea by proposing a
“determinate meaning” from the association between antecedents
and consequences in music (Meyer, 1957, 2008). Behavioral
and socio-statistical studies have provided evidence for the

positive effects of absolute and contrastive surprise in musical
harmony (Miles et al., 2017, 2021a,b). In neuroscience, support
for absolute-surprise effects comes from studies of release of
dopamine in musical sections known to evoke “chills” (Salimpoor
et al., 2011). As for the contrastive-surprise effect, neuroscience
support comes from multiple directions (Patel et al., 1998;
Koelsch et al., 2001; Maess et al., 2001; Tillmann et al., 2003). They
reveal that the brain computes harmonically unexpected events in
music similarly to language syntactic errors.

Second, amount of surprise is measured over temporally
integrated expectations (see Section “Degree of Surprise Given
Temporally Integrated Expectations”). Thus, in the computation
of the amount of harmonic surprise, the brain compares the
statistics of the sample with the statistics of a population
integrated over many years into the past (Miles et al., 2021a).
The logical conclusion of this finding is that something surprising
a few years ago is now part of the underlying statistics and
thus, not surprising anymore. Thus, what constitutes surprise
keeps changing over time (Figure 5). This idea has been termed
the Inflationary-Surprise Hypothesis (Miles et al., 2021a). This
is a powerful hypothesis that explains why the properties of
popular music continuously evolve over time (Mauch et al.,
2015). The same inflationary growth may happen for amount of
information as an aesthetic value, but no studies of the underlying
temporal integration have taken place. On the contrary, studies
of amount of information tend to use instantaneous statistics,
such as the distribution of properties in paintings (Aleem et al.,
2017; Correa-Herran et al., 2020). However, significant hints
exist that something like the Inflationary-Surprise hypothesis
also applies to amount of information as an aesthetic value. As
shown in Section “When More Information Reduces Aesthetic
Values,” the amount of complexity has changed over the course
of the history of art. These changes are complex, including up-
and-down variations, and moments of phase transition (Correa-
Herran et al., 2020). An analysis of the changes by Correa-
Herran et al. (2020) have suggested that mechanisms akin to the
Inflationary-Surprise are at play.

Why Aesthetic Values Show an
Inverted-U-Shape Dependence on
Amount of Information
The best published review of the various arguments for why
aesthetic values show an inverted-U-shape dependence on
complexity is that by Van Geert and Wagemans (2020). In this
section, we touch upon their main arguments, discuss them, and
expand on the ideas. Much of the Van Geert and Wagemans
review is about why results in the literature appear inconsistent
on the complexity-aesthetic-preference behavior. Some studies
suggest that aesthetic preference rises with complexity (see
Section “When More Information Increases Aesthetic Values”).
Others show the inverted-U-shape behavior (see Section “When
More Information Reduces Aesthetic Values”). One obvious
explanation is that in some studies, the range of complexities was
not broad enough to capture the falling portion of the inverted-
U shape. This explanation is part of a broader one seeing studies
as divergent in the kinds, amounts, and ecological legitimacies of
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FIGURE 5 | Amount of surprise uses temporally integrated expectations. These schematic histograms are simulated from the data in Figure 1 of Miles et al. (2021a).
The simulations assume Gaussian distributions of absolute amount of surprise, with the mean and standard deviation as in Miles et al. (2021a) results. The
simulations also assumed a sample of 100 songs per distribution. The average amount of surprise (in bits) is relative to the chord distribution of August 1958 to
January 1975. The analyses performed by Miles et al. (2021a) showed increased amount of harmonic surprise over time, specially for songs in the top of the
Billboard Top 100.

stimuli (Marin and Leder, 2013). Furthermore, studies have used
a wide variety of definitions, measurements, and manipulations
of complexity (Nadal et al., 2010). We agree with these
complications, but we will assume for now that an aesthetic value
based on amount of information exhibits an inverted-U-shape
behavior because it appears in most published studies.

Van Geert and Wagemans also review two theoretical
frameworks for aesthetic preferences that are directly relevant
for understanding the inverted-U-shape behavior. First, the
Processing Fluency Theory, which we discuss in the Introduction,
would appear to predict a decrease in preference with increasing
complexity. The reason for this decrease would be that increased
complexity would require increased processing, reducing fluency.
However, as we also discuss in the Introduction, certain circuitries
in the brain have evolved to process as much information as
possible. Consequently, the brain is designed to process certain
kinds of complex information fluently. For example, the brain
processes fluently complex stimuli with inner recurrence, such as
fractals (Joye et al., 2016). Second, Van de Cruys and Wagemans
(2011) have suggested to use a predictive-coding perspective to
understand aesthetic appreciation. According to this perspective,
high unpredictability because of high complexity would lead to
unpleasantness or confusion, and thus, low aesthetic preference.
Hence, this perspective accounts for the declining portion of
the inverted-U shape. For the rising portion, Van de Cruys
and Wagemans suggested that high predictability would cause
boredom. Although this suggestion is fine and consistent with
the ideas of Arnheim (2010), it doesn’t address why too much

predictability is bad. The Processing Fluency Theory also suffers
the same problem with high predictability.

A way to address the problem with high predictability is to
consider that given limited resources in the brain (see Section
“Introduction”), focusing on survival-relevant information as
the basis for aesthetic preferences may be important. Relevant
information would likely come from nature (Svozil, 2005). So,
we must consider the distribution of amount of information in
natural sensory stimuli. As the example in Figure 6 illustrates,
the distribution of complexities in natural images may have
an inverted-U shape. Therefore, when evolution designs brain
circuitries to capture as much relevant information as possible,
the focus should be on intermediate complexities. Accordingly,
boredom with high predictability may just be an indication
that the stimulus has an unnaturally low amount of survival-
relevant information.

Fisher Information: Appraisal of Brain
Models and Inverted-U-Shape Behavior
Fisher information has not been in the mainstream of the
research on aesthetic values and thus, we have little to review.
However, we include this section on Fisher Information because
it may explain much about aesthetic preferences. In particular,
this section makes two points about Fisher Information: (1) the
types of information that it conveys to the brain can be so
valuable, as to make them good candidates to support aesthetic
values. (2) The way that Fisher Information conveys knowledge to
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FIGURE 6 | Histograms of complexity of natural images. (A) Complexity of Order 1 (Equation 6). (B) Complexity of Order 2 (normalized version of Equation 7). We
obtained the 286 images for these histograms from the UPenn Natural Image Database, using Albums cd06, cd09, cd12, cd15, and cd23 (Tkačik et al., 2011),
which contained no human-made objects. The histograms predominantly exhibit a rise-then-fall inverted-U-shape behavior. Only one notable exception to this
behavior is observed in these histograms. Their gross behavior is more interesting than a simple inverted-U-shape, exhibiting a slight bimodality. This bimodality may
indicate that images from different environments have dissimilar distributions of complexities. In support of this idea, the very low Complexities of Order 2 in (B) are
due to some shots of cloudless skies.

the brain may be compatible with the inverted-U-shape behavior
without any further assumptions.

Fisher Information is a good candidate to support aesthetic
values for two reasons (see Section “Amount of Information”):
first, it can help the brain determine how much sensory data
it must integrate during the learning or adaptation process.
Figure 2B shows that when the Fisher Information is high, the
brain has fine access to model parameters, thus requiring little
integration. The opposite happens when the Fisher information
is low. Second, Observed Fisher Information could provide a
rapid test of whether an internal cognitive model is good. Such
models have been proposed for many brain functions. In the
visual domain, examples of such models include, color and
motion perception, and geometry, material, and lighting sensing
(Kersten et al., 2004; Knill and Pouget, 2004). With other senses,
examples include models for multisensory integration, sensory-
motor learning, and auditory scene analysis (Knill and Pouget,
2004; Colombo and Seriès, 2012; Cusimano et al., 2018). If
incoming sensory signals are too hard to explain by a model
that should explain them, it must be wrong. Consequently, if
the Observed Fisher Information is too often close to zero (see,
for example, Figures 4B,F, 7), the brain has an alarm about the
possible inadequacy of the model.

Another reason to include Fisher Information in the
conversations about aesthetic values is that it provides a natural
way to explain the inverted-U-shape behavior. As Figure 7 shows,
the amount of Observed Fisher Information is relatively high
for the original image in Figure 4A. In contrast, the Observed
Fisher Information is lower for transformations of the image
with low (Figures 4E,F) or high (Figure 4B) Complexities of

Order 2. The reason for the low Observed Fisher Information
with low complexity is that such images have little to say about
the parameters of the model. Similarly, when the complexity is
too high it cannot inform much about these parameters. Hence,
the outcome of the Fisher Information calculation is tightly
related to the statistics of natural sensory stimuli, as illustrated
by Figure 6. This conclusion is not surprising because Fisher
Information captures information pertinent to the brain. Because
the brain has limited resources it must focus on information
relevant for survival (Ayres, 1997). And such kind of information
must be statistically natural (see Section “Introduction”). Finally,
the Observed Fisher Information results in Figure 7 also have
a relation to the predictive-coding perspective of Van de Cruys
and Wagemans. (2011). Fisher Information is not optimal for
complexities that are too high because they are unnatural.
Therefore, the limited brain does not have the right circuitries to
perform computations with too much information.

Recapitulation of Section Amount of
Information as a Possible Aesthetic
Value
In this section, we explore the relationship between aesthetic
preference and amount information. One of the main findings
is that visual aesthetic preference seems to rise and then fall
with complexity, giving rise to an inverted U-shaped behavior.
When we consider musical surprise and how it relates to
preference, studies suggest that an equivalent inverted U-shaped
relationship also emerges. However, musical surprise exhibits
additional properties due to its temporal nature. For example,
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FIGURE 7 | Observed Fisher information as a function of complexity of order 2 for visual images in Figure 4. The complexities of order 2 in the horizontal axis are
from four panels of that figure as indicated by the legend. The likelihood function for the Fisher Information in the vertical axis was that of Equation 9, where PL was
Gaussian with standard deviation 1. The value function input to the likelihood function was that of Equation 8. For that equation, we used w1as the free parameter. In
turn, w2 = 0.69 and w3 = 0.09 were constants of the equation as determined by fit around the main peak in Figure 6B. Finally, we considered Equation 8 for the
fully motivated system, that is, m (t) = 1. The results based on these equations reveal that the original figure (red) yields the optimal Fisher Information, with it falling
when the Complexity of Order 2 is too low or too high.

people seem to like contrastive surprise, which tells us that
we have failed to predict something. Researchers theorize that
this may be due to the moment after the surprise, serving to
release the listener from built up tension. An additional difference
due to the temporal nature of music is that surprise, unlike
visual complexity, is measured through temporal integration.
Finally, this section returns to the inverted U-shaped behavior
of complexity and surprise, and consider several explanations
for it. In particular, we consider both cognitive-processing
theories and predictive-processing accounts of this behavior. The
latter suggests that too little complexity or information may be
disliked because it provides little to predict. Likewise, too much
complexity may be incomprehensible, also leading to little useful
information. In this context, Fisher Information may explain the
inverted U-shape behavior without further assumptions. Given
our evolutionary history, the cognitive models that our brain
uses for perception are based on statistical information about the
natural world. These properties appear to exhibit a peak around
an optimal complexity, causing Fisher Information also to peak
at intermediate values.

DISCUSSION

Amount of Information Supports
Aesthetic Values
In this article, we have asked whether amount of information
supports aesthetic values. We believe that the preponderance of
the evidence presented allows us to answer this question in the
positive. However, as the article also emphasizes, this is not an
easy question to answer. It turns out that to provide such an

answer, one must first address the issue of whether aesthetic
values are an objective reality. As pointed out in Section “Is
Our Definition of Value Compatible With Aesthetic Values?”,
for some scholars, aesthetic values are socially constructed
and thus, they should be discredited as true entities. The
arguments that we use in that section to rebut the purely social-
construct idea involves genetic predisposition and the presence of
aesthetic preferences early in development. We thus conclude the
arguments by repeating an statement of Krentz and Earl (2013).
They say, “[these] results demonstrate that appreciation for . . .
[certain] features of artworks . . . are biologically driven.”

If we accept that aesthetic values are real, we must ask whether
amount of information underlies at least one of them. Again,
this is not an easy question to answer because the historically
prevalent idea is that aesthetic values are about beauty and thus
have positive valence. However, aesthetic preferences exhibit an
inverted U-shape dependence on complexity, a proxy to amount
of information. Consequently, to accept amount of information
as the basis of aesthetic values, we must abandon the idea
that they only reflect positive valence. Fortunately, as we again
point out in Section “Is Our Definition of Value Compatible
With Aesthetic Values?”, this idea is increasingly in disfavor. Its
replacement is the broader naturalistic or everyday aesthetics.
Thus, the Kantian notion of disinterested aesthetics may perhaps
be subsumed by a neuroscientific view of aesthetic values (Brown
et al., 2011; Aleem et al., 2019).

Given the complex dependence of preference on amount
of information, what are the best pieces of evidence for the
latter supporting aesthetic values? We ask this question because
maybe amount of information is the wrong variable to study,
giving rise to an irrelevant behavior. This article raises two
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pieces of evidence here for some aesthetic values having the
support of amount of information: First, the inverted-U-shape
behavior follows the statistics of the natural world (Figure 4)
even when they are messy (Figure 6). This is compatible
with the limited-capacity brain evolving circuits matched to
natural, survival-dependent information (see Section “Fisher
Information: Appraisal of Brain Models and Inverted-U-Shape
Behavior”). Second, in the Early Renaissance, artists emphasized
amount of information (Figure 3), making portraits with more
complexity than natural (see Section “When More Information
Increases Aesthetic Values”). Thus, amount of information was
so compelling that pushed artists beyond reality even they
aimed for naturalism.

However, this last piece of evidence is not meant to say
that art is just about aesthetics or driven mostly by amount
of information. Far from it, art straddles far beyond aesthetics
(Carroll, 2001; Welsch, 2003; Pinney and Thomas, 2020). The
same goes for the relationship between amount of information
and art. As pointed out in Section “When More Information
Reduces Aesthetic Values,” visual artists have occasionally
abandoned amount of information in favor of other tools.
Similarly in music, complexity has occasionally been elevated
beyond the point of comprehensibility (Jonathan, 1988; Lerdahl,
1988) both to imply transcendence from art and to overwhelm
the listener (Jonathan, 1988; Lerdahl, 1988; London, 2009).

Why Do Aesthetic Values Use Amount of
Information?
The brain gains multiple advantages when using amount of
information as the basis of aesthetic values. The most obvious
advantage is that the amount of information can signal to the
brain how much it can hope to find in the inputs. Another
advantage discussed in Section “Information Versus Amount of
Information” is that with more information, the brain learns that
it must devote more resources to process the incoming sensory
signals. Thus, amount of information may be valuable as a type of
attentional trigger. Fisher Information can also signal on needed
resources. In Section “Amount of Information,” we proposed that
a possible function of Fisher Information is helping the brain
decide on the resources necessary to establish good parameters
for its cognitive models. We also proposed an advantage of
Observed Fisher Information. It could help the brain determine
whether its current (parametric) believes are appropriate for the
present situation (Figure 7).

Other advantages can follow by using samples with surprising
information (Figure 1) because high amount of surprise indicates
new use of information and thus, something that the brain can
learn. However, as emphasized by Barto et al. (2013), we should
not confuse surprise and novelty. Surprise is unexpected use of
known information, thus causing an emotion that is different
from what we get when exposed to something new. Interestingly,
surprise also appears to exhibit an inverted-U-shape behavior
(see Section “Amount of Surprise Over Temporally Integrated
Expectations”). Because of this behavior, some artists have been
attacked in high moments of creativity. A famous example
was Igor Stravinsky’s The Right of Spring. Many consider this

composition “undoubtedly the most famous composition of the
early 20th century” (Grout and Palisca, 1981). However, the level
of surprise of this composition was so high that at the premiere,
mocking laughter met the Introduction and a pandemonium
happened during the performance (Stravinsky, 1962).

One of the best analysis of why information is so advantageous
is due to Israel and Perry (2012). They write, “What underlies
the phenomenon of information is the fact that reality is lawlike;
that what is going in one part of reality is related to what
is going on in some other part of reality, by laws, nomic
regularities, or as we shall say, constraints.” Hence, information
is a consequence of the laws of nature. One should thus not
be surprised that information is now firmly established in the
laws of the natural sciences themselves (Landauer, 1991, 1996;
Frieden, 2000, 2004; Barbieri, 2016). Consequently, because
amount of information supports aesthetic values, art exhibits
lawlike regularities (Graham and Redies, 2010).

The lawlike nature of information relates to another important
proposal for what aesthetic appreciation is. Schmidhuber (2009)
proposes that because the brain has computational limitations,
an important task for individuals is to learn to compress
incoming sensory data. Thus, the processed data become
in a way “simpler and more beautiful.” As Schmidhuber
puts it so eloquently, “[learning to compress] motivates
exploring infants, pure mathematicians, composers, artists,
dancers, comedians, yourself, and (since 1990) artificial systems.”
Using the line of argumentation in this article, we propose
that data comprensability is another advantage that amount
of information endows the brain. It gets lawlike knowledge
from information.

Where in the Brain
Much neuroscience research has been performed in recent years
on aesthetic values and amount of information. An especially
relevant meta-analysis of neuroimaging examined common
characteristics of aesthetic evaluation across different senses
(Brown et al., 2011). The analysis found universal mechanisms
for aesthetic appraisal with the four most concordant brain
regions of activation being the orbitofrontal cortex, anterior
insula, anterior cingulate, and the ventral basal ganglia. Roughly
speaking, the orbitofrontal cortex is a sensory integration area of
the brain capable of value-based decision making (Kringelbach,
2005; Fellows, 2011; Wallis, 2012). In turn, the anterior insula
receives inputs from internal parts of the body, being specially
important in bringing motivation to actions (Craig, 2003; Zaki
et al., 2012; Wager and Barrett, 2017). Next, the anterior cingulate
is an area responsible for processing behavioral errors (Carter
et al., 1998; Bush et al., 2000; Botvinick et al., 2004). Finally,
ventral basal ganglia have many roles, with the most important
for us being the mediation of reward-based learning (Schultz
et al., 2000; Packard and Knowlton, 2002; Yin et al., 2008). The
central importance of reward appears in other imaging studies of
aesthetics and appraisal (Lacey et al., 2011; Vartanian and Skov,
2014; Wang et al., 2015).

Some of the same brain areas may be involved in how
amount of information contributes to aesthetic appreciation.
In Section “Amount of Surprise Over Temporally Integrated
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Expectations,” we discussed how the release of dopamine in
the basal ganglia helps to evoke “chills” when the amount
of musical absolute surprise was high. We also discussed
that the computation of the musical contrastive-surprise effect
is like that of language syntactic errors. More evidence has
accumulated in this direction in neuroscience-of-music research.
Research by Shany et al. (2019) revealed associations of music-
induced pleasantness with surprise in the activity of the nucleus
accumbens, a component of the ventral striatum of the basal
ganglia. In turn, Cheung et al. (2019) found that activity
in the amygdala, hippocampus, and auditory cortex reflected
chords eliciting pleasure when they deviated from what the
listener had expected. These areas also elicited pleasure when
the chords conformed to expectations. The participation of
these brain areas is not surprising because music can modulate
activity in structures involved in emotion. These areas include
the amygdala, nucleus accumbens, hypothalamus, hippocampus,
insula, cingulate cortex, and orbitofrontal cortex (Koelsch, 2014).
For Cheung et al. (2019), the nucleus accumbens only reflected
the uncertainty of those emotions. This is important because the
nucleus accumbens was previously associated with the processing
of pleasure from music (Salimpoor et al., 2013). In addition, the
reflection of uncertainty in the nucleus accumbens is important
for reward learning processes.

Because amount of surprise can only work over a baseline of
stored information, one also must know where in the brain this
storage is and how it works. Two distinct neural mechanisms
are implicated in the learning of musical information and
thus, familiarity (Miranda and Ullman, 2007). One involves
the processing of statistically learned information about musical
harmony. The other involves the processing of explicitly learned
information that reflects familiarity with a specific piece of
music (see Section “Amount of Surprise Over Temporally
Integrated Expectations”). The superior temporal cortex is
believed to accumulate templates of sound events that a
person learns over time (Peretz et al., 2009; Salimpoor et al.,
2015). In evidence, electrical stimulation of the superior
temporal cortex provokes musical hallucinations (Penfield
and Perot, 1963). Moreover, augmented activity in this
region has associations with imagery (Herholz et al., 2012)
and familiarity of music (Peretz et al., 2009; Groussard
et al., 2010). These results suggest that this region stores
previously heard auditory information. Therefore, auditory
information attained in this region may provide the basis for
anticipation during music listening. This is consistent with
the finding that enjoying new music has associations with
augmented activity in the nucleus accumbens and its strong
connectivity with large clusters of the superior temporal cortex
(Salimpoor et al., 2013).

Besides the orbitofrontal and the superior temporal cortices,
another cortical area appears to participate in valuation in
the brain. Bartra et al. (2013) performed a meta-analysis of
functional brain imaging in which people assessed stimulus value.
They found that only the ventromedial prefrontal cortex and
ventral striatum appeared to track value. Other areas tracked
related but non-specific features, such as salience or arousal
response.

Interestingly, some neurodegenerative disorders impair the
ability of the brain to process musical surprise. A recent study
explored Alzheimer’s disease and some forms of dementia in
regard to this impairment (Benhamou et al., 2021). Alzheimer’s
disease associated with normal deviant detection accuracy.
However, behavioral and semantic variant frontotemporal
dementia syndromes are associated with compromised syntactic
and semantic deviant detection accuracy. These dementia
impairments are further corroboration that the brain appears
to have dedicated mechanisms for the detection of surprise and
thus, large amount of unusual information.

Shannon Entropy Versus Fisher
Information
In this article, we have suggested that amount of information in
the form of either Shannon entropy or Fisher Information can
support aesthetic values. But would one of them be better than
the other or could them both serve different aesthetic values?
As seen in Sections “Amount of Information” and “Degree of
Surprise Given Temporally Integrated Expectations,” Shannon
entropy has been the historically favorite method to quantify
amount of information. This favoritism is due in part to the
success of Information Theory. Furthermore, Shannon entropy
can measure all available information regardless of how the
brain uses it. However, we can see at least two of disadvantages
to Shannon entropy: first, it does not on its own capture the
inverted-U-shape behavior (Figure 4). Instead, if the brain uses
Shannon entropy for its aesthetic values, a special value function
(Equation 8) must be in place after the computation of complexity
to capture the behavior observed in nature (Figure 6). Second,
even if the brain wanted to have access to all the information in
the external world, that would not be possible. Our intention is
not to say that the brain wants all information in the world. We
just want to emphasize that Shannon entropy does not quantify
the information useful to the brain. As we discussed in Section
“Fisher Information: Appraisal of Brain Models and Inverted-
U-Shape Behavior,” because the brain has limited resources,
it focuses on information relevant for survival. The circuits
that the brain has evolved have designs optimized to certain
kinds of information.

In turn, Fisher Information does not suffer from these
disadvantages. To begin with, it naturally captures the inverted-
U-shape dependence of aesthetic preference on amount of
information (Figure 7). This is possible because Fisher
Information emerges from models of the brain, which itself
has evolved to be in tune with survival-relevant information
(Ayres, 1997). Thus, the brain could possibly use a single stage of
computation instead of two by incorporating the value function
(Equation 8) in the likelihood function (Equation 9). And by
employing Fisher Information, the brain would not even be
aiming to use all the information in the world. However, Fisher
Information has at least two disadvantages. First, it has not been
explored systematically in the aesthetic-value literature, so we
have no clear idea of what the limitations are. Nevertheless,
Fisher Information is gaining much traction in science in
general (Frieden, 2000, 2004) and neuroscience in particular

Frontiers in Neuroscience | www.frontiersin.org 20 March 2022 | Volume 16 | Article 805658

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-805658 March 22, 2022 Time: 18:14 # 21

Grzywacz and Aleem Information as Aesthetic Value

(Brunel and Nadal, 1998), raising hopes that better tools and
deeper understanding of the potentials and limitations of Fisher
Information are coming. Second, Fisher Information, but not
Shannon entropy, is model dependent. To employ the former in
brain research, one must have a clear idea of what the system
is trying to achieve with the information. Thus, in this regard,
Fisher Information requires more assumptions than Shannon
entropy, being thus less elegant.

To overcome the first disadvantage of Fisher Information
highlighted in the last paragraph, we propose the following
five-step research program in the visual/auditory domains: (1)
Obtain spontaneous (not posed) images/sounds from different
environments relevant to humans (natural and urban). (2)
For each domain, measure the distributions of complexities
according to specific variables (for example, pixel intensities,
chromatic contrast, or inter-beat interval). (3) Build simple
parametric models to capture these distributions, with as few
parameters as possible. We provide an example of this step in
the transition from Figures 6, 7. We model the example in
Figure 6 with a Gaussian distribution, fitting only the main peak
for simplicity. The random variable in this model is Complexity
of Order 1. The free parameter is the mean of Gaussian (as
we keep the standard deviation constant, also for simplicity).
Because each image in Figure 4 has its own Complexity of Order
1, we can then compute the Observed Fisher Information for each
image using the Gaussian model. (4) Develop a set of artificial
images with which to conduct cognitive-preference experiments.
(5) Measure Fisher Information measures from each of these
images to compare with the experimentally obtained preferences.
Our laboratory is currently undertaking such a five-step program
to test the applicability of Fisher Information for aesthetic values.

Individuality
Individual differences play an important role in determining
aesthetic appreciation (Jacobsen, 2004; Vessel and Rubin, 2010;
Güçlütürk et al., 2016; Van Geert and Wagemans, 2020). The
first to study systematically the mechanisms of such differences
was Eysenck (1942), who identified two general and two unique
factors of individuality. The two general factors related to
taste, and to order and complexity. Eysenck related the order
and complexity factors to introversion and extroversion, with
the latter leading to preference of stimuli that were more
complex, that is, with higher amount of information. Regarding
the two “unique” factors, that is, peculiar to each observer,
he distinguished “specific” and “error” factors. Specific factors
include those based on private associations and experiences,
while error factors indicate those that show intraindividual
variability. Recent theoretical studies on the learning of aesthetic
values explore these factors (Aleem et al., 2020; Grzywacz, 2021).

Other factors beyond those identified by Eysenck play a
role in individuality. One such factor is individual differences
in abilities, such as having good or bad vision, hearing, and
memory (Munsinger and Kessen, 1964; Chevrier and Delorme,
1980; Sherman et al., 2015; Van Geert and Wagemans, 2020).
For example, if one cannot see details because of poor vision,
the amount of information becomes less relevant to aesthetic
preferences. Individual aesthetic values are also affected by

differences in personality (Van Geert and Wagemans, 2020). For
instance, Openness to Experience is a key personality trait related
to preference for art in general (Chamorro-Premuzic et al., 2010).
Not only that, but Openness to Experience is the personality
trait most consistently found to relate to aesthetic preferences
for complexity in music (Rentfrow and Gosling, 2003) and visual
art (Chamorro-Premuzic et al., 2010). The theoretical works
mentioned above also emphasize this openness-to-experience
personality axis in the development of complexity preference
(Aleem et al., 2020; Grzywacz, 2021). However, in their studies
of preference learning, these authors use the terminology risk-
aversion and risk-taking. Besides personalities traits, individuality
in aesthetic preference for amount of information is influenced
by education level (Frances, 1976), expertise (Munsinger and
Kessen, 1964; Orr and Ohlsson, 2005; Nadal Roberts, 2007), and
creativity (Taylor and Eisenman, 1964). Finally, demographics
and culture play roles in individuality. For example, sex is a
significant determinant of complexity preference, with females
tending to prefer more complexity than males (Eisenman,
1967). In terms of culture, we point out the work of Curtis
and Bharucha (2009) who found that the musical culture
that an individual grows up with has an influence on the
understanding and perception of music later in life. This effect
is so strong that an individual’s perception of, and enjoyment
of, a new musical piece is dependent on music already heard
(McDermott et al., 2016).

A final factor worth mentioning in the understanding of
individuality is competition between aesthetic values. Aleem
et al. (2017) pointed out that while certain variables supporting
aesthetic values increase others must decrease. For example,
a painting with high symmetry or balance tend to have low
Complexity of Order 2 because these properties inform what
certain parts of the canvas look like when one knows about other
parts. Thus, artists must choose how to equilibrate their paintings
in terms of such co-dependent variables. If an artist chooses to
use more symmetry, they know that they would lose complexity.
Thus, equilibrating these variables is an individual choice. Not
surprisingly, when Aleem et al. (2017) analyzed portraits of
the Early Renaissance, they found that each artist positioned
their paintings as islands in different positions of the balance-
complexity space. Different artists produced different, often
non-overlapping islands in terms of balance and complexity.
Recent perceptual experiments have confirmed this competition
tendency between complexity and symmetry (Pombo et al.,
2021), with the latter being a stronger predictor of beauty
judgments than the former (Tinio and Leder, 2009). Based on
this apparent choice space with variables like symmetry, balance,
and complexity, Aleem et al. (2017) generalized and proposed
the existence of a neuroaesthetic space in the brain. This is
undoubtedly a very high dimensional space. Just by considering
complexity, for example, we already have three dimensions in
Figure 4, namely, of order 1 and 2, and chromatic. But the
complexity of complexity does not stop there. Many authors
have noted that visual complexity is a multidimensional concept
(Berlyne et al., 1968; Rump, 1968; Kreitler et al., 1974; Chipman,
1977; Nadal et al., 2010), thus creating the certainty that the
neuroaesthetic space is indeed very high dimensional.
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Decision Making
People’s thirst for information appears to be insatiable.
A demonstration of this thirst is the exponential growth of
information technology over the years (Huberman and Adamic,
1999; Denning and Lewis, 2016). The reason for the thirst is
complex, but one of the most important factors is that decision-
making in all corners of our lives requires information (March,
1987; Blanchard et al., 1988; De Freitas, 2003). In most rationale
decision-making, information is used together with our believes
to choose a good path to follow (Slovic and Lichtenstein, 1971).
Because information is so important, having large amounts of
it is beneficial. And, as we conclude in this article, the brain
values knowing how much information is incoming. We also
argue that the brain uses knowledge on amount of information in
many of its decisions. For example, it helps the brain decide both
how much neural resources to allocate to process the incoming
information and how well the internal cognitive models are
doing. In addition, amount of information as a support of
aesthetic values helps the brain in practical decision-making
in everyday tasks. An example covered in this article is the
demonstration by Miles et al. (2017, 2021a) that higher amount
of harmonic surprise, that is, higher amount of unusual harmonic
information, increases the chance that a listener will decide to buy
a song. Another example is the negative correlation between the
complexity of a webpage and how beautiful it looks (Michailidou
et al., 2008; Tuch et al., 2012; Reinecke et al., 2013). Hence, the
amount of information in a webpage influences the decisions on
what it is selling. And we even covered the influence of amount
of information in the interface design for smartwatches (Wang
and Hsu, 2020). More information causes emotional arousal and
valence in the shopper, making them decide to buy the watch.

Unfortunately, strong values can also lead to serious mistakes
in decision-making and information-based values are not
exception. Values, information-based aesthetic ones included,
can lead to addiction and thus, impair the decision-making
abilities of individuals (Bechara and Damasio, 2002; Bechara
et al., 2002; Bechara, 2003). As we suggest in this article, the
craving for large amounts of information is an inescapable
need that makes the brain perform better in multiple essential
decision-making tasks. However, the brain has limitations and
thus, has mechanisms to find vital information (Todd, 2007).
These mechanisms are important given that and too much
information is not only not useful, but could be detrimental.
Perhaps this realization will help people find a balance in how
much amount of information is enough.

Concluding Remarks
Our analysis of the literature suggests that amount of information
supports an aesthetic value. This support is not simple, with
aesthetic preference exhibiting a complex dependence on the
amount of information. We suggest that this complexity arises

because the statistics of the stimuli arriving from natural world
are themselves complicated. Thus, because the brain has finite
capacity, it must adjust closely to the survival-relevant features
of the incoming information. Hence, aesthetic signals of amount
of information may benefit the brain by alerting it to how
much it can hope to find in the sensory inputs. The brain
can thus prepare itself to devote the right amount of resources
to process the incoming sensory signals. The necessity of
the brain to prepare itself for the incoming information has
two important consequences. First, the brain must have good
cognitive models of the world, that is, those focusing on survival-
relevant information. Those models must have arisen through
evolution, and continue to arise by development and learning.
Because survival-relevant aesthetic values would depend on these
models, we propose to quantify the relationship between amount
of information and aesthetic values through Fisher Information.
The most popular alternative, namely, Shannon entropy, captures
all the information, even some that are irrelevant. Thus, using
Shannon entropy for aesthetic values is probably leading to
unnecessarily complex descriptions of behavior. Second, the
necessity to learn the right cognitive models and their parameters
lead to the prediction of high individuality in terms of aesthetic
values. This individuality arises because of the contribution
of interoceptive signals, which are different among people.
In addition, different socio-cultural contexts are distinct and
impart disparate values, thus leading to further individuality
through learning.
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