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ABSTRACT Living systems are inherently stochastic and operate in a noisy environment, yet despite all these uncertainties,
they perform their functions in a surprisingly reliable way. The biochemical mechanisms used by natural systems to tolerate and
control noise are still not fully understood, and this issue also limits our capacity to engineer reliable, quantitative synthetic bio-
logical circuits. We study how representative models of biochemical systems propagate and attenuate noise, accounting for
intrinsic as well as extrinsic noise. We investigate three molecular noise-filtering mechanisms, study their noise-reduction capa-
bilities and limitations, and show that nonlinear dynamics such as complex formation are necessary for efficient noise reduction.
We further suggest that the derived molecular filters are widespread in gene expression and regulation and, particularly, that
microRNAs can serve as such noise filters. To our knowledge, our results provide new insight into how biochemical networks
control noise and could be useful to build robust synthetic circuits.

Biochemical processes such as gene expression are inher-
ently stochastic and must control noise, which presents
itself as stochastic fluctuations. These fluctuations can be
extrinsic, arising from interactions occurring with other pro-
cesses in the environment, or intrinsic, resulting from the
random timing of the reactions themselves (1-6). Molecular
processes transform noisy input signals from the environ-
ment into output signals through a number of stages, with
signals represented by chemical species and each stage im-
plemented by a molecular reaction network. Because each
stage can compound the noise, to obtain a reliable final
output, natural systems must integrate mechanisms that,
directly or indirectly, reduce noise or otherwise confine it.
Examples include signaling cascades, which have been
shown to reduce extrinsic fluctuations (7), and the role
microRNA plays in attenuating the noise of protein expres-
sion (8).

Noise reduction has been studied extensively in elec-
tronics (9), and certain noise-filtering principles have been
successfully applied to molecular systems (10-12). For
instance, negative feedback and feed-forward loops have
been shown to reduce noise (13,14), and fundamental limits
for noise suppression of feedback loops have been derived
using techniques from control and information theory
(15). Analogs of mechanisms from signal processing such
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as low-pass filters, which transduce low-frequency signals
while attenuating high-frequency signals, have also been
observed in biochemical systems (16). However, these are
not always true low-pass filters: a low-pass filter must pre-
serve the low frequencies and, for example, not amplify
them while attenuating the high frequencies. Moreover,
the classical theory of filters in electronics does not account
for intrinsic noise. Therefore, difficulties arise when imple-
menting such filters in terms of stochastic biochemical net-
works, because it is not clear how intrinsic noise may affect
their noise-reduction performance (1,2,4,6).

Inspired by the concept of low-pass filters, we study the
noise-reduction capabilities of molecular filters in a stochas-
tic setting. We propose three fundamental filter modules and
their implementation as stochastic chemical reaction net-
works. We account for intrinsic as well as extrinsic noise
and derive principles holding for filters when embedded in
a general biochemical network, which may include multiple
feed-forward and feedback loops. First, we consider linear
filters (Fig. 1 A), implemented by means of at most unimo-
lecular reactions, and we show that in the case of positive
correlation between the elements of the network, they are
limited by Poisson levels, that is, the variance of the output
signal is lower bounded by its mean. We then show how the
presence of feedback loops may improve the performance of
linear filters below Poisson levels. Specific models of linear
filters have already been studied in the context of closed
models of gene expression (17,18). Here, although still
providing exact analysis based on the solution of the chem-
ical master equation (CME), we generalize the analysis in
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FIGURE 1 Molecular filters (top row) along with
plausible biological examples in which such com-
ponents can be found (middle row). We stress that
for many of these examples, it has yet to be verified
experimentally that those systems behave as our fil-
ters. We simply present them here to facilitate
understanding (see Discussion). Dashed arrows
represent catalytic production/activation effects
and continuous arrows molecular transitions. (A)
An example of a first-order low-pass filter imple-
mented by means of slow production and degrada-
tion reactions is shown (linear filter, Eq. 1). These
networks are present both at the translation and
transcription level to increase robustness of gene
expression. (B) An example of an annihilation
module (Eq. 7) given by coexpression of two spe-
cies that are then degraded together is shown. These
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networks may be a model for a class of microRNA-

Transl. lev. B. subtilis [29]
Transl. lev. S. cerevisiae [8]
Transl. lev. E.Coli [16]
Transl. lev. Yeast [35]

c-Myc miR-20a E2F1 [28]
Ubzx expression [18, 37]
Drosophila eye [23]

Transcr. lev. S. cerevisiae [35]|c-Myc miR-17-5p E2F1 [28]|c-Myc-E2F1-E2F2 [306]

regulated gene expression, in which mRNA and the
target protein are coexpressed. (C) An example of
an annihilation filter (Eq. 10) based on the annihi-
lation module is shown. Such a system may be a
suitable model for the c-Myc|E2F1|hsa-miR-20a

circuit with its extension to E2F2 (40) under the

assumption that E2F1 activates E2F2, except for the feed-forward loop between (A) and (C), which has no influence on noise reduction. We stress that
this assumption needs further experiments to be confirmed. (D) Biological systems in which the filters may play a role in reducing noise are given.

the referenced works, also taking into account the more
general and common case in which the dynamics of the
other components of the networks are left unspecified and
possibly involving nonlinearity and feedback loops. The
limitations in the noise-suppression capabilities of linear fil-
ters motivate us to consider nonlinear filters. We introduce a
nonlinear filter mechanism given by the coexpression of two
species that then bind together, called the annihilation mod-
ule (Fig. 1 B), which we demonstrate is able to reduce noise
to below Poisson levels. We then propose the annihilation
filter (Fig. I C), which combines the properties of the linear
filter and annihilation module. We show how the annihila-
tion filter in particular can greatly reduce molecular noise.
We observe that coexpression and nonlinear degradation
are key requirements for such noise reduction. This is
important to stress, as theoretical analysis is usually
restricted to linear degradation (15). Using analytical, nu-
merical, and stochastic simulation techniques, we demon-
strate how the different filters improve the robustness of
the systems in which they are embedded.

Finally, we discuss how the molecular filters we derive
are prevalent in gene expression. For instance, the linear fil-
ter, implemented by simply producing and degrading a spe-
cies at a slow enough rate, is a low-pass filter mechanism
widely deployed in gene expression to increase robustness
at both the transcription and translation level (18). More-
over, we find that the annihilation module and annihilation
filter are sound models of microRNA-regulated gene expres-
sion in the case of correlated expression of microRNAs with
the target gene. This supports the hypothesis that microRNA
may play a role in increasing the robustness and precision of
gene expression. We stress how the focus of this study is not

to offer new models of particular molecular processes, but to
identify fundamental and general mechanisms that, at the
molecular level, can reduce noise and to understand their
properties and limitations. Thus, to our knowledge, our re-
sults provide new insight into how biochemical networks
control noise.

MATERIALS AND METHODS

Detailed information about the modeling framework and mathematical der-
ivations can be found in the Supporting Materials and Methods. Chemical
reaction network (CRN) and linear noise approximation (LNA) simulations
have been performed using the Microsoft Visual GEC tool (19). Details on
the code can be found in Supporting Materials and Methods, Section G.

RESULTS

We first investigate filters composed from linear reactions
and show their limitations; then we discuss nonlinear filters,
showing how nonlinearities can improve the performances
in terms of noise reduction. The techniques used are detailed
in the Materials and Methods.

Linear filters and their limits in noise suppression

To model biological regulatory networks, we focus on the
underlying molecular interactions represented as CRNs. A
CRN is a set of biochemical species that interact according
to the reaction laws. Input and output signals are modeled as
biochemical species. In this study, species A will always
represent the input signal/species. We assume A is a noisy
input with the noise identified by its Fano factor (ratio
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between variance and mean). Thus, a molecular filter is a
CRN with input A and whose output has a reduced Fano fac-
tor compared to A but still maintains certain features of its
time evolution. In this study, we focus on filters that main-
tain the same long-term behavior of A while reducing its
Fano factor.

The CRN F (Eq. 1), which we call a linear filter, is
composed of a production and a degradation reaction with
output species B:

F:A-NA+B Bk, ¢))

where ki, k,eR.( are the rate parameters. We consider the
general scenario in which the linear filter F (Eq. 1) is
embedded within an arbitrarily complex, possibly nonlinear
reaction network with the only constraint that the output
species B is changed only by the reactions in 7. We do allow
B to act as a catalyst in an arbitrary number of reactions and
A to interact with the larger network with no constraint. This
scenario is very general and includes the case in which A is a
function of B with feedback loops.

Classical frequency analysis

The transfer function of F is obtained by applying the Four-
ier transform to the mass action rate equation corresponding
to B (20,21). As B is changed only by reaction in F, we
obtain

ddg(t)
dt

= ki Pa(t) — ka@p(1),

where @4 and @p are the deterministic signals modeling the
time evolution of A and B. In the frequency domain, we get

iw®p(0) = k®y(w) -k ®p(w),
where w is the angular frequency and ®(w), @ 4(w) are the

Fourier transforms of signals @5 and @4. For k| = k,, we
obtain

Sl

@) _ 1 )
a(w) 1—|—%

Sl

Equation 2 is the transfer function of a first-order
low-pass filter (see Supporting Materials and Methods,
Section A). This network attenuates frequencies higher
than the cutoff frequency by introducing a delay and inte-
grating the fast dynamics. From Eq. 2, the cutoff frequency
is exactly w = k;. This means that the higher the value of k;,
the less noise is filtered out, but the faster B tracks A.

Stochastic analysis

The classical frequency analysis of JF, based on the Fourier
transform of the rate equations, does not take into account
the intrinsic noise introduced by the reactions firing in F;
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it only considers the extrinsic noise modeled as fast fluctu-
ations of the input. However, the intrinsic noise cannot sim-
ply be neglected, as it may drive the behavior of biological
systems (16). This is the case in gene expression, in which
low molecular counts are often involved and deterministic
modeling is generally unsatisfactory (3,22). To resolve
this, we need to consider the continuous time Markov chain
induced by F, whose transient evolution is described by the
CME (23). The evolution of the moments of the CME can be
described as a (possibly infinite) set of ordinary differential
equations, so-called moment equations (24,25) (Supporting
Materials and Methods, Section B). We quantify the noise
with the Fano factor (ratio between expectation and vari-
ance) and, under the general scenario described in the previ-
ous section, using moment equations, the transient evolution
of the expectation of B at time ¢ can be computed exactly as

dE[B(1)]
dt

= KEA(®)] - LE[B()],

where E[A(?)] is the expectation of A at time . We call
lim,_, » E[A(t)] = E[A],, the steady-state solution of E[A],
and we assume it exists and is finite. The steady-state
solution of B, E[B], can then be derived by solving
(dE[B(t)]/dt) = 0, which results in

ki

EB, = k—zE[A]w- (©)

Equation 3 guarantees that the expected value of B always
tracks the expectation of A, no matter which biochemical
system is producing A and what happens in the rest of the
system.

Importantly, for V[A],, (the variance of A at steady state),
we can derive the following exact relation

©

VIB]., = E[B]. —i—%Cov[A,B]w, 4

where Cov[A,B],, = E[AB],, — E[A]E[B],, is the covari-
ance of A and B at steady state, with E[AB], the expectation
of A B at steady state. A full derivation of Eqs. 3 and 4 is
shown in the Supporting Materials and Methods,
Section C. The idea is that even though B can participate
in other reactions as a catalyst and A may be a nonlinear
function of B, in Eq. 3, all the nonlinearities disappear,
whereas in Eq. 4, these are included in the term
Cov[A,B],. Equation 4 shows that for any input signal,
the filtered signal B has variance that is equal to its
mean plus the covariance between A and B. Assuming
A and B are non-negatively correlated, then we have
E[AB], > EJA] ,E[B],,. As aresult, in the case of non-nega-
tive correlation between A and B, for any kj, kye R, the
following lower bound holds:

Fg>1, )



where Fp is the Fano factor of B at steady state. The above
lower bound has already been observed and studied in the
context of specific closed models of gene expression for
which mRNA and protein are positively correlated
(17,18,26). However, in the more general scenario we
consider, we can observe that Eq. 5 holds only in the case
of non-negative correlation of the species, meaning that a
simple birth-death process of a downstream component
cannot reduce the noise of an input signal below Poisson
levels.

A and B being non-negatively correlated is natural,
because A catalyzes the production of B. In fact, in Support-
ing Materials and Methods, Section C, we show that for a
large class of systems, A and B are effectively positively
correlated. However, in the following example, we show
that a negative feedback loop between B and A may change
the sign of their correlation, potentially leading to noise
reduction to below Poisson levels. Thus, our analysis gives
a further explanation of why negative feedback regulation in
gene expression may be a widely selected mechanism to
reduce noise and increase robustness (13) (see Discussion).

In example 1, we consider the following CRN, in which
there is feedback between A and B and L is an auxiliary
species:

_)IL L_>100L+A +A, A_)041A_)0401A+B; B_’O'OI

where k; > 0 is a rate constant, that is, feedback between A
and B is present. The strength of the feedback can be
controlled by changing the rate k. B can be thought of as
a protein that inhibits its expression. The above CRN meets
the condition of validity of Eqs. 3 and 4. Thus, Eq. 3 guaran-
tees that for any possible initial condition and value of &y,

whereas Eq. 4 guarantees that Fg = E[A], + Cov[A,B],.
Thus, to compute the Fano factor of B at steady state, we
need to estimate Cov[A, B],,. The system is nonlinear. As
a consequence, Cov[A,B], cannot be computed exactly
but can be estimated using the LNA. We obtain that, for
k> 0.277368, Cov|A,B],, <0. Thus, Fp < 1 This shows
how strong feedback can reduce the Fano factor of B to
below Poisson levels. However, strong feedback means
strong repression of the mean of B and A by Eq. 3. To
confirm the mathematical analysis, in Fig. 2, for different
values of k; we plot a single stochastic simulation of
B compared with a signal with the same mean of B but
affected by Poisson noise.

One might think that greater noise reduction compared to
the linear filter Eq. | can be obtained by considering higher-

Molecular Filters for Noise Reduction

order low-pass filters (i.e., low-pass filters whose transfer
function has order greater than 1). However, because such
filters (in the case of real and nonpositive roots) can be im-
plemented as cascades of linear filters (Supporting Materials
and Methods, Section C), in which all components are
therefore limited by Poisson noise, their noise-reduction
performance is similarly limited. An example of such a
mechanism can be found in multistep models of gene
expression (26), in which protein expression is a sequence
of linear reactions, thus limited by Eq. 4. Another example
can be observed in signaling cascades, such as the mitogen-
activated protein kinase cascade (27), in which nonlinear
filtering mechanisms are necessary to reduce stochastic fluc-
tuations of a downstream process below Poisson levels (7).

Correlated production and degradation can
reduce noise below Poisson levels

The noise filtering capability of linear filters can be
improved by using higher-order reactions. The simplest sec-
ond-order reaction is complex formation. We show how
complex formation of two molecules that are positively
correlated in their expression can indeed work as an efficient
noise filter. The following network, which we call the

; B+L-YB, (©6)

annihilation module (Fig. 1 B), is based on the binding
and degradation of two parallel synthesized molecules.
The annihilation module can be described by the following
two reactions:

M: A-"A+B+C; B+C-", )

where A is the input and B (or equivalently C) is the output.
In this module, B and C are coexpressed, and then they
inhibit each other. To study how the annihilation module be-
haves with respect to intrinsic and extrinsic noise, we
consider a general birth-death process A affected by Poisson
noise. That is, A is generated and removed by the following
reactions:

—hA; A-M

Thus, we have E[A(f)] = V[A(f)],7€ R>. Because Eq. 7
is nonlinear, a general and exact analysis as in the linear case
cannot be performed, as the moment equations cannot be
solved. Consequently, we make use of the LNA (23,28)
and derive an analytical solution for the expectation
and Fano factor of B at steady state for such an input
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FIGURE 2 For the CRN in Eq. 6, we plot a stochastic simulation of B for three different values of krand assuming initial condition of all the species are 0.

In all the plots, P is a signal with Poisson noise such that E[P] ,

=E[A],,. When the feedback is weak (k;=

0.00277), the Fano factor of B is greater than one.

For k;= 0.277, our analysis predicts a Fano factor for B of ~1. When the feedback is strong (k, = 20.277), the Fano factor of B is smaller than 1, but there is

also a strong repression of E[B] . .

process A. We get (see Supporting Materials and Methods,
Section D)

EB), = /nEAl ®)

<]
L)

and

2rl m+4r1r2k — rlk k 9
811r2k 2k ’ ( )

where Fjp stands for the Fano factor of B at steady state.
Assuming r; =rvy and r, = r, with r, yeR,, then for
r—0, we have Fg = (1/2), thus halving the variance with
respect to Poisson noise. Moreover, for r— o, we have

= (2+ n/4), where n = (E[B], /E[A], ). This leads
to a surprising result: for n = 1, that is, E[B],, = E[A],, (per-
fect tracking of the mean), the Fano factor is always smaller
than 1 for arbitrarily large values of r; and r,. Thus, M can
reduce the noise even without introducing a delay in its buft-
ering action. This can be justified because this architecture,
in which B and C are coexpressed, enables attenuation of the
low-frequency components of the input signal. Therefore,
we obtain noise reduction even if the high-frequency com-
ponents are not necessarily attenuated (Supporting Mate-
rials and Methods, Section D).

We note that, in the annihilation module, the steady-state
value of the output signal is proportional not to the steady-
state value of the input signal but to its square root (Eq. 8).
This may be beneficial in molecular networks, in which it
may help maintain regulatory stability under changes in initial
conditions. However, this mechanism would not be appro-
priate in cases in which the long-term evolution of the up-
stream component should be followed, because changes to
the input would not be followed proportionally (Fig. 3 B).

The annihilation module is closely related to the inco-
herent feed-forward loop motif (14), in which two species
are coexpressed and one inhibits the other. However, in Sup-
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porting Materials and Methods, Section D, we show that an
incoherent feed-forward loop motif with mass action ki-
netics cannot reduce the noise below Poisson levels. Hence,
having B and C degraded together is essential for efficient
noise reduction.

The annihilation module and the annihilation filter (see
next section) are also related to the antithetical integral feed-
back motif (10). The main similarity lies in the fact that all
these modules have an annihilation reaction, thus suggesting
a key role for such a reaction in dealing with noisy dynamics.
However, we stress here how the mechanisms differ: a key
requirement of both our filters for efficient noise reduction
is the coexpression of the molecules that will participate in
the annihilation reaction. This requirement cannot be imple-
mented in the antithetical integral feedback schema. More-
over, the antithetical integral feedback motif is known to
increase the noise of the controlled network (29). In fact,
we argue that one of the reasons why the noise increases
in the antithetical integral feedback is that the species that
undergo an annihilation reaction are not coexpressed. To
illustrate this point, in Fig. 4, we compare two networks:
one is the annihilation filter, the other is identical to the anni-
hilation filter except for the fact that B and D are not coex-
pressed but only positively correlated in their expression.
The two networks, deterministically, behave identically
(they have same rate equations). However, interestingly,
the stochastic behavior is completely different, thus demon-
strating the importance of coexpression.

Annihilation filter suppresses molecular noise

We propose a general architecture, called the annihilation
filter, which is based on the annihilation module but also
guarantees E[C],, = sE[A],, for a given constant s, indepen-
dently of E[A],, (in what follows, without any loss of gener-
ality, we assume s = 1). We show how the annihilation filter
can asymptotically reduce molecular noise to zero, that is,
for appropriate limiting values for the rates, the Fano factor
of the output converges to zero (Eq. 15).
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FIGURE 3 Comparison of the actions of F (linear filter, Eq. 1), M (annihilation module, Eq. 7), and A (annihilation filter, Eq. 10) on noisy input A gener-
ated by reactions —hA+ A, A—* (top row). (Middle row) Plots of expectation and standard deviation of the respective species until time 1200 are shown,
as estimated by the linear noise approximation (LNA). (Bottom row) Plots of the effect of each filter obtained from a single stochastic simulation until time
4000 are shown. (A) The linear filter (Eq. 1), for k; = 0.0064, k, = 0.0064, introduces a delay to buffer stochastic fluctuations and reduce the noise, but only to
Poisson levels. (B) For r; = 0.005,r, = 0.00005, the annihilation module (Eq. 7) improves noise-reduction performance but cannot proportionally follow
changes in the input. In fact, Eq. 8 predicts that the expectation of the output of the annihilation module changes with the square root of input. Thus, changes
on the average value of the input are attenuated in the output. (C) For r; = 100,r, = 1000,73 = 0.000055, the annihilation filter (Eq. 10) not only improves

the noise reduction capabilities compared to the other modules but also proportionally follows changes in the input.

Because the system is nonlinear, to study the noise-reduc-

Our annihilation filter, A, is illustrated in Fig. 3 C. A is
tion capabilities of the annihilation filter, we make use of the

composed of the following reactions:

A:A->"A+B+D D—"E B+E—-"B+A—-"A+C E+C-". (10)

LNA. We assume A is a general input process with extrinsic
noise modeled by a Poisson process. That is, A is generated
and removed by the following reactions:

A is the input species and C is the output-filtered species.
The first three reactions are similar to the annihilation mod-
ule, but with an additional delay introduced by the reaction
D—""E. Equation 3 guarantees that D is a copy of A, and
the number of times that D molecules have been produced
or destroyed is stored respectively in B and E. As the role
of these reactions is to act as a sensor, high values of r| are

—hA; AN

more informative than small ones. If r; is large enough, the
count of C is modified not any time a B or E molecule is pro-
duced but just by their difference. The fourth and fifth reac-
tions increase or decrease C. The rate r3 controls the delay
introduced by the filter and thus also the noise reduction.

Thus, we have E[A(f)] = V[A(7)],te R>¢. Using the LNA
equations, we can derive the following conditions (Support-
ing Materials and Methods, Section E):

E[A],, = ED].,, a1
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Thus, by increasing rq, the noise can be made arbitrarily
small, showing how this architecture has ideal noise-
reduction capabilities: independently of the intrinsic noise
introduced, the total noise can be made arbitrarily close to
0.

Note that in the CRN (29), it is assumed that some reac-
tions have same rates. This assumption allows us to obtain
simpler analytic results. To show that the above analysis
also remains valid in the more general scenario in which
the reactions have different rates, we consider the following
CRN, modifying (29):

A:A—-""A+B+D D—"?E B+E—>"B+A—->""A4+C E+C—-"2. (16)

Assuming the same initial concentration of B, E, at steady
state, C will always track A independently of the value of ry,
ry,r3. That iS, E[A]w = E[C]w

We can now study the Fano factor of C at steady state,
Fc. To do that, we assume r, = (y/r),r3 = r, where v,
r are constants. For the annihilation filter to work as an effi-
cient noise filter, as we discussed, we need large r, and
small 3. Thus, we study Fc for r—0. Under this limit,
we obtain the following elegant form for the Fano factor
of C:

. k
limFe = —2-.
>0 ¢ kp+r1

Hence, we have that

lim (hch) = 0. (15)

rp— o \ r—0

3006 Biophysical Journal 774, 3000-3011, June 19, 2018

In Fig. 5, we compute F¢ and E[C],, for different values
of 11,712, and r3 1,73 5. It is easy to observe that Eq. 15 is
confirmed: if 71,7, are big enough compared to r3 1,732
the Fano factor will decrease, converging to a value of 0.
Nevertheless, if 711 #7r2 or 13| #7132, the noise will still
be reduced, but this will affect E[C],, which may be
different from E[A], .

The first two reactions of the annihilation filter (Eq. 10)
can be thought of as a model for coexpression of molecules
B and E at different rates. Such a model of coexpression can
be generalized as having B and E coexpressed and then in-
teracting after a pathway of linear reactions. For instance,
this is the case for mRNA and microRNA, which, when
coexpressed, undergo a series of maturation steps before in-
teracting (26,30). In Fig. 6, we show that these auxiliary re-
actions do not influence the noise-reduction capabilities of
the annihilation filter.
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Numerical analysis

Although the mathematical analysis performed on linear
filters is exact and general, for the annihilation module and
annihilation filter, our claims are based on the LNA and for
birth-death input processes. This is because those filters are
nonlinear; hence, exact analysis based on the moment equa-
tions is not possible. Thus, we need to support our results
about the noise-suppression capabilities of such networks
with stochastic simulations of such filters for different classes
of input. To do that, in Fig. 3, we consider a step-like pertur-
bation, and in Supporting Materials and Methods, Section F,
we consider oscillatory inputs. In both cases, the annihilation
filter outperforms the other filters: for the same delay intro-
duced, it suppresses more noise at the high frequencies while
still maintaining similar long-term behavior. However, the
annihilation module does not follow the long-term behavior
of the input proportionally. In fact, Eq. 8 predicts that the
expectation of the output of the annihilation module changes
with the square root of input. Thus, changes of the input are
attenuated in the output.

To further confirm the mathematical analysis, using sto-
chastic simulations, we compare the power spectral density
(PSD) (see Materials and Methods) of the input species
affected by Poisson noise with the PSD of the output species
of the annihilation filter (Eq. 10) and of the linear filter
(Eq. 1), both for the same input (see Fig. 7 A). We can see
that both filters are indeed low-pass filters in the sense that
they attenuate the high frequencies. However, although
they behave similarly at the high frequencies, the linear filter
is less robust to intrinsic noise, and such intrinsic noise am-
plifies the low frequencies, resulting in noise reduction being
lower bounded by Poisson dynamics. That is, the reactions of

Molecular Filters for Noise Reduction

FIGURE 5 For the CRN in Eq. 16, the figure
shows how the Fano factor of (C), F¢, and the
mean value of (C) at steady state, E[C],,, depend
onry 1,712 andrs,r3,. Forall figures, we consider
an input species (A) such that E[A] , = 100 and (A)
is affected by Poisson noise. It is possible to
observe that as predicted by the theoretical
analysis, the Fano factor tends to decrease either
when both r;;,r, increase or when both
31,13, decrease. Interestingly, note that F tends
to be smaller when there is a strong suppression of
the mean. Thus, when a low number of molecules
is involved, the noise has more influence on the
behavior of the system. (A and C) We plot F¢
and E[C|, for rij =rip =10 and r, = 100.
The nonlinearity of the reactions involved is such
that Fc and E[C], are robust with respect to
parameter variation. (B and D) We plot F and
E[C], for r3; =r3, =0.001 and r, = 100. In
this case, E[C],, changes linearly with the rates.
F tends to increase when there is a strong ampli-
fication of E[C].,.

the linear filter introduce slow and medium time variations of
the output, leading to an amplification of the low-frequency
components of its spectrum. The annihilation filter enables a
much better reduction of the intrinsic noise, leading to a
smaller amplification of the low frequencies. The connection
between the noise of a process and its PSD is explained in
detail in the Supporting Materials and Methods, Section A).

InFig. 7 B, we consider again an input species A affected by
Poisson noise, and, on this input, we compare the action of the
annihilation filter (Eq. 10), annihilation module (Eq. 7), and
linear filter (Eq. 1). To reduce the number of free variables
in the system, we constrain the output of the filters to have
the same mean as A. Then we plot the Fano factor as a function
of the remaining free rate parameters. As expected, our key
observations are that the annihilation module is the only
mechanism that guarantees noise reduction for any value of
the parameter rate, confirming the theoretical result of Eq. 9
that it is able to reduce the noise even without introducing a
delay inits buffering action. Also, for an arbitrarily long delay,
the annihilation filter converges to a Fano factor of 0, showing
the ability of this network to remove all the noise (variance
tends to 0 when delay tends to infinity). On the other hand,
the linear filter converges to a Fano factor of 1, corresponding
to Poisson levels, thus confirming Eq. 5.

DISCUSSION

Gene and protein expression can work as linear
filters

Gene expression is often modeled as a two- or three-stage
process, in which mRNA is transcribed from a transcription

Biophysical Journal 174, 3000-3011, June 19, 2018 3007
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factor TF and the protein P is translated from the mRNA
31):

TF —>*TF ++ mRNA;

Under this modeling assumption, the linear filtering mecha-
nism (Eq. 1) may be present both at the transcription (top
two reactions) and translation level (bottom two reactions)
to buffer noise and increase robustness by slowing down
transcription or translation. At the transcription level, ineffi-
cient transcription that follows fast promoter activation is a
mechanism that has been widely observed to buffer fluctua-
tions in the mRNA time evolution (32). At the translation
level, the linear filtering mechanism reduces the noise in
protein expression, as supported by experimental evidence
in Bacillus subtilis and Saccharomyces cerevisiae (33,34).
Equation 4 guarantees that independently of the presence
of an arbitrary number of feed-forward or feedback loops
between P and transcription factor or mRNA, we have

V[P, = E[P].. +§PC0v[mRNA,P]w. (17)
P

Thus, if mRNA and protein are positively correlated, then
the stochastic fluctuations in protein expression cannot be
reduced below Poisson levels, and this limit is approached
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mRNA —

for slow translation. Hence, Eq. 17 may explain why in yeast
and Escherichia coli, the translation rates tend to be slower

:mRNA—"mRNA + P; P—.

than the transcription rates (32,35) and also suggests that
mechanisms to induce a negative correlation between pro-
tein and mRNA may have been selected to enhance robust-
ness. This is the case for negative feedback, which may thus
enable noise reduction below Poisson levels, as again
confirmed by experimental evidence (13). We note that a
more realistic model of gene expression requires representa-
tion of transcription and translation as multistep processes.
However, because such processes can still be modeled as
a sequence of first-order reactions (26), our analysis and
the linear-filter mechanism still apply.

MicroRNAs can serve as annihilation filters

Slow translation/transcription is a very simple mechanism
of noise reduction. Because gene expression involves low
molecular counts and highly stochastic signals, different
(and more complex) network architectures may have
been selected to deal with scenarios in which greater noise
reduction is needed (36). A simple example can be found
in microRNA-regulated post-transcriptional regulation.
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FIGURE 7 (A) Power spectral density (PSD) of input affected by Poisson
noise (green), compared with the output of the linear filter (Eq. 1) applied
on such input (blue) and of the annihilation filter (Eq. 10) (red). For the
linear filter, we fix the following parameters k; = k, = 0.008, whereas
for the annihilation filter, we have r; = 1,1, = 10,r3 = 0.00008. The Pois-
son input is generated by the following reactions: — '®lnput; Input—"'.
The power spectrum is estimated using the Blackman-Tukey spectral esti-
mate algorithm with frequency deep resolution (49), as implemented in
MATLAB over 300,000 data points with a sampling time of 0.1 s. For
each system, we plot the 99% confidence interval. (B) The Fano factors
of the annihilation module (blue), annihilation filter (yellow), and linear fil-
ter (red) for an input affected by Poisson noise (dotted line) are shown. The
outputs of the filters are constrained to have the same expectation as the
input species at steady state. The plots are of the function of the remaining
free rate parameters. The Fano factor is estimated by means of the LNA.

MicroRNAs (miRNAs) are short RNAs that are widely
conserved in biological networks (37). In animals, it is com-
mon that miRNAs and their target mRNAs are coexpressed
or positively correlated in their expression (38-40). For
example, c-Myc induces the expression of the miRNAs
miR-17-5p and miR-20a together with their target E2F1
(41). Furthermore, the system in which miRNAs repress
gene expression by binding with the target mRNAs and
either inhibiting translation of mRNA or promoting
mRNA decay (42,43) leads to a pattern that can be modeled
with the annihilation module (Fig. 1 B). Although it is well
accepted that miRNAs confer robustness on gene expression
(8,38,44), it is still not clear what aspects of their inhibitory
mechanisms are used to gain efficient noise reduction (45),
and previous analysis has focused on miRNAs that are not
coexpressed with the target proteins (8). One hypothesis is
that coexpression of miRNAs with their targets has a role
in increasing robustness of gene expression (36). This is
also supported by experimental evidence (46). Our mathe-
matical analysis confirms such a hypothesis and shows

Molecular Filters for Noise Reduction

that correlated expression of miRNAs and mRNA, followed
by translational repression of the mRNA when bound to the
microRNA, may lead to noise reduction below Poisson
levels. This result suggests that microRNA regulation may
have been selected to postregulate highly noisy genes.
One specific example of such a pattern can be found in
the Drosophila eye, where miR-7 and its target protein are
coexpressed and experimental studies have suggested the
role of miR-7 in buffering fluctuations (39,47). A particular
network involving miR-7 and verified experimentally in
(47) is shown in Fig. 8. This network is responsible for sen-
sory organ precursor fate. An annihilation module between
Ato, miR-7, and E(slp) genes may have a role in increasing
robustness. We stress that it has yet to be verified experi-
mentally that miR-7 works as an annihilation filter, espe-
cially because of the lack of experiments concerning the
joint degradation of microRNA and mRNA in different or-
ganisms (48).

We have also found that the annihilation filter (Eq. 10)
may be a suitable model for the c-Myc|E2F1|hsa-miR-20a
circuit, with its extension to E2F2 in the case when E2F1 ac-
tivates E2F2 (40,41) (Fig. 1 C). This may suggests that miR-
20a, by repressing both E2F1 and E2F2, confers greater
robustness on E2F2 expression. We note, however, that there
is no experimental evidence yet for whether E2F1 activates
or represses E2F2. Note that the annihilation filter link be-
tween A (c-Myc) and C (E2F2) is not present here: its
role is to regulate the mean of the output, but it has no influ-
ence on noise reduction.

In conclusion, we analyzed three simple molecular noise
filters and derived their properties and limitations. These fil-
ters can be related to biological mechanisms. We show, for
example, that gene expression with slow translation/tran-
scription can reduce noise but only down to Poisson levels
(Eq. 17), even when considering linear multiple-step models

l o/ |

— Atonal -->

- E(spI)CYmiRJ

FIGURE 8 The network controlling sensory organ precursor fate (47).
miR-7 participates in an annihilation module highlighted in black. The
annihilation module is also interconnected with a double-negative feedback
loop between Ato and E(spl), with miR-7 as an effector of Ato and E(spl)
directly inhibiting Ato.
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(26). In contrast, the annihilation module (Eq. 7), which re-
lies on coexpression and joint degradation, can drive the
noise below Poisson levels. Such mechanisms can be related
to microRNA regulated systems, in which a key requirement
for effective noise reduction is the coexpression of mRNA
with its miRNAs. Our analysis suggests how a trade-off be-
tween performance and resources arises: simpler circuits
can reduce less noise but also require fewer resources. In
this sense, it is interesting to emphasize that complex noise
reduction mechanisms, such as the annihilation module,
tend to be found in highly regulated systems. In fact, coex-
pression of mRNA and microRNA, followed by translation
inhibition, is a pattern that is common in animals but much
less prevalent in plants (42).

Although biological systems deal with noise in a variety
of ways, in this study, we focused on scenarios in which
noise should be controlled. It remains an interesting
endeavor to similarly discover and analyze the basic prin-
ciples that allow biological systems to exploit noise func-
tionally and use it to their benefit (2). We believe that a
systematic analysis of noise reduction in molecular sys-
tems, together with evidence of widespread noise-reduc-
tion capabilities in biological systems such as in gene
expression, are fundamental to obtaining new insights
into the structure and evolutionary origin of noise-reduc-
tion mechanisms.

SUPPORTING MATERIAL

Supporting Materials and Methods and eight figures are available at http://
www.biophysj.org/biophysj/supplemental/S0006-3495(18)30585-X.
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