
 International Journal of 

Molecular Sciences

Review

Gold Nanoparticles: A Powerful Tool to Visualize
Proteins on Ordered Mesoporous Silica and for the
Realization of Theranostic Nanobioconjugates

Marco Piludu 1,*, Luca Medda 2, Maura Monduzzi 3 ID and Andrea Salis 3,* ID

1 Department of Biomedical Science, University of Cagliari, Monserrato, CA 09042, Italy
2 Department of Chemistry, CSGI, University of Florence, Sesto Fiorentino, FI 50019, Italy;

medda.luc@gmail.com
3 Department of Chemical and Geological Sciences, CSGI, University of Cagliari, Monserrato, CA 90042, Italy;

monduzzi@unica.it
* Correspondence: mpiludu@unica.it (M.P.); asalis@unica.it (A.S.);

Tel.: +39-070-675-4060 (M.P.); +39-070-675-4352 (A.S.)

Received: 21 June 2018; Accepted: 5 July 2018; Published: 8 July 2018
����������
�������

Abstract: Ordered mesoporous silica (OMS) is a very interesting nanostructured material for the
design and engineering of new target and controlled drug-delivery systems. Particularly relevant is
the interaction between OMS and proteins. Large pores (6–9 nm) micrometric particles can be used
for the realization of a drug depot system where therapeutic proteins are adsorbed either inside the
mesopores or on the external surface. Small pores (1–2 nm) mesoporous silica nanoparticles (MSNs),
can be injected in the blood stream. In the latter case, therapeutic proteins are mainly adsorbed on
the MSNs’ external surface. Whenever a protein-OMS conjugate is prepared, a diagnostic method
to locate the protein either on the internal or the external silica surface is of utmost importance.
To visualize the fine localization of proteins adsorbed in mesoporous silica micro- and nanoparticles,
we have employed specific transmission electron microscopy (TEM) analytical strategies based on
the use of gold nanoparticles (GNPs) conjugates. GNPs are gaining in popularity, representing a
fundamental tool to design future applications of MSNs in nanomedicine by realizing theranostic
nanobioconjugates. It may be pointed out that we are at the very beginning of a new age of the
nanomaterial science: the “mesoporous golden age”.
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1. Introduction: Ordered Mesoporous Silica (OMS) Materials in Nanomedicine

1.1. The Beginning

As long ago as 1990, when they were discovered [1], ordered mesoporous silica (OMS) materials
drew the attention of most material scientists and engineers. Due to their singular structural
properties [2], OMSs have been intensely studied in recent years for the design of new biomaterials.
They are mainly characterized by ordered channels and cavities with uniform pores (2–50 nm) [3]
(Figure 1). The high surface area makes these materials suitable for new and innovative applications.
OMSs have largely been investigated for catalysis [4] and biocatalysis purposes [5,6] and have
shown potential features to be employed in nanomedicine [3,7–9]. As a result of the development of
strategic synthesis procedures OMS structural features can be modified and fitted to specific aims,
extending enormously their range of applications.
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Figure 1. Transmission electron microscopy (TEM) images of Ordered mesoporous silica (OMS) 
nanoparticles. (a) Original SBA-15 materials and (b) MCM-41 based mesoporous silica nanoparticles 
(MSNs). Reprinted with permission from [10]. Copyright 2018, Elsevier. 

Their capacity to house into the pore channels specific therapeutic molecules have paved the 
way for the developing of innovative applications of mesoporous silica as drug delivery systems 
[3,11–15]. OMS can be chemically modified to load and release specific therapeutic molecules 
according to controlled conditions [16,17]. Biomedical application of OMS is largely associated to 
their fate in biological media which, in turn, is related to their surface properties. Surface 
functionalization (Figure 2) plays a key role in determining biodegradation, cytotoxicity, and 
biodistribution through interactions which may be mediated by the macromolecules occurring in 
biological media [18–20]. 

 
Figure 2. Schematic representation of the sequential steps of functionalization process of MSN surface 
with specific biomolecules. MSN particles before (a) and after (b) functionalization process. 

Important steps toward the development of targeted drug depot systems are the understanding 
of the mechanisms that regulate cell interaction of functionalized mesoporous silica nanoparticles 
(MSNs). Previous works have investigated by means of light microscopy the cellular uptake of MSNs 
in vitro. The strategy was to attach fluorescent dye molecules to the MSNs surface to visualize and 
locate the particles inside the cellular compartment [18,21–25]. Additional analyses through electron 
microscopy have highlighted, at ultrastructural level, the main morphological events that take place 
during cellular MSN internalization [18,25]. It was shown that cellular uptake of MSNs is strictly 
linked to the surface charge [25,26]. In this context, proteins have been indicated to be the right 
candidates to tailor the OMS behavior in a given biological system. For instance, surface protein 
functionalization of MSNs improves their biocompatibility when injected in biological media [27,28]. 
Moreover, the interaction between MSN and cellular surface can easily be modulated and controlled 
through specific protein functionalization [29] (Figure 3). Serum proteins, antibodies represent some 
of the wide variety of proteins that can be used to tailor chemical properties of MSNs in order to 
increase their biocompatibility or to set controlled release toward targeted tissues [30,31]. Particularly 
the adsorption of specific peptides and proteins characterized by important biological functions, 
represents key factors in the design and engineering of new nanosized drug-delivery systems. 
Moreover, it is well known that antibodies are biomacromolecules produced by immune system that 
are able to recognize a large variety of pathogens such as virus and bacteria [32] or to interact with 
cancer cells [33,34] through specific binding. In recent years, several therapeutic applications of the 

Figure 1. Transmission electron microscopy (TEM) images of Ordered mesoporous silica (OMS)
nanoparticles. (a) Original SBA-15 materials and (b) MCM-41 based mesoporous silica nanoparticles
(MSNs). Reprinted with permission from [10]. Copyright 2018, Elsevier.

Their capacity to house into the pore channels specific therapeutic molecules have paved the way
for the developing of innovative applications of mesoporous silica as drug delivery systems [3,11–15].
OMS can be chemically modified to load and release specific therapeutic molecules according to
controlled conditions [16,17]. Biomedical application of OMS is largely associated to their fate in
biological media which, in turn, is related to their surface properties. Surface functionalization
(Figure 2) plays a key role in determining biodegradation, cytotoxicity, and biodistribution through
interactions which may be mediated by the macromolecules occurring in biological media [18–20].
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Important steps toward the development of targeted drug depot systems are the understanding
of the mechanisms that regulate cell interaction of functionalized mesoporous silica nanoparticles
(MSNs). Previous works have investigated by means of light microscopy the cellular uptake of MSNs
in vitro. The strategy was to attach fluorescent dye molecules to the MSNs surface to visualize and
locate the particles inside the cellular compartment [18,21–25]. Additional analyses through electron
microscopy have highlighted, at ultrastructural level, the main morphological events that take place
during cellular MSN internalization [18,25]. It was shown that cellular uptake of MSNs is strictly
linked to the surface charge [25,26]. In this context, proteins have been indicated to be the right
candidates to tailor the OMS behavior in a given biological system. For instance, surface protein
functionalization of MSNs improves their biocompatibility when injected in biological media [27,28].
Moreover, the interaction between MSN and cellular surface can easily be modulated and controlled
through specific protein functionalization [29] (Figure 3). Serum proteins, antibodies represent some of
the wide variety of proteins that can be used to tailor chemical properties of MSNs in order to increase
their biocompatibility or to set controlled release toward targeted tissues [30,31]. Particularly the
adsorption of specific peptides and proteins characterized by important biological functions, represents
key factors in the design and engineering of new nanosized drug-delivery systems. Moreover, it is well
known that antibodies are biomacromolecules produced by immune system that are able to recognize
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a large variety of pathogens such as virus and bacteria [32] or to interact with cancer cells [33,34]
through specific binding. In recent years, several therapeutic applications of the antibodies have been
developed for the cure of autoimmune disorders or for the treatment of cancer disease [32].
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1.2. The Golden Age

Several physico-chemical techniques, such as N2-adsorption isotherms and thermogravmetric
analysis (TGA), provide important information on protein loading on OMS, but cannot directly
visualize proteins adsorbed on the OMS’ surfaces. Different analytical methods are needed to deeply
investigate the interaction of proteins with OMS and to elucidate the cellular interaction mechanisms
of protein-MSN conjugates.

The strategic use of gold nanoparticles (GNPs) with dimension smaller than 100 nm has opened
the way to the development of new and intriguing analytical procedures. The unique properties of
GNPs make them suitable for biodiagnostic and bioanalitycal assays so that in the last years have
received great attention as biosensors [35–37]. As a matter of fact, GNPs can be identified through
different methodologies using their light absorption and scattering properties [38]. Because of their
electron density properties GNPs are extremely suitable for labelling and can easily be revealed by
electron microscopy techniques. Moreover, due to their peculiar surface chemistry they can be bound to
a large variety of molecules, proteins included. All these features, added together, provide a formidable
investigative tool to permit qualitative and quantitative analyses of protein location, and distribution
at the ultrastructural level. Additionally, due to their optical features, they have been suggested for
specific purposes that go beyond the imaging methodologies. Indeed, GNPs are good candidates
for the development of theranostic nanobioconjugates to be used in medicine therapy [39]. It is well
known that gold nanoparticles can be heated when exposed to light source. Photothermal therapy
based on the use of the GNPs has already been tested in specifically targeted GNPs that can be used to
destroy selectively malignant cancer cells, following laser exposure [40,41].

In this review, we aim to describe the principal innovative transmission electron microscopy
(TEM) analytical strategies, based on the use of nanogold conjugates, to monitor proteins adsorbed
on OMS. This topic is related to the exploitation of GNPs’ potentiality in different nanomedicine
applications, spanning from controlled drug delivery depots to diagnostic and theranostic purposes
(Scheme 1). This is just the tip of the iceberg.
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conjugated antibodies to recognize and bind specifically proteins, thus providing evidences about 
protein content and distribution. Colloidal gold, as electron dense marker, represents the best 
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binding of antibody-GNP conjugates. GNPs provide an unequivocal signal that can easily be 
distinguished in both biological and inorganic samples. 

IGS was used by Piludu and coworkers to locate the presence and distribution of specific 
proteins in several animal tissues [43–46]. The purpose of these investigations was to provide 
additional data concerning the secretion process of different antimicrobial peptides (AMP) in human 
salivary glands. To date, the AMP have been well characterized during the last 20 years, however 
only a few data were reported about their localization and secretion in human tissues. The IGS 
procedures permitted, for the first time, to localize and to study the distribution of several AMP in 
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extended enormously the previous biochemical investigations highlighting the fine visualization of 
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2. “Seeing Is Believing”: Immunogold Labelling Methods to Monitor Proteins

2.1. Protein Localization in Animal Cells and Tissues: The Case of Histatin

Since their development immunogold staining (IGS) techniques became the elective procedures
for macromolecules’ detection in animal cells and tissues. IGS techniques represent a fundamental
tool in ultrastructural biological assays aimed to describe protein fine localization in animal tissues.
IGS procedures were first developed by Faulk and Taylor in 1971 [42] to meet suitable protein analytical
requirements during ultrastructural morphological investigations in animal tissues. They were able,
for the first time, to improve the standard routinely TEM studies adding details at the molecular
level about protein location and distribution. Before that, TEM methodologies were generally based
on pure morphological analysis of biological samples. Shape, size, and number of subcellular
organelles were the main data accessible following TEM examination. Since then, IGS techniques have
extensively been used to localize proteins in animal tissues and revolutionized the way to investigate
at ultrastructure level where morphological details were unequivocally combined to a significant
amount of chemical data. The advantage of this methodology is the aptitude of gold-conjugated
antibodies to recognize and bind specifically proteins, thus providing evidences about protein content
and distribution. Colloidal gold, as electron dense marker, represents the best candidate probe to
visualize and locate, by means of TEM, proteins exploiting the highly specific binding of antibody-GNP
conjugates. GNPs provide an unequivocal signal that can easily be distinguished in both biological
and inorganic samples.

IGS was used by Piludu and coworkers to locate the presence and distribution of specific proteins
in several animal tissues [43–46]. The purpose of these investigations was to provide additional data
concerning the secretion process of different antimicrobial peptides (AMP) in human salivary glands.
To date, the AMP have been well characterized during the last 20 years, however only a few data
were reported about their localization and secretion in human tissues. The IGS procedures permitted,
for the first time, to localize and to study the distribution of several AMP in human tissues and to
definitely establish the involvement of the different human salivary glands in their production and
secretion. In particular, the electron microscopic immunogold labelling extended enormously the
previous biochemical investigations highlighting the fine visualization of AMP at the subcellular
level (Figure 4).
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Figure 4. Electron micrograph of immunogold staining of ultrathin sections of human deep posterior
lingual gland showing histatin localization. Gold nanoparticles are mainly visualized in the labelled
secretory granules (LSG). Note that adjacent cells contain poorly or unlabelled granules (UG).
L = lumen. N = nucleus. Reprinted with permission from [43]. Copyright 2006, Elsevier.

2.2. Proteins Adsorbed on Ordered Mesoporous Silica Materials: The Case of Lysozyme

Although immunogold procedures were initially developed for biological assays, IGS was then
employed for the functionalization of OMS materials to develop smart nanodevices for biomedicine
applications. As previously stated, OMS materials have peculiar structural features that make them
suitable hosts to immobilize into their pores a large variety of macromolecules with important biological
functions [16]. Among the OMS materials, SBA-15 has largely been studied as a potential carrier for
different purposes. Previous investigations studied the interaction and adsorption mechanisms of
several therapeutic molecules onto SBA-15 [3,47,48]. These studies pointed out the potentiality for
obtaining smart delivery systems. Interestingly, specific chemical surface functionalization of SBA-15
was shown to enable peculiar biocompatibility conditions [10,18,49].

In order to gain direct visualization of proteins adsorbed onto SBA-15 materials, we used for
the first time the IGS techniques in our investigations [50]. We studied the location and distribution
of the human lysozyme adsorbed onto mesoporous silica SBA-15 particles using a post embedding
immunogold staining procedure. The advantage of this method is due to the high resolution of the
gold labelling, and its unambiguous electron dense mark that can simply be evidenced by transmission
electron microscopy. Human lysozyme loaded and unloaded SBA-15 microparticles (around 300 nm)
were embedded in LR gold resin blocks. After resin polymerization, the embedded samples were
cut into ultrathin sections (90 nm thick), and then processed for immunogold staining through two
consecutive incubation steps of the sections with specific antibodies. The first step of this procedure
was characterized by the interaction of a primary antibody, specific to human lysozyme, whereas in
the following step a gold-conjugated secondary antibody, specific to primary antibody, was added.
TEM analysis highlighted the presence of specific lysozyme reactivity that was visualized as definite
black spots into cylindrical channels or located on the surface of SBA-15 particles (Figure 5).
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formation of the antibody-antigen complex [51]. The present method, being characterized by the 
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Remarkably, the indirect method in the recent years has gained in popularity compared to the direct 
IGS procedure that is based on the GNPs directly bound to the primary antibodies. The reason for 
that may be found in the higher sensitivity of the indirect method as a result of the capacity of 
secondary antibodies to interact with multiple epitopes located on primary antibodies [51,52]. 
Because of the sequential steps of incubations with primary and secondary antibodies, it should be 
noticed that indirect methods may imply the concurrence of cross-reactions with unrelated molecules 
[51]. It follows that suitable and appropriate control samples are of utmost importance. In our 
investigation we performed specific controls in order to verify the specificity of lysozyme labelling 
in loaded SBA-15. Indeed, the failure of antibody performance may occur at any stage of the 

Figure 5. TEM immunogold labelling of ultrathin sections (~60–80 nm thick) of SBA-15 with
anti-lysozyme antibody. Gold labelling is detected into cylindrical channels (a) and on the surface of
SBA-15 (b). Reprinted with permission from [50]. Copyright 2011, Royal Society of Chemistry.

The selection of an appropriate antibody in immunolocalization assays is extremely crucial
to gain reliable results, in particular, considering that choices have to be made on the basis of
availability, quality of antibodies and specificity towards a given protein. The achievement of
significant results in immunolocalization investigations deals with the aptitude of the primary
antibody to bind specifically proteins through an important biochemical interaction that leads to
the formation of the antibody-antigen complex [51]. The present method, being characterized by
the sequential binding of primary, and secondary antibodies, is generally known as indirect method.
Indeed, the gold marker is associated to the primary antibody-antigen complex through linking the
secondary antibodies (Figure 6).
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protein visualization by conventional TEM. Note that purple and red objects represent additional
proteins adsorbed onto OMS. Reprinted with permission from [50]. Copyright 2011, Royal Society
of Chemistry.

In order to meet peculiar needs of immunochemical assays different IGS procedures can be used.
Remarkably, the indirect method in the recent years has gained in popularity compared to the direct
IGS procedure that is based on the GNPs directly bound to the primary antibodies. The reason for that
may be found in the higher sensitivity of the indirect method as a result of the capacity of secondary
antibodies to interact with multiple epitopes located on primary antibodies [51,52]. Because of
the sequential steps of incubations with primary and secondary antibodies, it should be noticed
that indirect methods may imply the concurrence of cross-reactions with unrelated molecules [51].
It follows that suitable and appropriate control samples are of utmost importance. In our investigation
we performed specific controls in order to verify the specificity of lysozyme labelling in loaded
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SBA-15. Indeed, the failure of antibody performance may occur at any stage of the procedure.
During our investigations unloaded samples of SBA-15 were incubated with both primary and
secondary antibodies to ascertain antibody specificity. Moreover, additional controls were performed
by incubating human lysozyme loaded samples with non-immune serum or with the secondary
antibody only and omitting the primary antibody (negative control). No gold labelling was detected
in any of these cases [50].

Peculiar modifications of the standard IGS protocol regards the use of multiple sequential staining
procedure of two or more proteins in the same sample, using different size gold conjugated antibodies.
One of the main advantages of the double immunostaining procedure concerns the opportunity
to study simultaneously several proteins adsorbed in the same material. Choosing different gold
nanosized conjugated secondary antibodies specific for the primary antibodies allows to monitor the
different proteins separately. This technique, successfully applied in several histochemical studies,
involves the use of different size nanogold conjugated antibodies that can easily be distinguished
during TEM analysis, thus allowing to visualize spatial relationships of two or more proteins in the
same section.

2.3. Silver Enhancement Technique and Ultra-Small Gold Nanoparticles: The Case of an Antibody Fragment

Small GNPs (gold size ≈ 1–3 nm) were firstly introduced in order to improve the penetration
of gold conjugated antibodies into animal cells and tissues and to enhance labelling efficacy [53,54].
In pre-embedding immunocytochemical assays gold conjugated antibody efficiency deals with the size
of gold particles used. It was shown that the antibodies employed in routinely IGS procedures with
gold size particles around 10–30 nm show reduced interaction efficiency. Instead, smaller nanoparticles
were shown to be characterized by a higher degree of penetration, improved gold conjugated
antibody interaction with the targeted antigens and higher resolution of labelling [54,55]. Because of
their properties ultra-small GNPs may be used in high resolution labelling for protein detection
in nanostructured materials and in the development of targeted drug delivery systems. However,
the ultra-small GNPs cannot be visualized by conventional TEM but need to be amplified and converted
in larger size particles through silver enhancement procedure [56].

Similarly, we used the silver enhancement procedure to visualize the antibody fragments
F(ab’)GAMIgG conjugated to ultra-small gold nanoparticles (GNPs diameter 0.8 nm) immobilized
into the mesopores of amino functionalized SBA-15 particles [57]. The silver-enhanced GNPs resulted
visible at conventional TEM, thus allowing for an unequivocal imaging of the location of the antibody
fragment-GNPs conjugates inside the channels of SBA-15 particles (Figure 7).
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Figure 7. (a) Representation of the antibody fragment-gold nanoparticle [F(ab’)GAMIgG-GPNs]
conjugate; and (b,c) Graphical representation of the main sequential steps of silver enhancement
process on ultrathin section of F(ab’)GAMIgG-GPNs loaded SBA15. (a) is adapted with permission
from [57]. Copyright 2015, American Chemical Society.

The use of sub-nanometer gold increased enormously its diffusion and penetration efficiency
due to the reduced overall size and decreased steric hindrance. This procedure was carried out
by embedding both F(ab’)GAMIgG-GNPs loaded and unloaded SBA-15 micro-particles in resin,
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following standard preparation procedure [58] and finally cutting ultrathin sections (70–90 nm thick) of
both embedded samples with ultramicrotome. The ultrathin sections were finally treated through the
silver enhancement procedure. In detail, the silver enhancement technique permitted the amplification
of the ultra-small GNPs that acted as nucleation sites for the deposition of Ag atoms obtained through
the reduction of Ag+ ions in all loaded samples of SBA-15. The unloaded samples used as controls
were devoid of labelling. The TEM observation revealed the presence of unequivocal silver labelling as
20–30 nm size black dots on the mesoporous inner structure. The black dots highlighted the presence
and distribution of antibody fragments F(ab’)GAMIgG either inside the pores or adsorbed on the
surface of SBA-15 microparticles (Figure 8).
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Figure 8. Transmission electron micrographs of ultrathin sections of SBA-15 particles loaded with
F(ab’)GAMIgG-GNPs conjugates. Distribution of gold conjugated F(ab’)GAMIgG in SBA-15 particles
was revealed by silver enhancement procedure. Black spots correspond to the “silver enhanced” GNPs
(silver labelling). (a) Overview of silver localization in loaded SBA-15 samples. Note that SBA-15
particles show variable labelling. Dark area (asterisks) is due to the electron beam passing through
a thicker portion of SBA-15 section; (b) Details showi ng at higher magnification the presence of
silver labelling along the parallel channel of loaded SBA-15; and (c) Silver labelling is confined to the
external portion of SBA-15 particles. Reprinted with permission from [57]. Copyright 2015, American
Chemical Society.

On the basis of these results, it should be remarked the importance of this powerful procedure
to study and gain site-specific data concerning the functionalization process of specific peptides and
proteins in OMS materials, and thus in the engineering of new drug delivery systems. Moreover,
the use of ultra-small gold particles represents the best choice for molecular labelling, since it does not
seem to prevent the penetration of the proteins into the pore channels of SBA-15, considering that the
silver labelling is highly specific and highly sensitive towards the gold particles [59].

3. Exploring the Formation Mechanism of the Protein Corona: The Case of BSA-GNP Conjugates

Gold nanoparticles can be bound directly to a large variety of biomolecules by using definite
chemical methodologies. For instance, hydrophobic interactions or charge pairing represent the main
procedures employed to conjugate GNPs to specific molecules. During our investigations we used
gold complexes to study the adsorption process of biomolecules on the surface of functionalized
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mesoporous silica nanoparticles (MSNs) dispersed in biological media. In detail, we investigated
the interaction of gold conjugated bovine serum albumin (BSA) with hyaluronic acid (HA) and
chitosan (CHIT) functionalized MSNs to provide new insights on the molecular mechanisms that
lead to the formation of the surface layer of biomolecules around the MSN, known as the “protein
corona” [10]. Protein corona induces significant changes in the physico-chemical properties of MSNs
surface. This in turn may affect MSNs cellular interaction and uptake. Protein corona formation
is influenced by both chemical MSNs features and composition of the biological fluids. It has
been reported that functionalized MSNs, when injected in biological media, are characterized by
the interaction of their surface with the dispersed biomolecules. This process is supposed to be
initiated by specific physico-chemical interactions that rely mainly on the peculiar MSNs features
such as surface charge [60,61]. To this purpose, the behavior of BSA interaction with the differently
functionalized MSNs was investigated by conventional TEM analysis. We used BSA conjugated with
gold nanoparticles (BSA-GNPs). Evident gold labelling was observed on the surface of both MSN-HA
and MSN-CHIT samples, that were characterized by similar BSA-GNPs patterns. Occasionally,
higher gold labelling intensity was found in MSN-CHIT than in MSN-HA, pointing out that BSA
interaction depends on the molecular features of the biopolymers adsorbed on MSN surface (Figure 9).
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Here, it should be remarked that, at a pH around 7, BSA carries a negative charge (being pI ≈ 4.7),
whereas MSN-CHIT and MSN-HA surfaces are positively and negatively charged, respectively. Indeed,
protein adsorption is mainly addressed by electrostatic interactions according to the order MSN-CHIT
> MSN-HA; however, the relevant BSA adsorption on the negatively charged MSN-HA implies
important contributions of van der Waals attractive interactions, as demonstrated by zeta potential
data (see Table 2 in [10]). A similar trend was also observed after the gold labelling procedure. The GNP
conjugation provided a powerful methodology for the direct visualization of interaction process of BSA
with functionalized MSN surfaces, correlating surface characterization of MSNs with BSA adsorption.
In other words, the formation of a protein corona around functionalized MSN particles, independently
of the electrostatic forces, was unequivocally proven [10].

4. Toward the Realization of Theranostic Nanobioconjugates

In the previous paragraphs we have described the use of GNPs as diagnostic devices for the
localization of proteins within the internal and the external surface of OMS. Besides diagnostic
imaging, GNPs may find different application in nanomedicine. GNPs are indeed characterized by a
surface plasmon frequency in the visible range, which makes them suitable for therapeutic treatments
(i.e., photothermal therapy [62] or, more interestingly, for “theranostics” that is the combination
between therapy and diagnostics [63]. In a very recent work [64], we assembled multicomponent
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nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (BSA or lysozyme),
and gold nanoparticles (Figure 10). The purpose of the realization of such nano-bioconjugates was for
a possible application in nanomedicine as theranostic devices. Indeed, MSNs can act as drug carriers,
proteins stabilize MSNs within the bloodstream, or may have therapeutic or targeting functions.
Finally, GNPs could either be used as contrast agents for imaging or for photothermal therapy.
The synthesized MSNs, functionalized with amino-terminated groups (MSN-NH2), were conjugated
to BSA or lysozyme on the external surface of MSN-NH2 to obtain MSN-BSA and MSN-Lysozyme
bioconjugates, respectively. The MSN-protein samples were dispersed in a GNP solution to obtain
MSN-protein-GNPs nano-bioconjugates. TEM analysis showed the occurrence of GNPs on the
MSN-protein surface. Interestingly, we demonstrated, through fluorescence and Raman measurements,
that GNP-protein specific interaction occurs through the involvement of tryptophan amino acid
residues. Hence, the MSN-protein-GNPs nano-bioconjugates formed in the presence of lysozyme
display more conjugated GNPs than those formed in the presence of BSA: This was related to the
higher number of tryptophan residues in lysozyme compared to BSA.
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Figure 10. Assembly of theranostic nanobioconjugates. Schematic representation of the MSN-protein-
GNP nanobioconjugate: MSN (orange/blue), protein (red), GNP (yellow) (a), graphical 3D
reconstruction of the MSN-protein-GNP nanobioconjugate (b), TEM micrographs of the
MSN-lysozyme-GNP (c) and MSN-BSA-GNP (d) nanobioconjugates.

5. Conclusions

The use of GNPs represents one of the most encouraging strategies to monitor proteins in many
research fields. They have been suggested as biosensors because of their optical properties and are
excellent labels that can be detected through several procedures. GNPs can be conjugated with a large
variety of biomolecules. Because of their comparable size with proteins, peptides, oligonucleotides,
and other biomolecules, GNPs can be used in many biomedical application fields. They can be used
as drug carriers to deliver specific therapeutic molecules as a result of their ability to link and load
different molecules such as peptides, proteins, or oligonucleotides [65–67]. The GNPs, when conjugated
to specific targeting proteins, can also be used as intrinsic drug agents. Their capacity to penetrate
cellular compartments and induce cellular damage by cellular oxidative stress, or by photothermal
therapy has been used to ablate specifically cancer cells and tissues. However, even though their use
as contrast agents remains the main application in imaging and diagnostic medicine, it should be
remarked that GNPs based approaches are becoming a fundamental tool in the development of new
theranostic nanobioconjugates. The main aim of this review was to bring the attention of the readers
to the extraordinary high resolving power of the gold labelling techniques, building a bridge with the
other investigative physical and chemical disciplines. This may provide new eyes to the way how we
look at the nanostructured world of the ordered mesoporous silica materials.
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