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Abstract: Exploration of spatial processes, such as radioactivity or temperature is a fundamental
task in many robotic applications. In the literature, robotic exploration is mainly carried out for
applications where the environment is a priori known. However, for most real life applications
this assumption often does not hold, specifically for disaster scenarios. In this paper, we propose
a novel integrated strategy that allows a robot to explore a spatial process of interest in an
unknown environment. To this end, we build upon two major blocks. First, we propose the
use of GP to model the spatial process of interest, and process entropy to drive the exploration.
Second, we employ registration algorithms for robot mapping and localization, and frontier-based
exploration to explore the environment. However, map and process exploration can be conflicting
goals. Our integrated strategy fuses the two aforementioned blocks through a trade-off between
process and map exploration. We carry out extensive evaluations of our algorithm in simulated
environments with respect to different baselines and environment setups using simulated GP data as
a process at hand. Additionally, we perform experimental verification with a mobile holonomic robot
exploring a simulated process in an unknown labyrinth environment. Demonstrated results show that
our integrated strategy outperforms both frontier-based and GP entropy-driven exploration strategies.

Keywords: Gaussian process; exploration; mapping; autonomous robots; mobile robots;
information gathering

1. Introduction

1.1. Motivation

Autonomous robots are well suited for gathering information in hostile or hardly accessible
environments. For instance, they can be used to map radiation or gas concentration levels in NBC
hazards [1,2], temperature and/or humidity fields, etc. If the environment is partially or fully unknown,
a robot needs to explore and build a 2D/3D obstacle map to ensure that the whole environment is
covered. At the same time, it needs to safely navigate through the operating environment and localize
itself and the gathered information with respect to such a map in the absence of global localization.

Over the last few decades, mapping and SLAM have been areas of extensive research in the robotics
community for obtaining accurate maps of unknown environments [3]. Moreover, the extension to active
mapping and active SLAM has been considered [4,5]. While active mapping determines the actions of the
robot that improve area coverage [6], active SLAM considers at the same time maximization of coverage
while maintaining localization performance [7].

In many cases, active mapping and active SLAM are required for proper localization of the robot,
construction of an accurate map, and navigation purposes. These are essential support for the main
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mission of the robot, e.g., monitoring radiation, magnetic field, temperature distribution, etc. The main
problem considered here is how a robot can efficiently carry out this main mission (explore such fields)
while building at the same time the map of the environment.

Ideas similar to active mapping can be used to explore the spatial field [8]. However, this can
lead to potentially conflicting goals, given that different models and sensors (with a different FOV,
etc.) are used for building the 2D/3D obstacle map and for field reconstruction. This paper thus deals
with developing techniques for autonomous exploration of such processes in completely unknown
environments, which consider at the same time and in an integrated way efficient map building
and process estimation. We focus on exploring physical processes that can be modelled as GP [9].
Examples of such a process are temperature, ozone concentration, and magnetic field intensity, to name
only a few.

We challenge here two fundamental assumptions that are typically considered in the state of the
art: (i) A priori knowledge about the operating environment (the map), and (ii) that process and map
exploration can be solved independently. The aim of our integrated strategy is to minimize the error in
the process reconstruction and to maximize the coverage of the environment map, while minimizing
the total travelled distance of the exploratory mission all together.

1.2. Related Work

Recent advances in mobile robotics have opened new frontiers for the development of novel
exploration algorithms. In the literature, approaches for robot exploration are typically based on the
maximum informativeness criterion (e.g., [8,10–12]), which guides the robot towards locations with
the highest information gain.

We are interested in complex probabilistic models that allow us to model environmental state
and learn the process from acquired data while exploiting the spatial correlation between variables
of the process in order to obtain faster exploration results. GPs represent a powerful approach to
model spatial phenomena. Singh et al. [11] propose a procedure to define suitable covariance functions
for Gaussian process regression in environmental surveillance applications. Then they extend those
covariance functions to perform informative sampling often combined with GPs due to their ability to
predict the remaining uncertainty about the process.

Krause et al. study what is the optimal placement for a network of sensors in order to reduce
the uncertainty of the GP [10]. They consider the sensor placements as fixed. In contrast, we are
interested in exploration with a mobile robot. This allows us to cover larger environments, gives us
more flexibility to monitor dynamic processes, and re-plan in newly discovered areas.

Informative sampling that takes into account an information metric (i.e., mutual information
that takes into account statistical dependencies between sampling point candidates) in combination
with GPs has been considered for different exploration applications, e.g., magnetic field mapping [8],
environmental monitoring [13], and online estimation of a radio signal source [14]. However, the works
in [8,13,14] assume the environment in which the robot operates as a priori known. In order to deploy
autonomous robots in complex environments, we must develop algorithms that are able to operate in
unknown environments.

Active SLAM approaches tackle the operation in unknown environments while considering
joint uncertainty reduction for map and robot pose trajectory. Common frameworks consider
information theoretical approaches where decision is based on the notion of information gain,
guiding the robot towards locations where information about unknown environment can be
obtained [5,15]. Occupancy grids are commonly used for map representation and navigation
purposes [16]. Besides occupancy grids, GPs are introduced as continuous parametrization of frontiers
for autonomous exploration in combination with SLAM [17]. There, the authors use BCM to
incrementally build GP maps of the environment while guiding the robot toward borders with
unknown regions on the map. However, the aforementioned approaches do not incorporate the
exploration of a spatial process within the framework of a geometrical map exploration.



Sensors 2020, 20, 3663 3 of 26

Approaches, where SLAM and a spatially distributed process are jointly considered,
are exemplified in [18]. There, the authors describe a gas distribution mapping algorithm which is able
to consider and propagate the uncertainty in the pose estimate, integrating it with SLAM to create two
independent occupancy grids for (i) environment and (ii) gas distribution. However, the exploration
strategy is not considered, and the system is teleoperated.

Besides occupancy maps, other spatial processes could be used as anchors for geometric SLAM.
For instance, Jung et al. [19] introduce magnetic field constraints for pose-SLAM optimization for
loop-closure and heading correction with off-line processing of the gathered magnetic sensor data for
creation of the pose-SLAM. As in the previous case, active mapping component is not considered.

Prágr et al. [20] propose a greedy approach that combines spatial exploration (mapping)
with the exploration of the underlying traversal cost model over terrain by employing the RBCM.
Their approach is similar to ours with respect to the combination of GP and frontier-based exploration.
However, a key difference is that we consider a GP that is not necessarily correlated with the spatial
map—by mapping new regions of the environment via perception sensor, we do not gain additional
information about the process like in their case. With GP reconstruction, useful knowledge of the
process increases only in the vicinity where measurements are obtained. A second key difference is
that, in contrast to the aforementioned greedy strategy [20], we present a multi-step horizon planning
for the integrated exploration that takes into account spatial field exploration on a smaller scale than
the environment mapping.

An interesting approach to the multi-step-ahead exploration strategy is the use of TSP to model
the goal selection problem. Travelled distance can be described as a cost to be minimized while visiting
all goals. Kulich et al. [21] introduce a TSP-based approach for finding a minimum distance path to all
frontiers instead of greedily visiting frontiers one by one, benefitting in a possible shorter exploration
time. Oßwald et al. [22] apply a similar strategy by exploiting prior knowledge and running a TSP on
an user-defined topological graph. They combine this solution with local exploration of individual
locations and the results demonstrate a significant reduction in exploration time. Authors in [23] apply
constrained generalized TSP to solve map coverage while integrating goal selection with the goal
candidates generation. In this work, we apply a similar method for minimizing distance in several
steps of our exploration strategy.

In contrast to map coverage in [21–23], our focus is on the joint exploration of map and GP.
The exploration objectives include a multi-step exploration strategy, considering that the map has to be
fully covered, but at the same time the process exploration task has to be fulfilled. This can be viewed
as a specific case of a multi-objective optimization for the most informative candidate points selection
that are (i) extending map coverage, (ii) decreasing process error.

There has been extensive work on multi-objective approaches that combine exploration in
unknown environments and mapping [24–26]. Classical approaches towards a solution to this complex
problem consider various perspectives e.g., (i) aggregation into a single utility function [15,24,27];
(ii) Pareto efficiency, i.e., improving one objective will negatively affect the others [25]; (iii) domain
specific robot exploration and search problem represented as a high-level state machine—Petri
nets [26]. Aggregation of different criteria (i.e., distance, information gain, localization uncertainty,
communication, etc.) has mostly ad hoc design due to sensitivity to combined criteria, and it requires
careful weight prioritisation. Stachniss and Burgard [27] apply a weight tuning to combine the
uncertainty reduction with the distance travelled. Carrillo et al. [15] introduce an automatically
tuned factor for a trade-off in exploration–exploitation dilemma in SLAM. Despite overcoming weight
set-up, their approach cannot be generalized to process exploration—it is task specific for combining
localization and mapping. A more general multi-criteria approach is proposed as aggregation operator
obtained from Choquet integral [28], and weighted means by Basilico and Amigoni [24]. They apply
multi-criteria decision making theoretical approach for searching fixed targets (victims) in a priori
unknown environment. Such an approach offers more flexibility for composing multi-objective criteria;
however it still has the drawback of weight setting. Amigoni and Gallo [25] solve this problem of
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weighting utilities as a multi-objective optimization by finding a Pareto front as the best trade-off
between competing objectives for a multi-robot system. Candidates are Pareto efficient with respect to
travelling cost, information gain, and expected overlap between robots. The best position is greedily
chosen from the Pareto frontier as the nearest distance from the ideal solution (i.e., best travelling cost,
best information gain, and best overlap). Their approach to find a good simultaneous solution for all
objectives is interesting, however it does not guarantee that the chosen candidate is the best among
Pareto efficient candidates. A more intuitive, high level representation of multi-objective optimization
for exploration and search strategies is presented by Calisi et al. [26]. They represent robot plans as
Petri nets, adapted to the tasks of exploration, search and rescue missions. Petri nets offer a modular
approach in resolving complex situations such as loops, interrupts, etc. Authors apply it for map
exploration while assuming that interesting features can be always intercepted by the same sensor
used for mapping. With that assumption, it is only needed to search for victims along the obstacles
detected by the laser scanner while avoiding unnecessary search in open space. To the contrary with
Calisi et al. [26], we need to explicitly go into open space since the obstacle perception sensor does not
provide us knowledge about the process, which is collected with a point-wise sensor.

To the best of our knowledge, there is a research gap in combining mapping and process
exploration strategies. Particularly in cases where, given sensors on a different scale, obtained data
from perception sensor does not produce any new information about the underlying spatial process
we want to explore.

1.3. Contribution

The main contribution of this paper is a novel integrated strategy for map and physical process
exploration in an unknown environment with the following characteristics:

• It considers multi-step exploration, which has proven to be superior in comparison with greedy,
one-step strategies [21,22].

• It selects intermediate goals in multi-step exploration for efficiently exploring the environment,
while reducing the reconstruction error of the spatial process.

• It imposes visitation of intermediate goals as a routing problem for minimizing the traversed
distance between two multi-exploration steps.

• It combines the strategy with efficient modelling using the GRBCM [29] to maintain online
computational capabilities when exploring larger areas.

The remainder of the paper is organized as follows. Representation of a spatial process as GP
is discussed in Section 2. A detailed description of the introduced system and its functionalities are
given in Section 3, along with the exploration objectives. Evaluation setup and results followed by
discussion are presented in Sections 4–6. Conclusion of the paper is given in Section 7, where the
proposed method and its possibilities for further development are discussed.

2. Gaussian Process Regression

2.1. Gaussian Process

A GP is any finite collection of random variables that has a joint multivariate Gaussian
distribution [9]. It is a very popular and well-known non-parametric statistical method to model
spatial dependencies of a physical process. It is a distribution over functions [30] fully characterized
by its mean function m(x) and covariance function k(x, x′, θ) for any pair x, x′ representing spatial
locations and some hyperparameters θ [9].

We assume that the value of m(x) is set to zero, which implies a priori no known values of the
observed process. In this work, we are interested in modelling smooth processes. Accordingly, we employ
the covariance function as a SE [9]:
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k(x, x′, θ) = σ2
f exp(−||x− x′||2

2l2 ) + σ2
nδxx′ , (1)

where δxx′ is Kronecker’s delta, and θ = [σ2
f , l, σ2

n]
T represents hyperparameters. For different

covariance functions (Matérn, Rational Quadratic, etc.) and their characteristics, we refer the reader
to [9].

SE hyperparameters are defined as follows: (i) The signal standard deviation σ2
f dictates the

variation of function values from the mean; (ii) the characteristic length-scale l represents how smooth
the function is and informally “how close” two points x and x′ have to be for influencing each other
significantly; (iii) variance of the sensor noise fluctuations σ2

n represents expected level of noise present
in the data [9].

Next, we present the following definitions: X = [x[1], x[2], · · · , x[N]]T is a matrix where
each row corresponds to a spatial location where measurement data was acquired by the robot,
z = [z[1], z[2], · · · , z[N]]T are the corresponding N measurements, and X∗ = [x[1]∗ , x[2]∗ , · · · , x[R]∗ ]T is a
matrix where rows correspond to R “test” locations—spatial points where we want to predict process
values using the learned model.

Now we use k(x, x′, θ) to define matrices that evaluate cross-correlations: (i) K—between
measurement points X; (ii) K∗ —between measurements X and “test” points X∗ ; (iii) K∗∗ —between
“test” points X∗. As a remark, matrices K, K∗, and K∗∗ are all implicit functions of θ due to their
dependency on the covariance function k(x, x′, θ).

Our aim is to predict process values y∗ and the corresponding uncertainties at “test” locations X∗,
given obtained measurements z and associated locations X. Before being able to predict the process
with the GP model, we need to learn it. This implies utilizing training data, X and z, to determine the
hyperparameters. Given the training data, we can estimate the suitable hyperparameters θ∗ for our
measurements. The learning phase is also known as model training. The hyperparameter estimation is
typically executed via gradient-based optimization aimed at maximizing the log-marginal likelihood
function of θ [9]:

θ∗ = argmax
θ

{
−1

2
zTK−1z− 1

2
log |K|

}
. (2)

Finally, the prediction y∗ is based on θ∗ (Equation (2)). The vector y∗ is a random vector with
the following probability density function: p(y∗|X∗, X, z) = N (µ∗, Σ∗), where µ∗, Σ∗ are calculated as
(more details in [9]):

µ∗ = m(X∗) + KT∗K−1(z−m(X)),

Σ∗ = K∗∗ −KT∗K−1K∗.
(3)

The main drawback of using a GP in real-world applications is its poor scalability with respect to
data size. Given N, its complexity during the training phase is O(N3) as we need to invert the N × N
dimensional covariance matrix. Moreover, due to matrix-vector operation, complexity of its prediction
phase is O(N2).

2.2. Large-Scale Gaussian Process Regression

In order to apply a GP without limiting the size of the operated environment, we apply
GRBCM [29], an aggregation method that allows us to combine independently trained GP regressors
from multiple data sets.

Firstly, given an initial dataset D of size N, it is divided into P subsets, each with size p0:
One communication disjoint partition Dc = D1 generated as a random subset, and disjoint partitions
Dp = {X(p), z(p)}, p ≥ 2 . . . P generated by k-means clustering [31]. Secondly, the data-sets {Dp}P

p ,
p ≥ 2 in GRBCM are extended with a communication dataset as enhanced sets D+p = {Dc,Dp}.
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The GP regression (Equation (3)) is then applied on communication partition Dc, producing a
global communication expert Ec trained on Dc that captures the main features of the target function.
Furthermore, it is applied to each disjoint partition D+p, leading to the second expert type—local
experts. Those experts {Ep}P

p=2 locally refine predictions trained on respective D+p.
It is important to mention the assumption that local experts Ep are uncorrelated, leading to the

following predictive distribution equations for aggregated model [29]:

µ∗,A(x∗) = σ∗,A(x∗){
P

∑
p=2

βpσ−2
+p(x∗)µ+p(x∗)− (

P

∑
p=2

βp − 1)σ−2
c (x∗)µc(x∗)},

σ−1
∗,A(x∗) =

P

∑
p=2

σ−2
+p(x∗)− (

P

∑
p=2

βp − 1)σ−2
c (x∗),

(4)

where βp is defined as [29]:

βp =

{
1, p = 2

0.5(log σ2
c (x∗)− log σ2

+p(x∗)), 3 ≤ p ≤ P.
(5)

In summary, the global communication expert captures the main features of the model, while the
local experts are improving local predictions. Generally, for aggregation models, calculating local
experts principally has the same complexity as calculating a single global expert—cubic in model
training and quadratic in prediction. However, a significant scalability improvement lies behind two
reasons: (i) The size of local experts is much smaller than the full dataset N (p0 � N), and (ii) local
experts can be computed in parallel and in a distributed manner. For more details about GRBCM
algorithm refer to [29].

3. Integrated Exploration

In this section we describe our proposed algorithm for autonomous exploration of a spatial
process in an unknown environment. First, we present an overview of the system. Second, we describe
the elements that compose our strategy in detail.

We aim to explore a spatial physical process y at R corresponding locations X∗ ⊂ R2×R where
we want to obtain process values which can be modelled as a GP (Section 2.1). For large-scale spatial
physical processes we construct the GP as an aggregated modelling of individual experts with GRBCM
(Section 2.2).

Additionally, we assume that the structure of the operating environment is a priori unknown.
That is, information about the position of obstacles is unavailable. The lack of information about the
environment motivates us to extend process exploration with mapping. Note that an accurate mapM
is crucial for exploration planning and safe navigation through the environment. Furthermore, a robot
must localize itself with respect to such a map by means of on-board sensors as an external
localization system is unavailable. We would like to remark here that we assume the ability of
the on-board localization system to maintain the position uncertainty below the process correlation
length. This assumption permits us to focus on our aforementioned strategy. Meaning, that for
considered environments, enhanced odometry is sufficient for localization. Nevertheless, we will
study localization component as a part of our future work.

We consider a ground-based mobile robotic platform equipped with an on-board computer
capable of real-time computations. It carries a 3D LIDAR that provides point clouds in the local sensor
frame, and a magnetic field sensor that collects one process measurement z[n] (observed value of the
process y) per location x[n], n = 1, . . . , N.

Figure 1 shows an overview of the complete system. Inputs from on-board sensors are directly
forwarded to the module for environment mapping (Mapping and Localization) and indirectly to the
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process estimation module (GP Estimator) through the exploration module (Integrated Exploration).
Details of these two modules are explained in Section 3.2. Their output is used by the key module of
our system—the Integrated Exploration module.

goal
pose

3D LIDAR,
Process Sensor

Mapping and 
Localization

GP Estimator

Integrated
Exploration

3D PCL
map,

current pose

Navigation

process 
estimate

control
 inputs

Robot

process 
measurement

process measurements,
measurement poses

Figure 1. System overview.

The Integrated Exploration module has the following tasks: (i) Point of Interest (POI generation
Xpoi = {x[j], j = 1, ..., G}, where G is the number of POIs; and (ii) sort Xpoi in a specific way to
obtain an ordered sequence of POIs as goal poses Xgoal = {x[g], g = 1, ..., G}. More details about the
exploration module are provided in Section 3.4. Further, goal poses are forwarded sequentially to the
Navigation module responsible for local path planning and execution by providing control inputs for
autonomous movement of the robotic platform.

The robot starts its exploration of the environment at a certain known initial position x[0],
obtaining initial scan cloud P [0] and process measurement z[0]. During exploration, it continuously
observes the environment through its perception sensor and localizes itself within the area. In parallel,
the robot takes measurements of the process z[g] at locations x[g] ∈ Xgoal. This loop continues until a
stopping criterion is fulfilled. For details of the algorithm description refer to Section 3.4.

3.1. Sensors and Robot

3.1.1. Sensors

We employ two sensors: (i) Perception sensor—responsible for mapping the environment and
obstacle avoidance, and (ii) process sensor—responsible for collecting spatial process information
(i.e., magnetic field measurements). For the former, we have a 3D LIDAR sensor with 360◦ horizontal,
and 30◦ vertical FOV with a range up to 100 m. However, any other perception sensor that provides
distance from obstacles may be applied. For the latter, we consider a magnetic field sensor that collects
information point-wise, i.e., only at the current location.

3.1.2. Robot

We use a holonomic robotic platform (Figure 2) equipped with sensors and an on-board computer
for autonomous localization, mapping, navigation and exploration execution (Sections 3.2–3.4).
Generally, any robotic system that explores in 2D can be applied if equipped with aforementioned
required components.

(a) Slider (b) Simulated robot
Figure 2. Robotic platform equipped with Velodyne VLP-16 and an on-board computer.
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3.2. Mapping and Localization, Navigation

3.2.1. Mapping

For navigation and exploration purposes, we employ an occupancy grid representation of the map
M. An occupancy grid map is a two-dimensional grid representation of the environment, holding a
probabilistic information of each cell occupancy, which can be marked as: (i) Free, (ii) occupied,
or (iii) no information [32].

To construct an occupancy grid, we use point cloud inputs P [1:t], where t is current input time
from the 3D LIDAR, which we then vertically project onto 2D xy horizontal plane given robot’s
height dimension constraints. Note that before projecting input clouds P [1:t], we apply ground base
filtering (by extraction of ground points) and height filtering (by extracting points above certain height).
This projection is used for safe navigation through the environment with obstacles of various shape
and size.

3.2.2. Localization

Pose x[t] at time t is represented as a 2D position [x, y] in Cartesian coordinate system, and yaw as
orientation. Odometry and translation/rotation estimation of the incoming point cloud P [t] is carried
out with respect to the reference cloud P [t−s,t−1] (cloud of processed, i.e., filtered and concatenated,
s previously registered scans). For this, a registration algorithm—the point-to-plane variant of ICP
algorithm [33]—is employed. Note that during exploration, relative localization with respect to initial
pose x0 is performed. One can choose from a selection of readily available state-of-the-art vision and
LIDAR-based localization/SLAM algorithms such as LOAM [34], Lego-LOAM [35], SegMap [36],
or Cartographer [37] for maintaining localization accuracy in GPS-denied environments.

3.2.3. Navigation

We employ a combination of optimal global A* planner [38] on the grid with TEB reactive local
planner [39]. Waypoints are fed to the Navigation module by the Integrated Exploration module
(Section 3.4). Additionally, it receives periodical updates from Mapping and Localization module
(previously described), assuring no-collision paths.

3.3. GP Estimator

At any time t, from the set of collected measurements z[1:t] = [z[1], . . . , z[t]]T and its estimated
positions X[1:t] = [x[1], . . . , x[t]]T , we can predict the process values y∗ and corresponding uncertainties
at probe positions X∗ (Equation (3)). Furthermore, in our case, hyperparameters are known and
learned a priori. Let us remark that hyperparameters could be also learned online from measurements
(Equation (2)).

As presented in Section 2.2, in order to cope with scalability, we extend our system with
GRBCM [29]—a state-of-the-art aggregative method for the GP that synthesizes predictions
from individually trained experts, where experts are trained on sub-sets of the full data set.
Predictive distribution for GRBCM is estimated according to Equation (4).

3.4. Exploration Strategy

The aim of our integrated strategy is to address the problem of reconstructing a spatial GP in
an a priori unknown environment while simultaneously exploring it. We assess the behaviour of the
integrated strategy with respect to the two main objectives and its performance towards minimizing
the total travelled distance while satisfying both:

1. Efficient spatial process exploration: Minimization of the process error in comparison to the
ground truth.
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2. Efficient coverage strategy: Increasing coverage of the environment map to reduce unknown
portions of the map.

As already mentioned, this integrated strategy consists of two key steps regarding POIs:
(i) Identification (Section 3.4.1) and (ii) ordering—determining goals (Section 3.4.2). Results of both
steps are visualized in Figure 3.

x

x

x

x

x

x

x x

x
x

x
x

x x

x
x

(a) Identified POIs

x

x

x

x

x

x

x x

x
x

x
x

x x

x
x

(b) Goal poses
Figure 3. Main components of our exploration strategy. (a) Current position x[t] is marked with a green
circle, light red cross marks goal location xG within planning radius r (shaded green area), blue crosses
represent POI Xpoi, while orange circles are frontier with its centroid xf (red circle); (b) optimized by
distance travelled, Xpoi are represented as ordered points, i.e., goal poses Xgoal, which describe the
sequence that the robot follows, obtaining measurement z[g] on each x[g].

3.4.1. POI Detection

In order to tackle our joined exploration objective, we select POIs in which taking measurements
will improve estimate of the (i) current map (by considering frontiers of the map) and (ii) process
(by selecting informative candidates on the estimated spatial field):

Frontier. First, to efficiently map the environment, we select classical frontiers, which maximize map
coverage [6]. For efficient detection of frontiers, which separate known regions from unknown in
M, we apply WFD, a graph-based approach based on BFS [40]. This algorithm performs a search
only on cells that are not yet traversed and represent free space, thus avoiding an expensive full map
search. We weigh and sort frontiers by distance from the current location of the robot x[t] to their
centroids—the average position of all frontier points for a given frontier—and choosing the closest one.
The distance is calculated with the A* path-planning algorithm.

The shortest path to the centroid xf of the selected frontier provides a fast way to increase map
coverage, but it drastically limits the area from which measurements of the process are obtainable.
Since we can only collect process measurements point-wise given the sensor footprint, following the
shortest way towards the frontier will not be the most informative path regarding process exploration.
A lot of areas along the way will consequently be missed. Therefore, a trade-off between the shortest
and the most informative path is considered by expanding the path from x[t] towards xf with a set of
possible positions where the robot may obtain new informative process measurements while advancing
the map coverage.

Candidates (POI). Searching for all possible process measurement locations X onM is infeasible for
large maps. Moreover, we need to keep in mind that map and process estimations are changing with
robot traversing forward, meaning that planning over a too long horizon may produce an inefficient
exploration strategy due to significant changes in the map.

To overcome this, we limit the exploration of the process to a finite horizon r with respect to the
robot position x[t] at any given time t. To identify potential POI candidates with a high information
value, we apply BFS for traversing only through obstacle-free explored cells inM within the horizon
r. We sample Xpoi ⊆ Xfree,r ⊆ Xr ⊆ X , where Xr represents all measurement locations within the
radius, while Xfree,r represents its subset of reachable locations (Algorithm 1, below). Here, Xpoi is the
set of selected measurement locations where all the surrounding cells within the inflation radius are
unoccupied. If the frontier centroid xf is within radius r, it will be included in Xpoi.



Sensors 2020, 20, 3663 10 of 26

As a metric for informativeness of each candidate, we define the information value of a position
x∗ as the Shannon entropy of the posterior of the GP at that position:

H(x∗) =
1
2

ln(2πeσ2
x∗), (6)

where σ2
x∗ represents the variance of the estimated process y∗ at location x∗. A high value of entropy

here represents a high uncertainty of the process (i.e., non-observed cell). Variance σ2
x∗ is estimated

with GP regression (Section 2.1). Here, we emphasize that due to previously mentioned scalabilty
limitations of classical GP regression approach, for a larger number of measurements we apply GRBCM
that allows us to keep real-time performance of the algorithm.

Algorithm 1 Xpoi informative candidates sampling.

Require: current location x[t], mapM, radius r, sampling distance k, threshold ε

Ensure: POI Xpoi
1: Extract Xfree from theM.
2: Xpoi = {x[t]}
3: BFS (Xfree, x[t]):
4: x̂ = {x∗ ∈ Xfree : H(x∗) > ε,

∥∥∥x∗ − x[p]
∥∥∥ ≥ k, ∀x[p] ∈ Xpoi, }

5: Xpoi = Xpoi ∪ {x̂}

We sample with a minimum separation distance k with respect to points x[p] already in Xpoi,
where k is chosen depending on the hyperparameters θ, particularly by l, a length-scale that defines a
process correlation, informally representing “how far we can reliably extrapolate from obtained data”
(Section 2.1). Values below threshold ε (also dependant on hyperparametrs) represent low entropy,
i.e., low process uncertainty.

3.4.2. Goals Detection

Finally, once the POIs are selected, the robot needs to visit them all while minimizing the distance.
To achieve this, POIs first need to be ordered as further described in this section. Ordered POIs are
represented as goals Xgoal.

Distance matrix. In order to find the optimal solution to traversing all Xpoi in terms of the
distance travelled, we calculate the distance matrix between each pair of POIs x[i], x[j] ∈ Xpoi,
including the current pose x[t]. The distance between x[i] and x[j] is calculated with A* algorithm,
where i, j ∈ [1, . . . , G].

Route calculation. Once the matrix is created, we formulate our problem as a routing problem.
Since TSP does not consider distinguishable depots for both start and finish, we apply a simplified
case of VRP [41]—a generalized version of TSP problem. More specifically, we apply a variant of
the multi-depot VRP introducing additional constraints on start/end depots to minimize travelling
distance from current location x[t] to goal location xG while visiting all Xpoi. We call it “vanilla” VRP
with only one vehicle with given constraints to minimize the distance travelled between start and
finishing depots.

The reason for imposing additional constraints on the depots (start and finish location) for the
solver is to indicate that we are not interesting in returning to the starting location, but rather to a
specific location aligned with our exploration objectives. Depots are determined as follows:

• As a start depot, set the current location x[t].
• If the frontier centroid x f ∈ Xpoi, then xG = x f .
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• Otherwise, we set xG to be x[p] ∈ Xpoi, that has the shortest distance to frontier centroid x f
(to preserve the direction favoring area coverage).

The output of “vanilla” VRP solver is a vector Xgoal of sorted waypoints. Figure 4 depicts a simple
example of the solver solution where constraints are only applied on the exact starting and ending
depot for a one-robot system.

2 4

x (m)

1

2

3

4

y
(m

)

x[t]

xG

Xgoal Depots

Figure 4. One-robot solving a multi-depot “vanilla” VRP: x[t]—current location; xG—goal location.
Goals (Xgoal) are represented with blue asterisks and depots with black circles.

3.5. All Components of Our Integrated Exploration Strategy

Let us consider an example scenario where the robot has already partially explored the
environment (Figure 5). The green circle represents the robot during the experiment, with current
time t. The grey circles, along with the green one, represent visited locations X[1:t] = [x[1], . . . , x[t]] with
their observed process value measurements z[1:t] = [z[1], . . . , z[t]]. Now, we also have an environment
mapM with regions marked as free, occupied or unknown. Given our planning horizon (radius r),
all Xpoi are detected (Section 3.4.1). This corresponds to the exploration objective of obtaining
measurements at the most informative points. However, we still need to answer the question: “What is
the most efficient order to visit them with objectives of minimizing the travelled distance and increasing
the map coverage?” This is where the knowledge about frontiers comes in place. We can exploit the
frontier in order to guide robot towards the goal position that is closest to the “border between the
known and unknown” which guarantees an increase in map coverage (Section 3.4.2).

However, we need to deviate from the shortest path in order to collect process samples.
Therefore, the start depot x[t] and end depot xG (guiding towards xf) are used as inputs to “vanilla”
VRP. Note that if we would neglect knowledge about xf, the robot could finish its exploration e.g.,
in the far left bottom corner (Figure 5), which means it would need to traverse a significant distance
towards unknown regions in order to proceed with exploration.
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Figure 5. All components of a single multi-step of our integrated exploration strategy: Grey circles
represent previously obtained measurements and the area around those circles is considered explored
(light blue). Robot, at the current location (green circle), samples Point of Interest (POI, blue crosses)—in
the obstacle-free region of the map, where the process is unexplored (red area)—within radius r
(green line). The routing algorithm provides a multi-step exploration solution (black dotted line) from
the current location to the goal location (red cross). The goal location is the POI closest to the frontier
(brown circles) and the corresponding centroid (red circle). The frontier is defined by the LIDAR FOV
(red dotted line). Obstacles are marked by a black line and unexplored area in grey.

Algorithm Work-Flow

Figure 6 describes the algorithm that controls the behaviour of the robot. We can summarize it
as follows:

• Mapping and Localization: The robot continuously perceives the environment and accordingly
updates the mapM and its current location estimate x[t].

• Navigation: Until any unvisited x[g] ∈ Xgoal exists, it continues following precomputed goal poses
Xgoal (ordered representation of Xpoi).

• At each x[g] reached, collect the process measurement z[g].
• GP Estimator: Estimate GP process at probe locations X∗ over the whole environment.
• Integrated Exploration If Xgoal is empty, detect the next frontier onM according to the procedure

described in Section 3.4.1 and:

– Sample locations within r as described in Section 3.4.1—producing unordered Xpoi, a list of
candidates where we want to obtain our next measurements to increase knowledge about
the process.

– From Xpoi, create a distance matrix, representing computed distances between POI.
– Order POI according to the procedure described in Section 3.4.2 so that all POI are visited

and total travelled distance is minimized, resulting in Xgoal.
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– If Algorithm 1 finds no suitable candidates within the limited horizon r, extend the horizon
to cover all discovered cells X f ree on the map. Select only the closest candidate location that
satisfies H(x) > ε as the next goal location x[g]. Otherwise terminate the mission.

collect measurement 
at the current location

estimate GP process

find frontier on the 
environment map

frontier found

add frontier

YES

select POI candidates 
for the process 

exploration 

NO

 candidates > 0

create distance matrix

order POI

YES

follow goal

goal = first POI

full radius process 
entropy search

NO

goal = POI

POI found 

YES

 POI > 0

NO

goal reached?

NO

NO

remove first POI 

YES

YES

On-board 
localization system

Environment mapping

start

stop

Mapping and 
Localization

GP Estimator
Integrated
Exploration

Navigation

Figure 6. Algorithm state diagram. Colored blocks represent the following: Red—mapping
and localization; yellow—estimation of GP; green—core algorithm (our integrated exploration);
and grey—navigation.

4. System Evaluation

We first evaluate the proposed strategy in various simulation scenarios. Then we carry out an
experiment, in which a mobile holonomic robot operates in an unknown environment populated by
obstacles to explore magnetic field intensity. As a remark, during evaluation our proposed strategy
will be referred to as Integrated Exploration (IE).

We assess the following:

1. What is the scalability of GRBCM for exploration of spatial processes?—Simulations (Section 5.1).
2. What is the correlation between sampling distance k and error decrease in the process

reconstruction for the IE strategy? How does it affect total exploration distance?—Simulations,
experiment (Sections 5.2 and 6.2).
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3. How does the IE perform against the benchmarks in various scenarios?—Simulations,
experiment (Sections 5.3.3 and 6.2).

The scenarios considered in the evaluation are listed in Table 1.

Table 1. Evaluated scenarios in simulation (Sx) and Experimental (Ex) test cases.

Scenario Process Operating Environment Dimensions (m2)

S1 Process 1 Obstacle-free 8.0× 8.0

S2 Process 1
Small room-like environment,

obstacles introduced 8.0× 8.0

S3 Process 2
Large room-like environment,

obstacles introduced 56.1× 38.4

E1 Magnetic field intensity Obstacles introduced 12.0× 6.0

4.1. General System Setup

4.1.1. Robotic Platform

For experiments we use a holonomic ground robotic platform equipped with an Intel Nuc
(Intel Nuc https://www.intel.de/) (Figure 2a), further referred to as a “slider”. A simulated
representation of the robot with mechanum wheels is made in Gazebo (Gazebo http://gazebosim.org/),
based on the characteristics of the real-robotic platform (Figure 2b).

4.1.2. Perception Sensor

Mapping and localization is carried out with the 3D LIDAR Velodyne VLP-16 (Velodyne
https://velodynelidar.com/vlp-16.html).

4.1.3. Process Sensor

Resolution of the simulated process sensor is 0.1 m and measurements z[g] per location x[g]

are obtained for various sets of predefined ground truth data which represent the GP (Table 2).
The ground truth positions are estimated by Gazebo and the motion tracking system VICON (VICON
https://www.vicon.com/) for simulations and experiments, respectively. Moreover, regarding Table 2,
Process 1 and Process 2 measurements are samplings from a simulated multi-variant GP and the
magnetic field data corresponds to a previously collected real-world magnetic field intensity [8].

Table 2. Explored GP process y with hyper-parameters θ.

Process Dimensions (m2) σ2
f (m) l (m) σ2

n (m)

Process 1 8.0× 8.0 0.03 0.2 0.0001
Process 2 56.1× 38.4 0.04 0.25 0.0001

Magnetic field 4.3× 9.6 0.07 0.2 0.0001

Software components of the system are implemented using ROS (ROS—Robot Operating System.
http://wiki.ros.org/.), Gazebo, C++, and Python 2.7. The process estimator is implemented by
employing an open-source GP framework GPy [42]. Lastly, in order to solve the routing problem,
we utilize the OR-Tools [43] (library developed and maintained by Google).

5. Simulations

5.1. Scalability of Gaussian Processes for Spatial Modelling

The aim of our first simulation tests is to validate the performance of GRBCM in predicting spatial
processes in comparison with a full GP prediction.

https://www.intel.de/
http://gazebosim.org/
https://velodynelidar.com/vlp-16.html
https://www.vicon.com/
http://wiki.ros.org/
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In order to evaluate the GRBCM performance on a large data set, we consider a simulated
2D multivariate GP dataset with N = 7592 measurement points and R = 214500 (390× 550) “test”
locations. As a reminder, for the GRBCM we have P− 1 local experts Ep and one communication
global expert Ec. We assume the same size for all experts, i.e., for a dataset size N, the size of each is
p0 = N/P.

Simulation tests are performed on Dell XPS 13 7390 laptop with Linux operating system Ubuntu
18.04LTS, 10th Generation Intel(R) Core(TM) i7-10510U, and 16 GB RAM.

Simulation Results

We present results in Table 3 that show a significant improvement in the time required to
estimate the process, with only a slight increase in the final NMSE of the reconstructed process.
Moreover, it is observed that the NMSE error decreases when assigning more observations to each
expert, i.e., increasing po. However, we note that more observations per expert lead to increased
computation costs due to matrix inversion. Furthermore, we see that even with a smaller po, time does
not necessarily decrease. This is due to the increased total number of experts P and multiple parallel
computing processes. Therefore, by finding a good trade-off between the minimum size of experts
and computational capabilities, we can obtain an accurate estimate for large-scale processes with
prominently low computation and time costs.

In our further simulations, process estimation with GRBCM is carried out with a fixed expert
size p0 of 350. For N < 350, we have only one expert, which gives an equivalent performance to
classical GP.

Table 3. Performance evaluation for 2D field estimation with dataset with N = 7592 measurements,
R = 214,500 2D test points (390× 550), grid resolution 0.1 m, hyperparameter l = 0.25 m, sampling k = 3l.
We variate P and p0 = N/P (number of local experts and their size, respectively).

P, po Method Prediction Time [s] NMSE

37, 100 GRBCM 21.28 0.151
18, 200 GRBCM 20.74 0.093
12, 300 GRBCM 20.26 0.073
10, 350 GRBCM 19.26 0.070
9, 400 GRBCM 22.42 0.068
7, 500 GRBCM 24.31 0.062
1, 7592 Full GP 102.34 0.060

5.2. Sampling Distance

Since our aim is to consider real-world scenarios, we only want to collect important information.
We ask ourselves what is the minimal distance between samples k that will lead to an accurate
reconstruction of the process but at the same time balance the number of samples we need to obtain.
We vary k with respect to the length-scale l. In such a scenario, we obtain observations about Process 1
(S1: Table 1) with l = 0.2 m, applying our IE strategy in an empty room with a full horizon. For all
runs, the starting position is (x(m), y (m)) = (−3.3,−3.3).

Simulation Results

Figure 7 presents the results with a varying sampling step k = [2l, 3l, 4l]. With IE, the number of
samples Nproc. = [325, 138, 82] are obtained and the corresponding NMSE in relation to the ground truth
are [0.13, 0.18, 0.21]. The travelled distances are [199.45 m, 103.57 m, 70.82 m]. We can notice that the
higher the sampling distance k is, the steeper the NMSE curve is with respect to the distance (Figure 7a)
and the number of samples N (Figure 7b). At the same time, the final attained NMSE is larger with
larger distances. Let us remark that NMSE will never reach zero due to physical limitations of the robot,
which is constrained not to collect data closer than 0.5 m to the obstacles in the environment.
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For the rest of the experiments we select k = 3l, which gives us an optimal trade-off between final
process accuracy and distance travelled.

0 50 100 150 200

Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

N
M

S
E

IE k = 2l

IE k = 3l

IE k = 4l

(a) Process error vs. Distance
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(b) Process error vs. Number of samples

Figure 7. Variation of sampling distance parameter k.

5.3. Evaluation of the Strategy in Simulation

5.3.1. Applied Baselines

In the literature for GP exploration, entropy-based methods [10,17,44] are typically used and they
are showing dominance over random methods. Moreover, the baseline for map exploration originates
from the frontier-based method [6], which is used in many map exploration (i.e., [17,20]) and active
SLAM approaches (i.e., [5,15]).

Thus, in order to validate the performance of our integrated exploration strategy, we consider a
combination of entropy driven and frontier-based baseline strategies as follows:

GGE. At each step, selecting one xg from all possible reachable cells X f ree,r within radius covering all
discovered cells r = f ull:

Xc =

{
xg : xg = arg max

x∈Xc

H(x), s.t.H(x) > ε

}
, (7)

with stopping criteria Xc = {}, i.e., when there are no more cells satisfying Equation (7). This baseline
is inspired by the maximum informativeness criterion [44] that guides the robot towards locations with
the highest information gain while considering the global information available about the process.

GLGE. At each step, selecting one xg from all possible reachable cells X f ree,r within radius r covering
all discovered cells that is the solution of:

xg = arg max
x∈X f ree,r

H(x), s.t.H(x) > ε, (8)

with stopping criteria xg = 0, i.e., when there are no more cells satisfying Equation (8). This baseline
is likewise inspired by the maximum informativeness criterion [44] yet with a small twist that guides
the robot towards locations with the information gain above a priori set threshold, while considering
the global information available about the process only if it cannot find a local suitable candidate.

SS. Goal pose is xg = x f , the centroid of the frontier. If at least one reachable frontier exists,
measurements are collected each k meters distance travelled towards xg, where parameter k is the
sampling distance described in Section 3.4.1. Baseline for the map exploration frontier originates from
commonly used frontier-based exploration, both in the map coverage tasks [6,17,20], as well as a part
of active SLAM exploration component [5,15]. Once no more frontiers are presented, i.e., map is fully
explored, the GLGE strategy is used to complete an entropy driven process exploration.
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We would like to remark that the direct comparison with active SLAM algorithms that consider
the localization uncertainty, regarding SS baseline, is not considered due to our assumption that the
on-board localization system is able to localize the robot with satisfying accuracy, and therefore we
neglect loop-closures and the need to revisit previously explored areas. A summary of the evaluated
benchmarks along with IE strategy is presented in Table 4.

Table 4. Evaluated strategies compared against our Integrated Exploration (IE) strategy.

Strategy Radius r (m) Step Size k (m) Multi-Step Planner

GGE explored map [3l, explored map] No.
GLGE (i) fixed r, (ii) explored map (i) [3l, r], (ii) [3l, explored map] No.

SS explored map (i) fixed = 3l, (ii) [3l, explored map] No.
our IE (i) fixed r, (ii) explored map (i) [3l, r], (ii) [3l, explored map] Yes.

5.3.2. System Simulation Setup

To examine the behaviour of each benchmark against our strategy on a smaller scale, we consider
a simulated physical process (Process 1: Table 2) with a priori given hyperparameters. Simulations are
carried out in two 8× 8 m2 environments with distinct degrees of obstacle complexity: (i) Obstacle-free
(S1: Table 1) and (ii) room-like (S2, S3: Table 1). For these environments, 5 starting positions are chosen:
(x(m), y (m)) = (−3.3, 1.0), (−3.3,−3.3), (0.0, 0.0), (2.0,−2.3), and (2.5,−2.5).

Furthermore, to additionally evaluate our system on a larger scale, we test our IE strategy against
GLGE in a large-scale environment (56.1× 38.4 m2) populated with obstacles, considering a simulated
physical process (Process 2: Table 2) with a priori given hyperparameters.

The robot footprint, including a safety buffer, is set to radius of 0.5 m for all simulation scenarios.
Simulation tests S1, S2 (Table 1) are performed on computer with Linux operating system Ubuntu

16.04LTS, Intel(R) Core(TM) i7-3820, and 32GB RAM. Further simulation scenario S3 (Table 1) is
performed on computer with Linux operating system Ubuntu 18.04LTS, Intel(R) Core(TM) i7-10510U,
and 16GB RAM.

5.3.3. System Simulation Results

Obstacle-free small room-like environment (S1 in Table 1). We assume that the process is fully
explored when process NMSE reaches 0.18 with respect to the ground truth. We are not able to collect
samples around borders due to physical limitations of the robotic platform.

As a remark, the SS benchmark is skipped for the obstacle-free scenario since there are no frontiers.
Moreover, the map is explored already in the first step since perception sensor radius is larger than the
environment size.

S1 simulation results. In Table 5 we observe that our IE strategy outperforms benchmarks with
respect to the total travelled distance. While GGE collects the least amount of process samples Nproc.

while reaching the same NMSE (making it computationally less expensive), it produces significantly
longer trajectories. As a reminder, with GRBCM we can compensate computation costs introduced due
to a higher number of process samples, thus making the total distance travelled our main comparison
tool between different strategies.

Looking into the example of the resultant trajectories (Figure 8) in the obstacle-free scenario
(equivalent to exploring one big empty room), the behavior of GGE (Figure 8a) is stepping towards
the highest value of H(x) while skipping some close locations with H(x) > ε, and forcing it in later
stages to traverse longer distances. While GLGE (Figure 8b) strategy avoids initially traversing
larger distances, it lacks a systematic approach and still misses multiple informative locations,
making exploration more “expensive” in the final stages when the environment is fully observed,
but the process itself is not yet fully explored in many previously visited local areas. If the room
size is covered by search radius r in IE (Figure 8c), we can solve it efficiently within one multi-step
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exploration sequence, avoiding any expensive returns to the vicinity of previously explored locations.
However, we can observe that even with a smaller radius we still systematically explore the horizon r
before moving forward (Figures 8d,e), thus behaving likewise to GLGE only in cases when the local
area is completely explored. Consequently, our strategy produces significantly shorter trajectories.

Table 5. Mean value and standard deviation over five runs for scenario S1. Process exploration:
Total travelled distance and number of collected process measurements (Nproc.) required to achieve
NMSE of 0.18 with respect to the ground truth.

Strategy Distance (m) Nproc.

GGE 140.18± 13.36 109± 2
GLGE 107.06± 2.12 134± 3

IE r = 2 m 102.82± 3.51 134± 3
IE r = 3 m 105.39± 1.84 134± 2
IE r = full 104.49± 2.79 138± 4

−4 −3 −2 −1 0 1 2 3 4

x (m)

−4

−3

−2

−1

0

1

2

3

4

y
(m

)

(a) GGE

−4 −3 −2 −1 0 1 2 3 4

x (m)

−4

−3

−2

−1

0

1

2

3

4

y
(m

)

(b) GLGE

−4 −3 −2 −1 0 1 2 3 4

x (m)

−4

−3

−2

−1

0

1

2

3

4

y
(m

)

(c) IE r = full

−4 −3 −2 −1 0 1 2 3 4

x (m)

−4

−3

−2

−1

0

1

2

3

4

y
(m

)

(d) IE r = 2m

−4 −3 −2 −1 0 1 2 3 4

x (m)

−4

−3

−2

−1

0

1

2

3

4

y
(m

)

(e) IE r = 3m

Figure 8. Example trajectory for scenario S1 and starting location (−3.3,−3.3) for the different strategies.

Small room-like environment, obstacles introduced (S2 in Table 1). In this evaluation, we assume
that the process is explored when NMSE reaches 0.21 with respect to the ground truth. As before,
we are not able to collect samples in close proximity of obstacles.

S2 simulation results. When we add obstacles, we observe that IE tends to produce lower process
error for the same map coverage (Table 6). We also see that our strategy collects more samples and
traverses larger distances before the map is fully explored. This is due to its focus on exploring the
surrounding process before continuing further towards unexplored areas. The compared benchmarks
favor moving faster towards regions with high process uncertainty while ignoring some less uncertain
but still important areas around its current measurement location. As a consequence of exploring room
by room before moving further, IE also produces shorter final trajectories (Table 6).

Table 6. Mean value and standard deviation over five runs for scenario S2: (i) mapping: Total travelled
distance needed to explore the map with accompanied number of obtained process measurements
Nproc.,map and process NMSE; (ii) process exploration: Total exploration distance needed to explore the
process and number of collected measurements (Nproc.) required to achieve NMSE of 0.21 with respect
to the ground truth.

Strategy Distance (m)
Map Explored NProc.Map

Proc. NMSE
Map Explored

Distance (m)
Proc. Explored Nproc.

GGE 15.84± 4.38 13± 5 0.6± 0.1 126.31± 5.13 84± 1
GLGE 49.77± 10.72 64± 12 0.48± 0.05 94.54± 2.56 114± 4

SS 25.72± 6.63 35± 9 0.62± 0.02 108.17± 7.38 118± 4
IE r = 2 m 69.94± 12.58 89± 15 0.42± 0.07 89.89± 4.97 114± 2
IE r = 3 m 64.89± 17.68 85± 17 0.47± 0.12 90.97± 3.96 116± 2

An example of IE mapping for the starting position (x(m), y (m)) = (−3.3,−3.3)) with r = 3 m
is shown below (Figure 9). For this setup, we see the results of the reconstructed process y∗ (based on
Process 1—Figure 10a), represented by mean (Figure 10b) and variance (Figure 10c).
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(a) Small room-like (b)M
Figure 9. Environment for scenario S2.
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Figure 10. S2: IE r = 3m, k = 3l with red diamonds in (c) representing measurements and white
lines trajectory.

Large room-like environment, obstacles introduced (S3 in Table 1). In addition to the multiple tests
performed with S1 and S2, we test our strategy against GLGE in a large scale environment covering a
surface of 2154.24 m2 (Figure 11). We assume that the process is explored when process NMSE reaches
0.084 with respect to the ground truth.

S3 simulation results. We note a lower final NMSE error in S3, in comparison with S1/S2. This is
due to higher process correlation in process 2, resulting in better estimation of unreachable areas
{X \ Xfree}. The estimated process for r = 3 m. is shown in Figure 12.

Despite our IE strategy (r = [3, 6] m) requiring more measurements to reach the same NMSE as
GLGE (Table 7), GLGE produces more than a 100 m longer trajectory for exploring the full environment,
making our strategy more efficient regarding distance measure.

(a) Large room-like (b)M
Figure 11. Environment for scenario S3.

The reason for GLGE placing fewer measuring points lies in its greedy movement strategy,
as it always places only one next best point to satisfy Equation (8). In contrast, our strategy places
as many points as possible within the minimum sampling distance that are above the threshold ε

(Algorithm 1). As a trade-off, more points are generated, but a smaller distance is needed to visit all
points. The executed trajectories are shown in Figure 13.



Sensors 2020, 20, 3663 20 of 26

Table 7. Scenario S3: (i) mapping: Total travelled distance needed to explore the map with accompanied
number of obtained process measurements Nproc.,map and process NMSE; (ii) process exploration:
Total exploration distance to explore the process and number of collected measurements (Nproc.)
required to achieve NMSE of 0.084 with respect to the ground truth.

Strategy Distance (m)
Map Explored NProc.Map

Proc. NMSE
Map Explored

Distance (m)
Proc. Explored Nproc.

GLGE 1398.45 2027 0.29 2977.52 3228
IE r = 3 m 1393.46 1852 0.33 2847.06 3423
IE r = 6 m 1888.78 2530 0.32 2872.52 3567
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Figure 12. S3: IE r = 3m, k = 3l.
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Figure 13. S3: Trajectories (black lines) and obtained measurements (red markers).

As a final remark, we consider a different final NMSE for each scenario for stating the process as
fully explored. Given the same minimum sampling distance k, there are two main underlying reasons
for that: (i) different length-scales l for the processes where higher length-scales allow us to better
estimate unobservable areas below obstacles; and (ii) various density of the obstacles within operating
environment resulting in diversity of unreachable regions.
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6. Experiments

The experiments are performed in order to verify that the system is operating successfully under
laboratory conditions.

6.1. Experimental Setup

The experiment (E1 in Table 1) is conducted with the slider (Figure 2a) in “Holodeck” laboratory,
populated with obstacles (Figure 14a). All computations are carried out in real-time with the on-board
computer of the robot. The aim is to reconstruct the magnetic intensity field of the “Holodeck”.
As mentioned before (Section 4.1), we use real-world magnetic-field data with a simulated process
sensor in the experiment.

First, the algorithm performance is tested with two different sampling distances for IE strategy:

• Finite horizon, r = [2, 3] m.
• Sampling distance k = [2l, 3l].

Additionally, IE with k = 3l is compared against the aforementioned baselines (Section 5.3.1).
Robot operates in an environment of size 6× 12 m2, while the magnetic field data was collected

within 4.6×9.6 m2 (Table 1). Hyper-parameters of magnetic field intensity are θ = [0.07, 0.20, 1.41× 10−4]T

(Table 2). All runs start from x[0] = [0, 0]T (the center of the operating environment).
As a remark, we can notice that in the real-experiment we have a bigger operating environment

than process exploration area. This is due to a priori collected magnetic field measurements from partial
environment. However, we allow path planner to plan through the whole operation environment
while Xpoi are generated only within the exploration area. This presents a possibility to collect data
closer to exploration borders.

6.2. Experimental Results

As expected, based on previously obtained simulation results (Section 5.2), in order to reach the
same NMSE with respect to the ground truth, a smaller sampling size results in (i) longer trajectories,
i.e., longer exploration time, and (ii) more samples obtained, i.e., more computational costs (Table 8).

Table 8. Experiment E1—variation of sampling size: (i) mapping: Total travelled distance needed
to explore the map with accompanied number of obtained process measurements up to that point
Nproc.,map and process NMSE; (ii) process exploration: Total exploration distance to explore the process
and number of collected measurements (Nproc.) required to achieve NMSE of 0.34 with respect to
ground truth.

Strategy Distance (m)
Proc. Explored Nproc.

Distance (m)
Proc. Explored Nproc.

k = 2l k = 3l

IE r = 2 m 92.84 144 55.63 75
IE r = 3 m 93.56 146 58.23 74

Real robot has its aforementioned physical limitations (here we set a safety radius of 0.6 m from
the center of the robot) resulting in a higher NMSE for the explored process since we cannot measure
in proximity and below obstacles. In evaluation, we assume that the process is fully explored when
the NMSE is 0.34 with respect to the ground truth.

Based on the comparison of results presented in Table 9, we see that our systematic exploration
(IE with horizon r = [2, 3] m) results in significantly smaller distances needed for reaching NMSE 0.34.
GGE (Figure 15a) strategy results in backward-forward motions. Both GGE and SS (Figure 15c) are
suitable for fast map exploration, with the cost of notably slower process exploration. While GLGE
(Figure 15b) behaves similarly with IE in narrow corridors, it lacks systematic approach within wider
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areas which produces longer trajectories due to returning to the vicinity of previously explored
regions. We also see that with a small radius with respect to the rooms/corridors in the environment,
our strategy (IE r = 2 m, Figure 15d) can still miss a few important sampling locations and
needs to traverse back. Nevertheless, both IE strategies (Figure 15d,e) result in shorter and more
systematic trajectories.

Figure 14b displays an example of the reconstructed occupancy grid mapM and Figure 16b,c
show the estimated process y∗ by the IE (r = 3 m) in the real-world experiment for real magnetic field
intensity of Figure 16a.

Table 9. Experiment E1: (i) mapping: Total travelled distance needed to explore the map with
accompanied number of obtained process measurements up to that point Nproc.,map and process NMSE;
(ii) process exploration: Total exploration distance to explore the process and number of collected
measurements (Nproc.) required to achieve NMSE of 0.34 with respect to ground truth.

Strategy Distance (m)
Map Explored Nproc.map

Proc. NMSE
Map Explored

Distance (m)
Proc. Explored Nproc.

GGE 17.28 17 0.71 170.94 53
GLGE 44.91 54 0.62 64.81 75

SS 33.24 48 0.68 73.36 77
IE r = 2 m 47.45 62 0.54 55.62 75
IE r = 3 m 53.08 66 0.53 58.23 74

(a) Holodeck (b)M
Figure 14. E1: Experiment with holonomic robotic platform.
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Figure 15. E1: Trajectories comparison, k = 3l.
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Figure 16. E1: IE, r = 3m, k = 3l with red diamonds in (c) representing measurements and white
lines trajectory.

7. Conclusions and Future Work

This paper focuses on the exploration of a spatial process in an unknown environment with an
autonomous mobile robot. More precisely, we address a scenario where two fundamental assumptions
that are typically present in the state of the art do not hold: (i) A priori knowledge about the operating
environment, and (ii) that process and map exploration can be solved independently. For addressing
this, we propose an integrated strategy that solves the process and map exploration jointly by making
the exploration strategy systematic. Meaning, it first explores local area before proceeding further
towards unexplored areas.

Our approach has two essential components: (i) Selection of candidate points to decrease process
uncertainty and increase map coverage, (ii) ordering of those points to minimize total travelled distance
while incorporating knowledge about undiscovered map regions. We intertwine these two components
by building on frontiers-based and GPs-entropy-driven exploration, A* path planner, and solutions
to VRP.

We evaluated our integrated strategy in both simulations and experiments, using a simulated
GP and magnetic field intensity as processes at hand, in various environments. The results allowed
us to conclude the following: (i) Our strategy is able to decrease the error between process estimate
(as calculated with GPs) and ground truth faster than GPs-greedy-entropy-based and frontiers-based
strategies; (ii) trajectories resulting from our strategy follow a structured path, in contrast to the
oscillatory behavior of GPs-entropy-driven exploration; and (iii) our integrated approach offers the
best trade-off between process estimation error and map coverage.

To conclude, integrated exploration offers an opportunity to explore unknown environments
efficiently, especially benefitting from segment exploration, e.g., exploring larger rooms or wide
corridors in detail before moving towards “exits” to unknown space, controlled by the horizon
parameter r and minimal sampling distance k. We note that expectantly choosing k closer to the
length-scale l produces shorter trajectories, while sacrificing precision of process estimation.

Let us finally point out that in this work our focus was primarily on the development and testing
of the exploration concept; exploitation of SLAM loop-closures was not in the scope of this paper.
This is left for a future extension of the proposed system. Therefore, further efforts shall be devoted to
a full integration of pose uncertainties propagated from SLAM into the GPs. Additionally, we aim to
extend our exploration concept by incorporating an active SLAM component for an efficient trade-off
between exploration–exploitation of both exploration and robot localization.
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Abbreviations

The following abbreviations are used in this manuscript:

GP Gaussian process
NBC nuclear, biological, chemical
SLAM Simultaneous Localization and Mapping
BCM Bayesian Committee Machine
RBCM Robust Bayesian Committee Machine
TSP Traveling Salesman Problem
FOV field of view
GRBCM Generalized Robust Bayesian Committee Machine
SE squared exponential
LIDAR Light Detection and Ranging
POI Point of Interest
ICP Iterative Closest Point
TEB Time Elastic Band
WFD Wavefront Frontier Detector
BFS Breadth-first search
VRP Vehicle Routing Problem
IE Integrated exploration
NMSE Normalized Mean Square Error
GGE Greedy global entropy
GLGE Greedy local-global entropy
SS Sequential strategy
ROS Robot Operating System
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