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ABSTRACT

High-throughput bisulfite sequencing is widely used
to measure cytosine methylation at single-base reso-
lution in eukaryotes. It permits systems-level analysis
of genomic methylation patterns associated with
gene expression and chromatin structure. However,
methods for large-scale identification of methylation
patterns from bisulfite sequencing are lacking. We
developed a comprehensive tool, CpG_MPs, for iden-
tification and analysis of the methylation patterns of
genomic regions from bisulfite sequencing data.
CpG_MPs first normalizes bisulfite sequencing
reads into methylation level of CpGs. Then it
identifies unmethylated and methylated regions
using the methylation status of neighboring CpGs
by hotspot extension algorithm without knowledge
of pre-defined regions. Furthermore, the conserva-
tively and differentially methylated regions across
paired or multiple samples (cells or tissues) are
identified by combining a combinatorial algorithm
with Shannon entropy. CpG_MPs identified large
amounts of genomic regions with different methyla-
tion patterns across five human bisulfite sequencing
data during cellular differentiation. Different
sequence features and significantly cell-specific
methylation patterns were observed. These poten-
tially functional regions form candidate regions for
functional analysis of DNA methylation during
cellular differentiation. CpG_MPs is the first user-
friendly tool for identifying methylation patterns of

genomic regions from bisulfite sequencing data,
permitting further investigation of the biological func-
tions of genome-scale methylation patterns.

INTRODUCTION

In mammalian genomes, DNA methylation primarily
occurs symmetrically at cytosine residues followed by
guanine (CpG) on both DNA strands, and �70–80% of
CpG dinucleotides are methylated (1,2). DNA methyla-
tion patterns of genomic regions are associated with
gene transcription, development, aging and tumorigenesis
(3). Tissue-specific methylation patterns of CpG islands
are strongly correlated with gene expression (4).
Genome-wide hypomethylation is involved with aging
and cellular differentiation (5–7). Aberrant DNA methy-
lation patterns of gene promoter CpG islands have been
widely observed in many kinds of human cancers (8–10).
Laurent et al. (11) found that differentially methylated
patterns between exons and introns in gene bodies could
have epigenetic roles in transcript splicing. Low methy-
lation levels in gene promoters and high methylation
levels in gene bodies are associated with highly expressed
genes (12).
Over the past 20 years, however, studies of DNA

methylation mainly focused on CpG-rich regions, such
as CpG islands or gene promoter regions, because of the
limitations of DNA methylation analysis technologies,
such as high cost, low resolution and sequence-specific
basis (13). Bisulfite conversion sequencing remains the
most standard and accurate method for examining the
methylation status of cytosines at single-base resolution.
Several technologies for measuring DNA methylation
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(BC-seq, MethyC-seq, BSPP, RRBS, WGBS and Methyl-
MAPS) have been developed based on bisulfite conversion
and next-generation sequencing methods, which have been
widely applied to measure genome-wide methylation maps
of human, mouse, Arabidopsis and other 17 eukaryotic
genomes (7,11,12,14–18). Several alignment tools of
short reads, such as Bowtie, Maq, SOAP and SOAP II,
may be used to pre-process methylation data from short
sequencing reads by aligning DNA methylation
sequencing reads to a reference genome (19–22). Further-
more, several special programs [e.g. Bismark (23), BS
Seeker (24), BSMAP (25), MethTools (26), QUMA (27),
BISMA (28) and BiQ Analyzer HT (29)] have been de-
veloped to map high-throughput bisulfite sequencing data
into reference genomes. A database (NGSmethDB) has
been devised for the storage and retrieval of single-base
resolution methylation data (30), which provides the
actual methylation landscape of various cell types or
tissues in eukaryotic genomes. These methods primarily
relate to the determination of the methylation status or
level of CpGs that takes the first step to further identify
and analyze the genomic DNA methylation patterns from
high-throughput bisulfite sequencing data.
In plant and animal genomes, the identification for

DNA methylation patterns of genomic regions has been
widely studied (31,32). The methylated regions could be
associated with gene silencing and heterochromatin struc-
tures(11,33), while the unmethylated regions, such as
promoter regions or CpG islands, are strongly associated
with transcriptional activity (via RNA polymerase II) and
active chromatin modification H3K4me3 (3). Studies on
the methylation patterns of genomic regions have gener-
ally involved ‘interesting’ genomic regions (such as CpG
islands, gene promoters, transposons, exons and introns).
The average methylation levels of CpGs in the pre-defined
genomic regions are computed to determine the methyla-
tion patterns of genomic regions (34,35). However, many
of pre-defined genomic regions are arbitrary, such as ‘2-kb
upstream of gene transcriptional start sites’, and the
methylation patterns of shorter regions within the
genomic regions could be masked by the average methy-
lation level of all CpGs in the genomic regions. Therefore,
the identification and analysis of methylation patterns of
genomic regions from dozens of millions of CpG methy-
lation data will be invaluable in revealing the biological
function of genomic methylation patterns.
In previous studies, two main approaches have been

used to identify the unmethylated regions: (i) computa-
tional methods for the identification of CpG-rich regions
by DNA sequence features (36–39) and (ii) experimental
methods for physically unmethylated regions by ChIP–
chip (40) or CXXC affinity purification (41). However,
both computational and experimental methods are
biased toward the CpG-rich regions, and it is inevitably
difficult to determine accurately the boundaries of these
potentially unmethylated regions. In addition, the
methylated regions may be identified from genome-wide
methylation data measured by MeDIP-seq or MBD-seq
based on affinity enrichment (42,43). To our knowledge,
however, no specific bioinformatics tool may be used to
identify the unmethylated and methylated regions from

high-throughput bisulfite sequencing data. In the present
study, we proposed an algorithm to identify the unmethy-
lated and methylated regions by measuring the methyla-
tion status of cytosines based on the reliable bisulfite
sequencing data, without the limitation of sequence
features. It only depends on the methylation status of
neighboring CpGs determined by bisulfite sequencing
data, thus it overcomes the limitation of pre-defined
regions and sequence features. It can accurately identify
the boundaries of unmethylated and methylated regions.
The genome-scale determination of unmethylated and
methylated regions makes it possible to efficiently assess
the biological function of genome-wide methylation
patterns.

Differentially methylated regions (DMRs) have been
widely identified among tissues, developmental cells and
cancer types as being involved in tissue-, cell- or
cancer-specific gene expression (11,44–47). Therefore, the
identification and analysis of DMRs for paired or multiple
samples would be of wide interest. Several methods for
identification of DMRs among different samples (cell
types or tissues) have been proposed, based on the statis-
tical methods of the t-test for paired samples (48), the
Kruskall–Wallis test and analysis of variance (ANOVA)
for multiple samples (49,50). These traditional statistical
methods are unfit for the identifications of DMRs because
DNA methylation data are in general bimodal distribu-
tion rather than normal distribution. Especially, the deter-
mination of methylation patterns for DMRs among the
multiple samples (�3) remains a challenge for statistical
methods (50,51). For example, the average methylation
levels of the pre-defined regions in three genome regions
0.05, 0.15 and 0.2 could show significant difference by
ANOVA. However, the genomic regions actually
preserve the unmethylated pattern and the difference
among the three samples could be caused by the experi-
mental errors or sequencing depth. Recently, we de-
veloped a method of QDMR based on the Shannon
entropy independent of the DNA methylation distribu-
tion, which may be used to quantitatively identify
DMRs based on the average methylation level of CpGs
in the pre-defined regions (52). However, QDMR could
not directly identify the DMRs from bisulfite sequencing
data at single-base resolution rather than methylation
levels of pre-defined regions. Sliding window is a trad-
itional method for pre-defined regions that are arbitrarily
chosen and not taken the actual methylation status of
CpGs into consideration. Here, we developed a combina-
torial algorithm to determine the potentially genomic
regions with different methylation patterns based on the
bisulfite sequencing data across the paired or multiple
samples. The combinatorial algorithm may qualitatively
identify conservatively methylated regions (CMRs) and
DMRs by determining whether the methylation patterns
of genomic regions change among paired or multiple
samples. Based on average methylation levels of CpGs
in the potentially functional regions among paired or
multiple samples, we further used the method of
Shannon entropy to quantitatively assess the consistency
or difference in the identified regions.
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CpG_MPs was applied to the bisulfite sequencing data
for five human cell types during stem-cell differentiation.
Genome-wide unmethylated and methylated regions were
identified for each of the five human cell types. And a large
number of CMRs and DMRs were identified among the
five human cell types that show significant sequence bias
and cell-specific methylation patterns of genomic regions.
To facilitate the users to effectively identify and analyze
the potentially functional regions with different DNA
methylation patterns from the bisulfite sequencing reads
of CpGs at single-base resolution, the comprehensive tool
of CpG_MPs provides the functions of data normaliza-
tion, sequence features and visualization of genomic
regions. A free version of the CpG_MPs software is avail-
able at http://bioinfo.hrbmu.edu.cn/CpG_MPs. The iden-
tification and analysis of potentially functional regions
from paired or multiple samples could provide a new per-
spective, revealing the stability or dynamic changes of
chromatin, epigenetic inheritance and regulation during
cellular differentiation.

MATERIALS AND METHODS

Database

The human reference sequences and Refseq gene annota-
tion were downloaded from the UCSC Genome Browser
(53). Promoter regions were defined as being the 2-kb
upstream and downstream of transcription start sites. The
high-throughput bisulfite sequencing data of five human
cell types during cellular differentiation were from two ex-
periment laboratories. The data were from human embry-
onic stem cells (H1) and fetal lung fibroblasts (IMR90)
downloaded from http://neomorph.salk.edu/human_
methylome/ (7), human embryonic stem cells (H9), a
fibroblastic differentiated derivative of the human embry-
onic stem cell (H9_fibro) and neonatal foreskin fibroblasts
(Neonatal_fibro) from NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo) (11). These raw bisulfite
sequencing data were converted into the number of
methylated reads and covered reads of cytosines (including
unmethylated/methylated reads) by aligning them to the
human reference genome (hg18) using the software of
Bismark for bisulfite sequence alignment (23). The 14318
physical unmethylated regions in human blood cells, based
on the method of unmethylated CpG affinity chromatog-
raphy, were obtained from Illingworth et al. (41).

Overview of software

A comprehensive tool, CpG_MPs, is introduced for identi-
fication and analysis of genomic regions with unmethylated
and methylated patterns from bisulfite sequencing data,
and to identify CMRs and DMRs for paired or multiple
samples. It comprises four modules: (i) data normalization
of the sequencing reads of CpGs; (ii) identification of
unmethylated and methylated regions; (iii) identification
of CMRs and DMRs across paired or multiple samples;
and (iv) extraction of sequence features and visualization
of the genomic regions with various methylation patterns.
The pipeline of the software is summarized in Figure 1 and
the detailed information as follows.

Data input

The input data of CpG_MPs consist of high-throughput
bisulfite sequencing data of CpGs at single-base reso-
lution. The bisulfite sequencing data are the sequencing
reads of cytosines at single-base resolution in the TXT
format, which needs to be processed by converting raw
bisulfite sequences into the numbers of methylated reads
and covered reads for each cytosine, using a specific tool
of Bismark (23) for short-read alignment of high-
throughput bisulfite sequencing. The input data are
sorted automatically according to the order of their co-
ordinates in the reference genome.

Normalization of the sequencing reads of CpGs

To determine accurately and efficiently the methylation
patterns of genomic regions from the bisulfite sequencing
data at single-base resolution, CpG_MPs first normalizes
the sequencing reads of CpGs into the methylation level of
CpGs in the unit interval of [0,1]. In the module of data
normalization, CpG_MPs provides three basic proced-
ures: incorporating sequencing reads, quality control and
calculation of methylation level of CpGs. CpG_MPs fa-
cilitates the above procedures with a user-friendly inter-
face to convert the sequencing reads into the standard
methylation level of CpGs. The detailed procedures are
as follows.

Incorporating sequencing reads in sense and
antisense strands
Sequencing technologies for measuring DNA methylation
may provide sequencing reads of single-base CpGs
in sense and antisense strands. CpG_MPs provides a
procedure that incorporates sequencing reads of symmet-
rical CpGs in sense and antisense strands. If the users wish
to investigate CpG methylation in a single strand or
compare CpG methylation statuses between sense and
antisense strands, they only need to input methylation
data of a single strand. And the procedure of
incorporating sequencing reads of both strands is auto-
matically skipped.

Quality control
To obtain accurate CpG methylation levels from high-
throughput bisulfite sequencing technologies, CpG_MPs
sets sequencing depth as an important parameter to
measure the methylation level of CpGs. Recently,
Laurent and colleagues performed saturated analysis of
bisulfite sequencing depth and showed that at a
sequencing depth �3, the accuracy of determining the
methylation status of CpGs was high (79%) (11). To
obtain more accurate methylation statuses of CpGs, the
default parameter of sequencing depths of CpGs in
CpG_MPs is set as 5, which may be adjusted by the
users as necessary. All the CpGs with low sequencing
depths are filtered.

Calculation of the methylation level of CpGs
The sequencing data of CpGs in each chromosome are
aligned to the reference genome. The methylation level
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of each CpG is defined by the sequencing reads of CpGs as
follows:

MethðCpGÞ ¼
readsðmCpGÞ

readsðCpGÞ
, ð1Þ

where reads (mCpG) represents the number of methylated
CpG reads at the CpG dinucleotides and reads (mCpG)
represents the total number of cover reads comprising
unmethylated and methylated reads at the CpG dinucleo-
tides. By this definition, the methylation level of CpG is
normalized into the unit interval [0, 1].

Identification of the unmethylated and methylated regions
using hotspot extension algorithm

To identify the genomic regions with unmethylated and
methylated patterns, the methylation status for each CpG
was divided into four categories, based on the normalized
methylation levels of CpGs: (i) unmethylated CpGs with
methylation levels �0.3, (ii) partially unmethylated CpGs
ranging from 0.3 to 0.5, (iii) partially methylated CpGs
ranging from 0.5 to 0.7 and (iv) methylated CpGs whose
methylation levels �0.7. We devised an algorithm, termed
as hotspot extension, to identify the genomic regions with
the unmethylated and methylated patterns including two
main steps: searching for hotspots and the extension of
hotspots. The detailed algorithm is shown as follows.

Step 1: Convert the normalized methylation level of
CpGs into the methylation status of CpGs.

Step 2: Scan CpGs from a 50- to 30-direction to extract
the genomic regions including at least n successively
unmethylated (methylated) CpGs as unmethylated
(methylated) hotspots.

Step 3: Extend the unmethylated (methylated) hotspots
upstream and downstream to incorporate unmethy-
lated (methylated) or partially unmethylated (methy-
lated) CpGs into the hotspots as unmethylated
regions, until methylated (unmethylated) or partially
methylated (unmethylated) CpGs are met. The
method allows for at most one CpG with different
methylation statuses during the extension of hotspots.

Step 4: Combine two neighboring genomic regions with
the same methylation pattern together if their distance
is <200 bp.

Step 5: Compute the mean value and standard deviation
of methylation level of CpGs in each unmethylated/
methylated region.

The thresholds of n were determined by comparing the
distributions of successively unmethylated/methylated
CpGs between experimental samples of bisulfite sequenc-
ing data and computationally generated control samples.
The default values of the parameters within the software
may be adjusted for users from the setup options of
CpG_MPs.

Figure 1. Workflow of the software CpG_MPs for the identification and analysis of genomic regions with different methylation patterns from
bisulfite sequencing data. (A) Input data of CpG_MPs include two sections: The bisulfite sequencing data need to be processed by converting raw
bisulfite sequences into the numbers of methylated reads and covered reads for each cytosine, using the short-read alignment tool of Bismark. The
reference sequence data of an organism may be downloaded directly from UCSC, NCBI or ENSEMBL. (B) Data normalization of CpG_MPs
includes three functions of incorporating sequencing reads of the complementary positions of CpGs in sense and antisense strands, quality control of
sequencing depth and calculation of methylation level of CpGs. (C) Identification of unmethylated regions and methylated regions based on the
method of hotspot extension from the normalized methylation level of CpGs at single-base resolution. (D) Identification of CMRs and DMRs
deduced from the determination of unmethylated and methylated regions of each sample. (E) Analysis of sequencing features and visualization for
the genomic regions identified by CpG_MPs.
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Identification of CMRs and DMRs

Based on the identification of methylation patterns of
genomic regions in each sample by the second module of
CpG_MPs, a method for the identification of conserva-
tively unmethylated regions (CUMRs), CMRs and DMRs
was devised by combining the combinatorial algorithm for
determination of potentially functional regions with the
method of Shannon entropy for quantitatively assessing
consistency or difference of the identified regions. The
schematic figure for identification of CMRs and DMRs
is shown in Figure 2.

First, the unmethylated/methylated regions of each
sample identified by the second module of CpG_MPs
are mapped into reference genome and the sample-
methylation patterns of overlapping regions (ORs) in the
reference genome are recorded (Figure 2A). To effectively
mark the DNA methylation patterns of genomic regions,
the unmethylated pattern is labeled as ‘�1’ and the
methylated pattern as ‘1’. For N(� 2) samples, the two
mathematical measures to determine the methylation
patterns of ORs (conservatively or differentially methy-
lated patterns) are defined as follows:

u ¼
nm � nu
nu+nm

v ¼
nu+nm
N

8><
>: , ð2Þ

where nm represents the number of samples with
methylated pattern (‘1’) in the ORs and nu represents the
number of samples with unmethylated pattern (‘�1’) in
the ORs (Figure 2B). The measure u is defined to deter-
mine the methylation patterns of ORs across multiple
samples, that is

OR is
CMR, if u ¼ 1
DMR, if� 1 < u < 1
CUMR, if u ¼ �1

8<
: : ð3Þ

Since the genomic regions with different methylation
patterns among multiple samples by CpG_MPs are dy-
namical regions rather than pre-defined regions, the
number of samples in the ORs is unfixed. Therefore, we
defined the measure v to assess the overlapping ratio of the
number of samples with determined methylation patterns
to the total number samples in ORs. Obviously, the larger
v values (0 < v � 1) of ORs are, the more robust the
determined methylation patterns of ORs across multiple
samples are. Therefore, the methylation patterns and
reliabilities of ORs may be marked by the u values and v
values of ORs, respectively.
Next, a strategy of hotspot extension is used to merge

the neighboring ORs with the same methylation pattern
across multiple samples, because many neighboring ORs
with the same methylation patterns are split by their
different v values caused by sequencing depth of raw
data or the dynamic algorithm for the identification of
unmethylated and methylated regions in each sample
using CpG_MPs (Figure 2C). The strategy of hotspot ex-
tension was devised as follows. First, the ORs are ranked
from the largest to the smallest according to their v values
that is used to assess the reliability of methylation patterns
of ORs. The ORs with the maximum v values are
optimized and chosen as the hotspots. Then, the
hotspots are extended to merge the neighboring ORs
with the same methylation pattern when the distances
between hotspots and neighboring ORs are <200 bp and
v values of neighboring ORs <0.5. The rule for merging
the hotspots and neighboring ORs with same methylation
pattern into new hotspots is devised as follows:

New hotspot is

CMR if u0¼ 1 u00 ¼ 1
DMR if 0 <u0 < 1 0 <u00 < 1
DMR if u0 ¼ 0 0 <u00 < 1
DMR if� 1 <u0 < 0 �1 <u00 < 0
CUMR if u0¼ � 1 u00 ¼ �1,

8>>>><
>>>>:

,

ð4Þ

Figure 2. The schematic figure for identification of CMRs and DMRs by combining the combinatorial algorithm with Shannon entropy.
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where u0 and u00represent, respectively, the u value of
hotspots and its neighboring ORs. This algorithm is
repeated until v values of all the remaining ORs are
<0.5. Finally, the new hotspots containing at least four
CpGs are identified as the CMRs, CUMRs or DMRs. In
this study, v=0.5 is used as a cutoff to assess the reliabil-
ity of methylation patterns of ORs, that is the methylation
patterns of at least half of samples are determined in ORs.
And the threshold for v and the number of CpGs included
in the identified regions may be adjusted by users as ne-
cessary in the software of CpG_MPs.
Furthermore, the u values of DMRs may be used to

classify DMRs into two methylation patterns as shown
in Equation (5).

DMRs is
partially methylated pattern if 0 <u < 1
partially unmethylated pattern if� 1 < u < 0

�
:

ð5Þ

Therefore, the u values of DMRs may further be used to
extract sample-specific DMRs. For example, DMRs are
sample-specific, if the absolute value of u ¼ N�1

N for the
DMRs across N(� 2) samples. The software of
CpG_MPs provides the function to extract the sample-
specific DMRs that may be regarded as the DNA methy-
lation markers of the sample in contrast to other samples.
Finally, a method of modified Shannon entropy was

used to quantitatively assess the identified regions across
paired or multiple samples. The average methylation levels
of CpGs in the identified regions were computed. Then,
the entropy values of the identified regions were computed
based on the average methylation level of each identified
region in paired or multiple samples by modified Shannon
entropy. The detailed formulas and algorithms of
determined thresholds for modified Shannon entropy
were shown in our previous study for the quantitative
identification of DMRs (52). The larger the entropy
values are, the more consistent the determined CUMRs/
CMRs among multiple samples are, while the lower the
entropy values are, the larger methylation changes of the
determined DMRs among multiple samples are. The sig-
nificant CUMRs/CMRs or DMRs were extracted based
on the corresponding thresholds of entropy for different
number of samples.

Sequence features of genomic regions of different
methylation patterns

The sequence features of genomic regions identified by
CpG_MPs from high-throughput bisulfite sequencing
data include length, GC content and CpG ratio.
Length is equal to the number of the nucleotides in a

genomic region.

GC content ¼
NumðCÞ+NumðGÞ

Length
ð6Þ

CpG ratio ¼
NumðCpGÞ � Length

NumðCÞ �NumðGÞ
ð7Þ

where NumðCÞ, NumðGÞ and NumðCpGÞ are the number
of C, G and CpG nucleotides in a genomic region,
respectively.

Identification of DMRs by Fisher’s exact test based on
sliding window

As the description of Lister et al., we developed a program
to identify the DMRs from the bisulfite sequencing data of
CpGs between the H1 and IMR90 cells by the method of
Fisher’s exact test based on sliding window (FET_SW)
with 1-kb window size and 1000-bp sliding step (7).
Total 491 de novo methylated regions and 75 378
demethylated regions were identified by FET_SW from
H1 to IMR90 cell, respectively.

Gene ontology annotation

The functional annotation analysis of the genes with de
novo methylated regions among the five human samples
was performed by the DAVID Bioinformatics Resources
6.7 website of http://david.abcc.ncifcrf.gov (54). The
human NCBI gene list was used as the reference
genome. The P-value modified by Benjamini correction
for significance was set at 10� e�3for Gene Ontology
(GO) analysis.

RESULTS AND DISCUSSION

Data normalization of bisulfite sequencing data

To quantitatively measure the methylation level of CpGs
from bisulfite sequencing data, we devised a module of
data normalization to convert the sequence reads of
CpGs into the methylation level of CpGs in the unit
interval [0, 1]. Two main factors are taken into consider-
ation: sequencing information of both strands and
sequencing depth of CpGs at single-base resolution.
CpG dinucleotides are known to be symmetrical in sense
and antisense strands, based on the principle of comple-
mentary base pairing. Earlier studies have shown that
methyltransferase DNMT1 maintains the symmetric
structure of CpG methylation in both strands after
DNA replication, because DNMT1 has high preference
for hemimethylated target sites during DNA replication
(55,56). Therefore, CpG_MPs provides a simple proced-
ure that merges sequencing reads of symmetrical CpGs in
both strands, which may double their sequencing depths
to improve the saturation of sequencing depths without
any extra cost. On the other hand, several studies have re-
ported that a few regions of strand-biased DNA methyla-
tion were observed in animal and plant genomes
(especially in centromeric regions) associated with hetero-
chromation structure and transcriptional silencing during
DNA replication (57,58).Therefore, the procedure of
incorporating sequencing reads of both strands may be
automatically skipped if the users take the strand-biased
CpG methylation into consideration (detailed information
in ‘Materials and Methods’ section). In addition, the users
may further identify the strand-specific methylation
regions through setting the methylation information
of sense strand and antisense strand as two samples.
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The assessment of methylation level of CpGs is related to
the sequencing depth of the DNA methylation mapping
technologies. The saturation of sequencing depth may give
rise to accurate DNA methylation level of CpG-specific
loci (42). Therefore, the sequencing depth of CpGs is
regarded as an important parameter of quality control in
the module of data normalization. Finally, the conven-
tional method is used to convert the sequencing read
into the standard methylation level of CpG by Equation
(1) as shown in ‘Material and Methods’ section.

The module of data normalization of CpG_MPs was
applied to determine the genome-wide methylomes of
five human cell types: H1, H9, H9_fibro, Neonatal_fibro
and IMR90 as shown in ‘Materials and Methods’ section.
In this study, the sequencing information of both strands
is merged together and the threshold of sequence depth
methylation level of CpGs is set as 5. These five standard
methylomes of CpGs for different cell types in human
genome have been depicted that may be downloaded
freely from our website. The basic statistics of measured
CpGs by bisulfite sequencing data are shown in the
Supplementary Table S1. The results show high
genome-wide coverage ratio (>0.75) of measured CpGs
by the module of data normalization of CpG_MPs for
the five different types of human genome that can be
used to further investigate the methylation patterns of
genomic regions.

Identification of unmethylated and methylated regions
from the normalized methylation level of CpGs

Inspired by the tendency of neighboring CpGs sharing the
same methylation status (50,51,59,60), we devised a
searching algorithm of hotspot extension to identify the
unmethylated and methylated regions by searching for
successive CpGs with the same methylation status from
a single sample (cell type or tissue). The accurate methy-
lation status of CpGs is regarded as the ‘switch’ of
genomic methylation patterns.

To verify the potential epigenetic mechanism of neigh-
boring CpGs sharing uniform methylation pattern
genome-wide, we first computed the distribution of the
four kinds of methylation statuses of CpGs in five
human experimental samples (cell types) (see ‘Materials
and Methods’ section). The average proportions of
CpGs for each methylation status in the five cell types
were regarded as the distribution of methylation statuses
of CpGs for the human genome. The mean proportions of
CpGs with the four kinds of methylation statuses were
computed (see Supplementary Figure S1). We observed
that most CpGs (65–95%) were methylated or partially
methylated in the five cell types of human genome
during differentiation, which was consistent with the
previous findings of global DNA methylation of human
genome (2). However, the distributions of methylation
statuses of CpGs were significantly different among the
five cell types, which are consistent with dynamic
changes of human methylomes during cellular differenti-
ation (7,11).

Next, the average proportions of CpGs with the four
methylation statuses in the five cell types were regarded as

the distribution of methylation statuses of CpGs in human
experimental samples. Based on the distribution of methy-
lation statuses of CpGs in human experimental samples,
we computationally generated 1000 control samples with
random methylation status of CpGs as follows. The
random sequence comprised 1 000 000 CpGs, and each
CpG was randomly assigned one of four kinds of methy-
lation statuses. The occurrence probabilities for the four
kinds of methylation statuses of CpGs in the random
sequence follow their corresponding distribution in
human genome, as determined by the five bisulfite
sequencing data as mentioned above. The process was
repeated 1000 times. The 1000 random sequences with
CpGs of random methylation statuses were generated as
control samples. We searched the genomic regions for suc-
cessive CpGs with the same methylation status in the ex-
perimental samples and control samples. The cumulative
distribution functions of CpGs for the number of succes-
sive CpGs with the four methylation statuses were
computed in the experimental samples and the control
samples, respectively (Figure 3). We observed that the cu-
mulative distribution functions of CpGs of unmethylated
and methylated status in the experimental samples were
significantly lower than those in the randomly generated
control samples (Figure 3A). For example, <5% of CpGs
of unmethylated status continuously appeared at least
three times in the control samples, yet those in experimen-
tal samples accounted for >60% of the total CpGs. These
results indicate that the unmethylated CpGs gather into
significant clusters to form genomic regions with the
unmethylated pattern in human methylomes, rather
being generated randomly. The methylated CpGs have a
similar trend to form genomic regions with the methylated
pattern (Figure 3D). On the other hand, the cumulative
distribution functions of successive CpGs with a partially
methylated status and a partially unmethylated status in
the experimental samples are consistent with those in the
control samples (Figure 3B and C). These results suggest
that the unmethylated/methylated CpGs significantly
gather into clusters to form genomic regions with
unmethylated/methylated pattern, while partially
unmethylated/methylated CpGs may not gather into
clusters to form genomic regions with the partially
unmethylated/methylated pattern. Therefore, the methyla-
tion patterns of human genomic regions may be divided
into two classes: unmethylated and methylated patterns.
The genomic regions with successive unmethylated
(methylated) CpGs are regarded as hotspots of the
unmethylated (methylated) pattern, respectively. The
threshold of the amount of successive unmethylated
CpG sites was set as 3 to identify statistically signifi-
cant unmethylated hotspots using the probability
(P-value< 0.05) of CpGs for successive three unmethylated
CpGs in the total CpGs in random samples (Figure 3A).
The unmethylated and methylated hotspots were

identified from the standard methylomes in five experien-
tial samples. However, we found that the average length of
the unmethylated hotspots was only 704 bp and that of
methylated hotspots was 1068 bp, which were shorter
than that the expected length of unmethylated/methylated
regions (Table 1). We observed that the methylation levels
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for the unmethylated CpGs and partially unmethylated
CpGs were similar; these marginal CpGs of partially
unmethylated status could be excluded, and neighboring
unmethylated hotspots were divided by the strict thresh-
olds or missed values for the identification of unmethy-
lated hotspots. The same trend was observed in the
methylated hotspots. Therefore, the shorter lengths of
unmethylated/methylated hotspots could be caused by
the strict thresholds used in determining the methylation
status or sequencing depth by the measuring technologies.
To confirm the validation of hotspot extension to

preserve the integrity of genomic methylation patterns,
we identified the unmethylated and methylated regions
using hotspot extension in five experimental samples. As
shown in Table 1, we found that the average length and
number of CpGs in unmethylated/methylated regions
extended by hotspots increased by >3- (or 9-) fold
compared to those identified using strict thresholds.
Meanwhile, the total number of unmethylated and
methylated regions was reduced by >70%. These results
suggest that many neighboring hotspots with the same

methylation patterns were split by the strict threshold,
yet the extension of hotspots could combine them into
a complete region. The average methylation level and
standard deviation of CpGs in the unmethylated/
methylated regions extended by hotspots were computed
to quantitatively evaluate the mean methylation level and
variation of CpGs in the identified regions. The results
show that the average methylation level of unmethylated
regions is still low (0.20), while that of methylated regions
keeps high average methylation level (0.78). Meanwhile,
the average standard deviations of unmethylated/
methylated regions keep the low level (<0.10) (Table 1).
These results indicate that the extended unmethylated /
methylated regions still preserve their hypomethylated/
hypermethylated level, even when the threshold of methy-
lation status is loosened.

Based on the above observations, we devised an algo-
rithm of hotspot extension to identify the genomic regions
with unmethylated/methylated pattern using two main
steps. First, we marked the genomic unmethylated/
methylated regions with the stringent rule, based on the

Figure 3. Distributions of successive CpGs with the same methylation status. For the four kinds of methylation statues of CpGs, the red solid lines
represent the mean-fit lines of the cumulative distribution functions of CpGs for the number of successive CpGs in five experimental samples, and the
blue dashed lines are for the 1000 control samples generated randomly.
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clusters of successive unmethylated/methylated CpGs that
guarantee the accurate positioning of the unmethylated/
methylated regions. Then, we loosened the condition for
determining the methylation status and allowed one CpG
with different methylation statuses during the extension of
hotspots that may reduce the effect of the strict categories
of methylation status and the sequencing depth. The
CpGs with similar methylation status in their flanking
regions were incorporated into the hotspots as genomic
unmethylated/methylated regions. The detailed algorithm
is shown in the ‘Materials and Methods’ section. The
method of hotspot extension may not only accurately de-
terminate the locations of unmethylated/methylated
regions by strict thresholds but also could maintain the
integrity of unmethylated/methylated regions through
hotspot extension. Overcoming the limitation of average
methylation level of window size or pre-defined regions,
CpG_MPs becomes feasible for discovering dynamic
regions depending on the methylation status of CpGs at
single-base resolution from bisulfite sequencing data.
Therefore, it could identify the accurate boundary of the
genomic regions with different methylation patterns,
because a linear searching strategy of CpG sites is used
to search the neighboring CpGs with the same methyla-
tion status rather than the average methylation level of
CpGs in specific regions.

The second module of CpG_MPs is further used to
identify the unmethylated and methylated regions for
each of the five samples as mentioned above. The
numbers and coverage ratios of methylated regions are
significantly greater than those of unmethylated regions
consistent with the global methylation of human genome
(2,61) (Supplementary Table S2). The average methylation
level and standard deviation of CpGs in each
unmethylated/methylated regions were computed by
CpG_MPs as two quantitative indicators of methylation
patterns of genomic regions. As shown in Figure 4A, we
found that the unmethylated regions and methylated
regions show the distinct distributions of the average
methylation levels among the five cell types. Almost all
of unmethylated regions keep the hypomethylated
average methylation levels (<0.3), while >85% of
methylated regions keep the hypermethylated average
methylation levels (>0.7). On the other side, the methyla-
tion levels of CpGs in unmethylated and methylated
regions maintain the low standard deviation (<0.2)
(Figure 4B). These results indicate that CpG_MPs may
effectively identify unmethylated and methylated regions
and the CpGs in the identified regions preserve the con-
sistent methylation status.

To further confirm the reliability of the unmethylated
regions identified by CpG_MPs, we used the genome-wide
14 318 physically unmethylated regions identified by
Illingworth et al. as the test set of unmethylated regions
(see ‘Materials and Methods’ section). These physically
unmethylated regions from human blood cells were
biased toward CpG-enriched regions and limitation of
CXXC affinity chromatography techniques (41); there-
fore, the amount of physically unmethylated regions is
relative lower than one identified by CpG_MPs.
Therefore, we only computed the overlapping numbers
of the physical unmethylated regions with the
unmethylated regions identified by CpG_MPs from each
of five cell types (Supplementary Figure S2). The high
overlapping ratios of physically unmethylated regions
with the identified unmethylated regions from five cell
types were observed: 92% in H1, 94% in H9, 93% in
H9_fibro, 96% in Neonatal_fibro and 96% in IMR90.
This result indicated that almost all the physically
unmethylated regions could be identified by our methods
in the five different cells. On the other hand, the numbers
of unmethylated regions identified by CpG_MPs from the
five cells are 2- to 16-fold of physical unmethylated
regions. These results indicate that CpG_MPs could
identify accurately unmethylated regions, and many new
unmethylated regions identified by CpG_MPs from
bisulfite sequencing data of the different cell types or
tissues, may be regarded as physical unmethylated
regions of human cell- or tissue-specific genomes.
Although the systematic investigation of the methylated
regions has not been investigated to date, the genome-wide
methylated regions identified by CpG_MPs could provide
a new perspective in the study of the function of DNA
methylation and the dynamic structures of heterochroma-
tin in different cell types or tissues.

Identification of CUMRs, CMRs and DMRs across
paired or multiple samples

The accurate identification of DMRs is key requisite to
investigate the regulatory functions of DNA methylation
across paired or multiple samples. Here, we developed a
novel method to identify DMRs, CUMRs and CMRs
across paired or multiple (�3) samples, by combining
the combinatorial algorithm to identify the genomic
regions with different methylation patterns, with a
method of Shannon entropy to quantitatively evaluate
the difference or consistency of the identified regions. It
includes two main steps and the detailed algorithm is
shown in ‘Materials and Methods’ section.

Table 1. The basic statistics of unmethylated/methylated hotspots and extended unmethylated/methylated regions in five human cell types

Unmethylated hotspots Unmethylated regions Methylated hotspots Methylated regions

Number 855 009 594 795 6 651 980 1 187 182
Length±SDa 704±33 058 2169±41 691 1068±19209 9274±64 097
CpG number±SDa 13±32 25±46 10±12 77±156
Methylation level±SDa 0.11±0.06 0.2±0.10 0.88±0.05 0.78±0.07

aMethylation level represents the average methylation level of all CpGs in the identified regions.
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First, a combinatorial algorithm was devised to quali-
tatively identify DMRs, CUMRs and CMRs by a com-
binatorial approach for determining the methylation
patterns of ORs across paired or multiple samples.
However, the combinatorial approach faces two main
problems. The determination of methylation patterns of
ORs is a complex problem, because there are in theory 2n

kinds of combinatorial methylation patterns of ORs for n
samples. The kinds of methylation patterns of genomic
regions across multiple samples rise exponentially along
with the number of samples. Additionally, the locations
of unmethylated/methylated regions identified by
CpG_MPs are unfixed among different samples that
cause the complex information of methylation patterns
and shorter lengths of ORs in the process of combinatorial
iteration when the number of samples is larger
(Figure 2A). To resolve two problems, we defined two
mathematical measures u and v to determine the methyla-
tion patterns and reliabilities of ORs as shown in
Equation (2). The measure u is used to determine three
methylation patterns of ORs (DMRs, CUMRs/CMRs) by
Equation (3), which overcomes the complex problem for
2n kinds of combinatorial methylation patterns of ORs
across n samples in theory. However, the algorithm
omits the detailed information of methylation patterns
in each sample of ORs. To resolve the defect, CpG_MPs
provides the information of average methylation level of
the identified ORs in each sample that is convenient for
the users to further investigate the dynamic mechanism of
methylation patterns across multiple samples. Next, the
strategy of hotspot extension was devised to merge neigh-
boring ORs with the same methylation patterns by
Equation (4), which may reduce the effect of shorter and
scattered ORs caused by dynamic locations of genomic
regions in different samples. In addition, the u values
may be further determined the tendency of the methyla-
tion patterns of DMRs by Equation (5), which may be

used to identify the sample-specific DMRs. Second, a
method of Shannon entropy has been used to quantita-
tively assess the consistency of the identified CUMRs/
CMRs and difference of the identified DMRs across
paired or multiple samples, respectively. The significant
CUMRs/CMRs or DMRs were excavated across paired
multiple samples according to the corresponding thresh-
olds of entropy that may reduce the false positive of the
genomic regions with different methylation patterns quali-
tatively identified by the combinatorial algorithm.

The third module of CpG_MPs was applied to identify
the CUMRs/CMRs and DMRs between H1 and IMR90
cell, whose bisulfite sequencing data were obtained from
one experimental laboratory (7). For paired samples, the
DMRs may be further classified into de novo methylated
regions and demethylated methylation regions according
to the orientation of methylation change from H1 to
IMR90 cells. As shown in Table 2, the 27 459 CUMRs,
4654 de novo methylated regions, 199 213 demethylated
regions and 353 209 CMRs were identified from H1 to
IMR90. The number of demethylated regions is signifi-
cantly higher (>75-fold) than that of de novo methylated
regions. These results suggest that the methylated regions
could be more instability than the unmethylated regions
during cellular differentiation.

Compared with the method of FET_SW based on
sliding window for identification of DMRs proposed by
Lister et al. (see ‘Materials and Methods’ section),
CpG_MPs identified a large number of new and short
DMRs consisting of de novo methylated regions and
demethylated regions from H1 to IMR90 cell. The
number (4654) of de novo methylated regions by
CpG_MPs is >9-fold of one (491) by FET_SW and >2-
fold for the demethylated regions as shown in Figure 5
and Supplementary Table S3. The absolute difference of
average methylation levels of CpGs in each DMR was
computed; the results show that both de novo methylated

Figure 4. Comparison of average methylation levels and standard deviations of CpGs in genomic regions with different methylation patterns among
five human cell types. Box plots in (A) and (B) show, respectively, the genome-wide distributions of average methylation level and standard deviation
of CpGs in five cell types of H1, H9, H9_fibro, Neonatal_fibro and IMR90.
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regions and demethylated regions by CpG_MPs show the
larger difference of DNA methylation than those by
FET_SW from H1 to IMR90 cell (Figure 5). CpG_MPs
identified 3831 new de novomethylated regions from H1 to
IMR90, where 903 out of these regions located in the
promoter regions of 827 genes (Supplementary Table
S4). Many short de novo methylated regions were
observed in the gene promoters. For example,
CpG_MPs identified the shortest de novo methylated
region with only 11 bp in the promoter region of
FASLG gene that plays important roles in human stem-
cell differentiation and cancer development (62,63). GO
annotation analysis was performed for these target genes
whose promoter regions contain the new de novo
methylated regions. The results show that they are
closely associated with positive regulation of gene tran-
scription, RNA metabolic process, nucleobase, nucleoside,
nucleotide and nucleic acid metabolic process, embryonic
morphogenesis, embryonic organ development, skeletal
system development and cell morphogenesis involved in
differentiation as shown in Table 3. It suggests that
CpG_MPs may identify many new de novo methylated
regions and their target genes are involved in the

regulation of gene transcription during embryonic devel-
opment. As for the DMRs identified by FET_SW, 97%
(478) of de novo methylated regions and >81% (61 194) of
demethylated regions may overlap with the corresponding
DMRs by CpG_MPs. What’s more, CpG_MPs may ac-
curately identify the boundaries of DMRs. For example,
both CpG_MPs and FET_SW may identify the DMRs in
promoter region of gene SCT2 (Figure 6). Our algorithm
of CpG_MPs may accurately identify the boundaries of
DMR. However, the DMR identified by FET_SW include
many non-differentially methylated CpGs in CpG islands.
In fact, these CpGs in the CpG island keep low methyla-
tion level and are identified as a CUMR by CpG_MPs.
The actual DMR is in the flanking regions of CpG islands
rather than in CpG islands.
CpG_MPs may also be applied to identify the CMRs

and DMRs among multiple samples (see ‘Materials
and Methods’ section). It identified 25 009CUMRs,
411 756CMRs and 245 685DMRs across the five cell
types related to embryo stem-cell differentiation
(Table 4). As for these CUMRs, we found that they
overlapped with >88% of the14 318 physical
unmethylated regions in human blood cell as shown in
‘Materials and Methods’ section. It indicates that the
25 009CUMRs identified by CpG_MPs were reliable
unmethylated regions in different cell types. In addition,
we found these CUMRs obtained high GC contents and
CpG ratios as shown in Table 4. The 25 009CUMRs
satisfy the two key criterions of unmethylated regions
and CpG-rich regions for identification of CpG islands.
Therefore, they may be regarded as the reliable ‘CpG
islands’ in human genome. Among the 245 685DMRs
among the five cell types, 63 951cell-specific DMRs were
identified by CpG_MPs and may be regarded as the ‘DNA
methylation fingerprint’ to distinguish the cell types as
shown in Table 4 (64,65). The basic statistics of the methy-
lation patterns of cell-specific regions are shown in
Supplementary Table S5. The results show that the
number (53 086) of cell-specific unmethylated regions is
>5-fold of the number (10 865) of methylated regions.
And most of cell-specific regions of human embryonic
stem cells (H1) are methylated regions, yet the most of
cell-specific regions for Neonatal_fibro and IMR90 of
newborn human fibroblasts are unmethylated regions.
These results indicate that the methylation patterns of
cell-specific regions in five cell types possess significant
preference and a portion of genomic regions demethylated
from embryonic stem cells to human fibroblasts.

Figure 5. Comparison of DNA methylation difference of DMRs
identified by CpG_MPs and FET_SW from H1 to IMR90. Absolute
difference of average methylation levels in DMRs (de novo methylated
regions and demethylated regions) represents the absolute difference of
average methylation levels of CpGs in DMRs between H1 and IMR90.
The basic statistic is shown in the Supplementary Table S3.

Table 2. DNA methylation patterns and sequence features of CMRs and DMRs between H1 and IMR90

Regions Number Length±SD GC Content±SD CpG Ratio±SD

CUMRs 27 459 1263±1498 0.58±0.09 0.64±0.22
De novo methylated regions 4654 597±643 0.52± .1 0.49±0.28
Demethylated regions 199 213 2384±68 906 0.42±0.08 0.25±1.58
CMRs 353 209 4624±31 721 0.45±0.08 0.33±0.26

CUMRs represent the conservatively unmethylated region in both H1 and IMR90; de novo methylated regions represent unmethylated in H1 and
methylated in IMR90; Demethylated regions represent methylated in H1 and unmethylated in IMR90; and CMRs is conservatively methylated
region in both H1 and IMR90.
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Sequence features and visualization of genomic regions of
different methylation patterns

DNA methylation patterns of genomic regions are
associated with the sequence features of their DNA
context (32,66). The tissue-specific and cancer-specific
methylation patterns of genomic regions are associated
with regions that are the flanking sequences of CpG
islands (4,46). However, deconstructing the function of
the CpG distribution for DNA methylation patterns
remains challenging because of the distributions of both
CpG sites and their methylation statuses are uneven
throughout the whole genome. Therefore, CpG_MPs
provides the fourth module to analyze sequence features
(length, GC content, CpG ratio) and visualize genomic
regions of different methylation patterns. The detailed
equations for the sequence features are shown in
‘Materials and Methods’ section. It is useful for users to

further explore the potential effect of DNA sequence
features on the DNA methylation patterns of the
genomic regions.

The fourth module of CpG_MPs was used to compute
the sequence features of CUMRs, CMRs and DMRs of
paired or multiple samples from the five human cell types
as shown in Tables 2 and 4. We found that the genomic
regions with different methylation patterns showed pref-
erences for GC contents and CpG ratios: high in CUMRs,
moderate in DMRs and low in CMRs consistent with the
previous studies (47,67). All of the genomic regions
identified by CpG_MPs include at least four CpGs,
which guarantees the stability of the methylation
patterns of the genomic regions. Thus, sequence features
analysis of genomic regions with different methylation
patterns facilitates the identification of the epigenetic
mechanism of changing methylation.

Table 3. GO annotation analysis of 827 genes containing new de novo methylated regions in their promoter regions between H1 and IMR90

GO terms Count Benjamini
P-value

GO terms Count Benjamini
P-value

Positive regulation of transcription 55 2.97� e�06 Embryonic organ development 24 8.26� e�05

Embryonic morphogenesis 38 5.40� e�06 Positive regulation of biosynthetic process 57 8.94� e�05

Positive regulation of gene expression 55 5.60� e�06 Regulation of transcription from RNA poly-
merase II promoter

59 8.98� e�05

Positive regulation of transcription, DNA
dependent

47 1.59� e�05 Skeletal system development 34 1.11� e�04

Positive regulation of RNA metabolic process 47 1.72� e�05 Positive regulation of transcription from RNA
polymerase II promoter

37 1.51� e�04

Positive regulation of nucleobase, nucleoside,
nucleotide and nucleic acid metabolic
process

56 1.93� e�05 Cellular component morphogenesis 38 2.63� e�04

Embryonic organ morphogenesis 22 2.60� e�05 positive regulation of macromolecule metabolic
process

64 2.85� e�04

Positive regulation of nitrogen compound
metabolic process

56 2.79� e�05 Embryonic skeletal system development 15 2.92� e�04

Positive regulation of macromolecule biosyn-
thetic process

56 4.16� e�05 Cell morphogenesis 35 3.42� e�04

Positive regulation of cellular biosynthetic
process

57 7.29� e�05 Cell morphogenesis involved in differentiation 27 7.12� e�04

The annotations of GO terms with Benjamini P-value< 10� e�03 are listed.

Figure 6. A promoter region of STC2 gene in human chromosome 5 overlapped with the de novo methylated regions identified by both methods of
FET_SW and CpG_MPs from the bisulfite sequencing data of H1 and IMR90. The CpG island in promoter regions of STC2 gene was obtained
from UCSC Genome Browser (53).
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In addition, the genomic regions with different methy-
lation patterns identified by CpG_MPs from bisulfite
sequencing data may be output as a table or a graph.
To facilitate taking advantage of other genetic and epigen-
etic information (such as genes, SNPs, CpG islands, DNA
methylation and histone modifications) in the relevant
biological databases, it provides a directly linked server
from the genomic methylation regions out to the bioinfor-
matics secondary databases of UCSC (53), MethyCancer
(68) and HHMD (69). Users may rapidly and efficiently
obtain the relevant information for the genomic regions
with different methylation patterns.

The detailed information of identified genomic regions
by the four modules of CpG_MPs from the five cell types
can be downloaded from http://bioinfo.hrbmu.edu.cn/
CpG_MPs.

CONCLUSION

CpG_MPs provides an efficient and comprehensive tool
for the identification and analysis of genomic regions with
different methylation patterns from high-throughput
bisulfite sequencing data. CpG_MPs includes four
modules to standardize methylation level of CpGs,
identifies genomic regions of different methylation
patterns, analyzes sequence features and visualizes the
identified regions. It may accurately identify and analyze
the unmethylated and methylated regions based on the
methylation status of CpGs at single-base resolution
from the bisulfite sequencing data without the limitation
of fixed-length regions. The mixed model combining quali-
tative identification of a combinatorial algorithm and
quantitative assessment of Shannon entropy may
accurate identify the CMRs and DMRs without the limi-
tation of number of samples. The user-friendly interface
and adjustable threshold of parameters of CpG_MPs fa-
cilitate the efficient identification and analysis of poten-
tially functional regions with different methylation
patterns from high-throughput bisulfite sequencing data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5 and Supplementary Figures 1–2.
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