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ABSTRACT
Recently, increasing studies have shown that miRNAs are involved in the development and progression
of various complex diseases. Consequently, predicting potential miRNA-disease associations makes an
important contribution to understanding the pathogenesis of diseases, developing new drugs as well as
designing individualized diagnostic and therapeutic approaches for different human diseases.
Nonetheless, the inherent noise and incompleteness in the existing biological datasets have limited
the prediction accuracy of current computational models. To solve this issue, in this paper, we propose a
novel method for miRNA-disease association prediction based on global linear neighborhoods
(GLNMDA). Specifically, our method obtains a new miRNA/disease similarity matrix by linearly recon-
structing each miRNA/disease according to the known experimentally verified miRNA-disease associa-
tions. We then adopt label propagation to infer the potential associations between miRNAs and
diseases. As a result, GLNMDA achieved reliable performance in the frameworks of both local and global
LOOCV (AUCs of 0.867 and 0.929, respectively) and 5-fold cross validation (average AUC of 0.926). Case
studies on five common human diseases further confirmed the utility of our method in discovering
latent miRNA-disease pairs. Taken together, GLNMDA could serve as a reliable computational tool for
miRNA-disease association prediction.
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Introduction

MicroRNAs(miRNAs) are highly enriched small non-coding
RNAs of approximately 22 nucleotides that normally regulate
gene expression at the post-transcriptional level by targeting
mRNA for cleavage or translational inhibition[1–3]. Since the
discovery of the first two mammalian microRNAs, mounting
evidences have shown that miRNAs are involved in a variety
of physiological and pathological processes[4]. Many major
cellular functions such as development, differentiation,
growth and metabolism are known to be regulated by
miRNAs[5]. In addition, it has been suggested that miRNAs
play vital roles in the pathogenesis of human diseases. For
instance, by digging into the miRNA expression profiles of 93
primary human breast tumors, Blenkiron et al. identified a
number of miRNAs that were differentially expressed between
different molecular tumor subtypes[6]. Recently, Zhang et al.
identified miRNA-26a as a key regulon that inhibits progres-
sion and metastasis of c-Myc/EZH2 double high advanced
hepatocellular carcinoma[7]. Consequently, many studies
aim at identifying key miRNAs as diagnostic and therapeutic
biomarkers for human diseases. It is thus of great significance
to uncover the potential associations between miRNAs and
various diseases.

Many efforts made to predict potential disease-related
miRNAs using experimental approaches have been proven
successful, such as qRT-PCR and microarray profiling.

Although reliable, experimental based methods are generally
time-consuming and labor-intensive[8]. With the increasing
amount of available biological data, a great number of com-
putational models have been developed by taking advantage
of multiple data sources to effectively and efficiently predict
associations between miRNAs and diseases[9–11]. Under the
assumption that miRNAs with similar functions tend to be
associated to phenotypically similar diseases[12,13]. Jiang
et al. proposed the first computational model based on hyper-
geometric distribution to predict new miRNA-disease associa-
tions[14], in which they integrated the phenotypic similarity
network of diseases, the miRNA functional similarity network
as well as the known human disease-miRNA association net-
works. Xu et al. introduced a network-centric approach to
prioritize candidate disease miRNAs by constructing four
topological features that are distinguishable between prostate
cancer (PC) and non-PC miRNAs[15]. Xuan et al. proposed a
model named HMDP which calculated miRNA-disease asso-
ciations based on the functional similarities of k most similar
neighbors of disease-associated miRNAs[16]. Specifically,
miRNAs within the same clusters or families were assigned
higher weights since they were more likely to be related to
similar diseases when calculating the miRNA functional simi-
larity matrix. Nevertheless, HDMP cannot be applied to dis-
eases without any known related miRNAs since it is based on
local similarity measures. To solve this issue, Chen et al.
developed a novel computational approach called HGIMDA
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which integrates miRNA functional similarity, disease seman-
tic similarity, kernel similarity of Gaussian interaction profile,
and experimentally validated miRNA-disease associations to
predict potential miRNA-disease associations[17]. They
further constructed a heterogeneous graph to iteratively
update the association scores between unconfirmed miRNAs
and diseases. Based on the assumption that miRNAs with
targets related to a given disease were also likely to be asso-
ciated with that disease, Shi et al. developed a computational
framework to identify the miRNA-disease associations by
conducting random walk with restart (RWR) algorithm on
protein-protein interaction (PPI) networks[18]. Chen et al.
proposed a method named WBSMDA to uncover the poten-
tial miRNAs related with multiple complex diseases by calcu-
lating a within score and a between score to obtain the final
relevance scores for the unconfirmed miRNA-disease associa-
tions. Besides, WBSMDA could also be applied to diseases
without any known related miRNAs[19].

Recently, several studies taking advantage of network topo-
logical structures have been proposed to prioritize disease-
related miRNAs. Sun et al. developed NTSMDA to predict
potential disease-miRNA associations by calculating the net-
work topological similarity for both miRNAs and diseases.
Nevertheless, since NTSMDA only utilized the known
miRNA-disease association network to compute the network
topological similarities, it is quite sensitive to the quality of the
input data and cannot be applied to diseases without any
known associated miRNAs[20]. You et al. developed a path-
based model named PBMDA for miRNA-disease association
prediction by integrating various biological data. Concretely,
PBMDA adopted a depth-first search algorithm to search
paths of certain lengths for given miRNA-disease pairs on a
heterogeneous graph and obtained comparable performance.
However, the computational complexity of PBMDA could be
extremely high in large networks[21]. Chen et al. proposed
NDAMDA to predict miRNA-disease associations based on
network distance analysis. The highlight of their method lies
in that two types of distances were considered, i.e. the direct
distance and average distance. The direct distance represented
a distance between two miRNAs (diseases) and the average
distance represented the mean network distances of all
miRNAs (diseases)[22].

In addition, several machine learning-based models were
proposed to predict the potential miRNA-disease associations.
Jiang et al. adopted the support vector machine (SVM) to
predict the associations between miRNAs and diseases. They
first extracted a set of features for each positive and negative
miRNA-disease association, and then trained the SVM classi-
fier with the constructed features to classify candidate disease-
related miRNAs[23]. Chen et al. developed RBMMMDA
which can not only predict the new associations between
miRNAs and diseases, but also obtain the type of correspond-
ing association[24]. Zou et al. introduced a biased SVM which
was trained by a bagging algorithm to classify miRNA-disease
pairs[25]. Liu et al. first constructed a heterogeneous network
by connecting disease similarity network, miRNA similarity
network as well as known miRNA-disease associations. They
then extended random walk with restart to predict miRNA-
disease associations in the heterogeneous network[26].

Li et al. utilized the matrix completion algorithm to update
the adjacency matrix of known miRNA-disease associations
and then predicted the potential miRNA-disease associations
[27]. Chen et al. proposed another computational model
called RKNNMDA which utilized the SVM ranking model
to obtain reliable k-nearest-neighbors for each miRNA and
disease. Specifically, it can be used to predict potential
miRNAs for diseases without any known miRNAs[28]. They
further proposed another model named MKRMDA to dis-
cover the potential miRNA-disease associations[29]. The
innovation of MKRMDA was that it could automatically
optimize the multiple kernel combinations of disease and
miRNA. Chen et al. presented a computational model
named LRSSLMDA, which projected miRNAs/diseases’ statis-
tical feature profile and graph theoretical feature profile to a
common subspace. It used Laplacian regularization to pre-
serve the local structures of the training data and a L1-norm
constraint to select important miRNA/disease features for
prediction[30]. Xiao et al. proposed a graph regularized
non-negative matrix factorization method for identifying
miRNA-disease associations and their method was robust to
the noises existing in the current datasets[31]. Zeng et al.
derived a structural perturbation method to predict potential
associations between miRNAs and diseases by using structural
consistency as an indicator to estimate the link predictability
of related networks[32]. Chen et al. developed the first deci-
sion tree learning-based model named EGBMMDA by
employing Extreme Gradient Boosting Machine[33]. They
constructed an informative feature vector by incorporating
statistical measures, graph theoretical measures as well as
matrix factorization results. Generally, a limitation of the
machine learning-based algorithms is that there are no vali-
dated negative samples for miRNA-disease associations. They
further used ensemble learning to combine rank results
obtained by three classic similarity-based algorithms to pre-
dict miRNA-disease associations[34]. Recently, Chen et al.
proposed a novel computational model to predict miRNA-
disease associations based on bipartite network projection,
which achieved comparable results in different cross-valida-
tion frameworks[35].

Although existing computational methods have been
greatly improved in many details, they still have limitations.
Therefore, developing novel methods to efficiently and reli-
ably excavate the potential miRNA-disease associations is
significant for human health and medical advance. In this
study, we propose a novel method for MiRNA-Disease
Association prediction based on Global Linear
Neighborhoods (GLNMDA). Specifically, GLNMDA linearly
reconstructs each miRNA (disease) by weighted combinations
of its direct neighbors and indirect neighbors that can be
reached by any steps of random walks. To demonstrate the
effectiveness of our method, we implement leave-one-out
cross-validation (LOOCV) and five-fold cross-validation for
GLNMDA. As a result, GLNMDA obtained global AUC value
of 0.929, local AUC value of 0.867 and 5-fold cross validation
value of 0.926, respectively. Moreover, we compared our
method with four state-of-the-art methods and the results
indicated that our method consistently outperformed the
other methods. In addition, three types of case studies were
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performed on five common cancers to verify the reliability
and robustness of GLNMDA. Together, GLNMDA is an
effective method for predicting potential miRNA-disease
associations.

Results

Performance evaluation

In this section, we applied LOOCV and 5-fold cross-valida-
tion to test the prediction performance of our method based
on known miRNA-disease associations from HMDD v2.0
databases[36]. LOOCV could be carried out in two manners:
global and local LOOCV. In both frameworks, each known
miRNA-disease association was left in turn as a test sample
and other known miRNA-disease associations were regarded
as training samples[37]. The only difference between global
LOOCV and local LOOCV was that whether all the diseases
were investigated simultaneously. In the global LOOCV, the
test sample was compared and ranked with all candidate
miRNAs, whereas in the local LOOCV, the test sample is
compared and ranked with the miRNAs only associated with
the specific disease. We also implemented 5-fold cross valida-
tion to evaluate the performance of GLNMDA. In the frame-
work of 5-fold cross validation, all the known miRNA-disease
associations were randomly divided into five disjoint parts,
where each part was picked out as test samples in turn and the

other four parts were treated as training samples. In addition,
Receiver Operating Characteristics (ROC) curves were plotted
by calculating the true positive rate (TPR) and the false
positive rate (FPR) at varying thresholds[38]. The prediction
performance of GLNMDA can be quantitatively evaluated by
calculating the Area Under the ROC Curve (AUC).
Specifically, the value of AUC is from 0 to 1 and the larger
the AUC values, the better the predicted results. As shown in
Figure 2, GLNMDA achieved AUC values of 0.929, 0.867 and
0.926 in global LOOCV, local LOOCV and 5-fold cross-vali-
dation, respectively, which clearly demonstrated the superior
performance of our method.

We further compared GLNMDA with four state-of-the-art
methods (i.e. HGIMDA[17], EGBMMDA[33], PBMDA[21],
MKRMD[29]), all of which have also achieved excellent perfor-
mances in predicting potential miRNA-disease associations. As
mentioned above, HGIMDA was an efficient prediction frame-
work based on heterogeneous graph inference. Both
EGBMMDA and MKRMDA were machine learning-based
approaches with different feature extraction schemas. PBMDA
was a depth-first model which took network topology into
account. As shown in Figure 2, HGIMDA, EGBMMDA,
PBMDA and MKRMDA obtained AUCs of 0.875, 0.912, 0.922
and 0.904 in global LOOCV, respectively. Similarly, they
obtained AUCs of 0.823, 0.807, 0.853 and 0.827 in the local
LOOCV framework, respectively (Figure 3). For 5-fold cross-
validation, they achieved AUCs of 0.867, 0.904, 0.916 and 0.884,

MiRNA functional 

similarity

Disease semantic 

similarity

Global linear neighborhoods reconstruction

MiRNA similarity network Disease similarity network Adjacency matrix

Label propagation

HMDD database

Prediction result

Sorted by score

Figure 1. Flowchart of potential disease-miRNA association prediction based on the computational model of GLNMDA.
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respectively (Figure 4). Obviously, GLNMDA consistently out-
performed the four methods in all three cross-validation frame-
works. In conclusion, GLNMDA could serve as a reliable tool to
predict the potential associations between miRNAs and diseases.

Parameter analysis

One important step in GLNMDA is to learn a rank-k non-
negative symmetric matrix to reconstruct the miRNA similarity
network and disease similarity network from miRNA space and
disease space, respectively. To test whether different values of k
would affect the final prediction results, we selected eleven values
of k ranging from 20 to 120 with an interval of 10 and then
compared the prediction accuracy in all three cross-validation

frameworks. As illustrated in Figure 5–7, GLNMDA obtained
the worst performance in all the cross validations when k = 20
while the performance remains relatively stable when k > 20.
Therefore, we can conclude that different values of k only have
minor effects on the final results.

Case studies

To further demonstrate the predictive power of GLNMDA,
we conducted three types of case studies on five common
human diseases. Specifically, we selected 16 common dis-
eases among the four databases (i.e. dbDEMC[39],
miR2Disease[40], miRwayDB[41] and PhenomiR[42]) for
the subsequent case studies and validated the prediction
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Figure 2. The comparison results between GLNMDA and the othe1`r four computational models in the framework of global LOOCV.
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Figure 5. The effects of different values of k in global cross validation.

Figure 6. The effects of different values of k in local cross validation.
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results across all the databases. The 16 common diseases
are Breast Neoplasms, Cervical Intraepithelial Neoplasia,
Colorectal Neoplasms, Hepatocellular Carcinoma,
Lymphoma, Lung Neoplasms, Leukemia, Nasopharyngeal
Neoplasms, Liver Neoplasms, Ovarian Neoplasms,
Pancreatic Neoplasms, Prostatic Neoplasms, Stomach
Neoplasms, Thyroid Neoplasms, Urinary Bladder
Neoplasms and Uterine Cervical Neoplasms. Due to space
limitations, we provided the validation results of 5 diseases
in the main text and put the results of the other diseases on
Github(https://github.com/ShengPengYu/GLNMDA/tree/
master/CaseStudy). The first type of case study was imple-
mented for Lung Neoplasm (LN), Hepatocellular
Carcinoma (HC) and Breast Neoplasms (BN), in which
we prioritized the top 50 predicted miRNAs for the given
diseases based on the known disease-miRNA associations
from HMDD v2.0. The prediction results were then verified
by another four databases recording experimentally vali-
dated disease-related miRNAs.

Lung Neoplasms (LN) characterized by high mortality and
high concurrency is one of the most common cancers and have
caused a serious threat to human health especially in male[43]. It
has been reported that untreated patients with small cell lung
cancer will quickly deteriorate and eventually die in 12 weeks
[44,45]. Increasing evidence has suggested that miRNAs can not
only be utilized to classify LNs, but also have the potential to be
biomarkers for early diagnosis and clinical treatment of LN[46–
49]. As shown in Table 1, 45 out of the top 50 candidate miRNAs
were confirmed to be associated with LN. For instance, the hsa-
let-7 family which regulates the cell cycle and the hsa-mir-200
family that induces cell death and cell proliferation were all
differentially expressed in LN tumor samples[50]. Among the
five unconfirmed miRNAs, hsa-miR-499 has been found that
the rs3746444T> C polymorphism in its mature sequence could
contribute to poor prognosis by modulating cancer-related gene
expression and thus involve in the tumorigenesis of LN[51].
Besides, studies have shown that miR-103 was able to promote
proliferation of small cell lung cancer cells through targeting
MED26 mRNA 3ʹ-UTR[52].

Hepatocellular Carcinoma (HC) is a primary malignancy
of the liver and occurs predominantly in patients with under-
lying chronic liver disease and cirrhosis. Accumulating evi-
dences have shown that the expression patterns of certain
miRNAs were significantly different between HC and normal
tissues, which might serve as a diagnostic tool for HC[53]. For
instance, the ectopic expression of hsa-mir-101 could drama-
tically suppress the ability of hepatoma cells to form colonies
in vitro and to develop tumors in nude mice[54]. The top 50
HC-related miRNAs predicted by our method was listed in
Table 2. As a result, 46 of the top 50 predicted miRNAs were
confirmed to be associated with the given disease by at least
one database from dbDEMC, miR2Disease, miRwayDB and
PhenomiR. As a matter of fact, one of the unconfirmed
miRNAs, hsa-mir-34a, has been to shown to inhibit migration
and invasion by down-regulation of c-Met expression in
human hepatocellular carcinoma cells[55].

Breast Neoplasms (BN) is one of the most common female
cancers that threatens women’s physical and mental health,
accounting for 22% of female cancers[56]. Recent research on
miRNAs has implicated that the loss of tumor suppressor
miRNAs or overexpression of oncogenic miRNAs can lead
to breast cancer tumorigenesis or metastasis. Our prediction
results showed that 47 of top 50 candidate miRNAs were
confirmed by experimental findings recorded in at least one
of the four databases dbDEMC, miR2Disease, miRwayDB and
PhenomiR (Table 3). For example, the overexpression of hsa-
mir-21 (ranked 1st in the prediction list) in human breast
cancer is associated with advanced clinical stage, lymhp node
metastasis and patient poor prognosis. Moreover, solid evi-
dence has been provided that the C allele of hsa-mir-146a
(ranked 2nd in the prediction list) is associated with early
familial breast tumor development[57].

In addition, to test the ability of GLNMDA in predicting
for diseases without any known associated miRNAs, we con-
ducted the second type of case study on Colorectal Neoplasms
(CN). It is reported that more than 1 million individuals will
develop colorectal cancer every year worldwide and the dis-
ease-specific mortality rate is nearly 33% in the developed

Figure 7. The effects of different values of k in 5-fold cross validation.
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world[58]. Firstly, we removed all known associations related
with CN and we then used GLNMDA to predict the potential
associations between miRNAs and diseases. As a result, 49 of
top 50 predicted candidate miRNAs have been confirmed by
at least one database from dbDEMC, miR2Disease,
miRwayDB and PhenomiR or HMDD (Table 4). The only
unconfirmed miRNA was hsa-mir-199a. As a matter of fact,
evidences have demonstrated that hsa-mir-199a plays a criti-
cal role in the cell biological behaviors of colorectal cancer
through its target genes[59]. Our prediction results were

consistent with existing findings and provided computational
evidence for its association with CN.

Lastly, we conducted the third type of case studies for
Lymphoma where the older version of HMDD was used to
prioritize miRNAs with the given disease and the latest ver-
sion of HMDD v2.0 was adopted to evaluate the prediction
results. Due to the distribution characteristics of the lympha-
tic system, lymphoma is a systemic disease which can invade
almost any tissue and organ in the body[60]. miRNAs have
also been shown to act as potential biomarkers for the

Table 1. Top 50 predicted miRNAs associated with Lung Neoplasms based on
known associations in HMDD. I, II, III and IV represent dbDEMC, miR2Disease,
miRwayDB and PhenomiR, respectively. The first and third columns record the
1–25 and 26–50 related miRNAs, respectively.

miRNA Evidence miRNA Evidence

hsa-mir-21 I;II;III;IV; hsa-mir-29b I;II;
hsa-mir-155 I;II;IV; hsa-mir-143 I;II;IV;
hsa-mir-146a I;II;III;IV; hsa-mir-574 IV;
hsa-mir-17 I;III;IV; hsa-mir-223 I;III;IV;
hsa-mir-125b I;II; hsa-mir-199a I;
hsa-mir-34a I;II;III;IV; hsa-let-7c I;II;IV;
hsa-mir-145 I;II;III;IV; hsa-mir-34c I;II;III;IV;
hsa-mir-20a I;II;IV; hsa-mir-200b I;II;IV;
hsa-mir-126 I;II;III;IV; hsa-mir-365a IV;
hsa-mir-1297 I; hsa-let-7e I;II;IV;
hsa-mir-511 I;II; hsa-mir-326 I;IV;
hsa-mir-499a unconfirmed; hsa-mir-200c I;II;III;IV;
hsa-mir-221 I;II;IV; hsa-mir-103b unconfirmed;
hsa-let-7a I;II; hsa-mir-365b unconfirmed;
hsa-mir-92a I; hsa-mir-513a unconfirmed;
hsa-mir-18a I;II;IV; hsa-let-7d I;II;IV;
hsa-mir-138 I; hsa-mir-222 I;II;IV;
hsa-mir-103a unconfirmed; hsa-mir-146b I;II;IV;
hsa-mir-19b I; hsa-mir-29c I;II;IV;
hsa-mir-193a I;IV; hsa-mir-210 I;II;IV;
hsa-mir-128 I;III; hsa-mir-9 I;II;
hsa-mir-19a I;II;IV; hsa-mir-31 I;II;III;IV;
hsa-mir-1 I;II; hsa-let-7g I;II;IV;
hsa-mir-29a I;II;IV; hsa-mir-34b I;II;IV;
hsa-let-7b I;II;IV; hsa-let-7f I;II;

Table 2. Top 50 predicted miRNAs associated with Hepatocellular Carcinoma
based on known associations in HMDD. I, II, III and IV represent dbDEMC,
miR2Disease, miRwayDB and PhenomiR, respectively. The first and third columns
record the 1–25 and 26–50 related miRNAs, respectively.

miRNA Evidence miRNA Evidence

hsa-mir-21 I;II;III;IV; hsa-mir-143 unconfirmed;
hsa-mir-1322 I;II;III;IV; hsa-mir-200c I;II;IV;
hsa-mir-200c I; hsa-mir-223 I;II;
hsa-mir-617 I;II;IV; hsa-mir-19a I;II;
hsa-mir-766 I;II;IV; hsa-let-7b I;IV;
hsa-mir-192 I;II;III;IV; hsa-mir-200a I;II;III;IV;
hsa-mir-155 I;II;III; hsa-let-7c I;IV;
hsa-mir-205 I;II; hsa-mir-199a unconfirmed;
hsa-mir-203 I;II;IV; hsa-mir-31 unconfirmed;
hsa-mir-1246 I;II; hsa-mir-34c I;II;IV;
hsa-mir-548d I;II;IV; hsa-mir-210 I;
hsa-mir-302f I;II; hsa-mir-15a I;II;IV;
hsa-mir-451a I;II;IV; hsa-mir-29c I;II;IV;
hsa-mir-145 I;II;III; hsa-mir-203 I;
hsa-mir-141 I;II; hsa-mir-141 I;IV;
hsa-mir-146a I;II;III;IV; hsa-mir-34b I;II;IV;
hsa-mir-499a I;II;IV; hsa-mir-196a I;
hsa-mir-193a I; hsa-mir-101 I;
hsa-mir-574 I;IV; hsa-mir-148a I;II;IV;
hsa-mir-425 I;II;IV; hsa-mir-205 I;IV;
hsa-mir-20a I;III; hsa-mir-150 I;II;IV;
hsa-mir-34a unconfirmed; hsa-mir-100 I;IV;
hsa-mir-126 I;II;IV; hsa-mir-133a I;
hsa-let-7a I; hsa-mir-214 I;
hsa-mir-92a I; hsa-mir-375 I;II;III;IV;

Table 3. Top 50 predicted miRNAs associated with Breast Neoplasms based on
known associations in HMDD. I, II, III and IV represent dbDEMC, miR2Disease,
miRwayDB and PhenomiR, respectively. The first and third columns record the
1–25 and 26–50 related miRNAs, respectively.

miRNA Evidence miRNA Evidence

hsa-mir-21 I;II;III;IV; hsa-let-7c I;IV;
hsa-mir-155 I;II;III;IV; hsa-mir-223 I;III;IV;
hsa-mir-17 I;IV; hsa-mir-451a I;III;
hsa-mir-146a I;II;III;IV; hsa-mir-10b I;II;III;IV;
hsa-mir-145 I;II;IV; hsa-mir-222 I;II;IV;
hsa-mir-125b I;II;III; hsa-mir-151a unconfirmed;
hsa-mir-20a I;II;IV; hsa-mir-200a I;II;III;IV;
hsa-mir-34a I;III;IV; hsa-mir-205 I;II;IV;
hsa-mir-126 I;II;IV; hsa-mir-499a unconfirmed;
hsa-let-7a I;II; hsa-mir-34c I;
hsa-mir-221 I;II;IV; hsa-let-7d I;II;IV;
hsa-mir-18a I;II;IV; hsa-let-7e I;IV;
hsa-mir-92a I; hsa-mir-146b II;
hsa-mir-19b I;III; hsa-mir-9 I;III;
hsa-mir-16 I; hsa-mir-15a I;IV;
hsa-mir-29a I;III;IV; hsa-mir-708 I;
hsa-mir-19a I;III;IV; hsa-mir-181a I;II;
hsa-mir-200b I;II;III;IV; hsa-mir-128 I;
hsa-let-7b I;IV; hsa-mir-29c I;II;IV;
hsa-mir-1 I;III; hsa-mir-320a I;III;IV;
hsa-mir-200c I;II;IV; hsa-mir-31 I;II;IV;
hsa-mir-29b I;II; hsa-let-7f I;II;
hsa-mir-143 I;II;IV; hsa-mir-106b I;IV;
hsa-mir-103a I; hsa-mir-34b I;IV;
hsa-mir-199a I;III; hsa-mir-218 I;

Table 4. Top 50 predicted miRNAs associated with Colorectal Neoplasms based
on known associations in HMDD. I, II, III and IV represent dbDEMC, miR2Disease,
miRwayDB and PhenomiR, respectively. The first and third columns record the
1–25 and 26–50 related miRNAs, respectively.

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD;I;II;IV; hsa-mir-222 HMDD;I;IV;
hsa-mir-155 HMDD;I;II;IV; hsa-let-7b HMDD;I;II;IV;
hsa-mir-146a HMDD;I;IV; hsa-mir-199a unconfirmed;
hsa-mir-145 HMDD;I;II;IV; hsa-let-7c HMDD;I;IV;
hsa-mir-17 HMDD;I;IV; hsa-mir-29c I;III;IV;
hsa-mir-125b I; hsa-mir-142 HMDD;IV;
hsa-mir-126 HMDD;I;II;IV; hsa-mir-200a HMDD;I;IV;
hsa-mir-20a HMDD;I;II;IV; hsa-mir-210 HMDD;I;IV;
hsa-mir-34a HMDD;I;II;IV; hsa-mir-181a I;II;
hsa-mir-16 I; hsa-let-7e HMDD;I;IV;
hsa-mir-221 HMDD;I;II;IV; hsa-mir-133b HMDD;I;II;IV;
hsa-mir-29a HMDD;I;II;IV; hsa-let-7f I;
hsa-mir-92a I; hsa-mir-34c HMDD;II;IV;
hsa-let-7a I;II; hsa-let-7d I;IV;
hsa-mir-143 HMDD;I;II;IV; hsa-mir-9 I;
hsa-mir-18a HMDD;I;II;IV; hsa-mir-146b HMDD;IV;
hsa-mir-19b I;II; hsa-mir-106b I;II;IV;
hsa-mir-1 I;II; hsa-mir-150 HMDD;I;IV;
hsa-mir-29b I;II; hsa-let-7g I;II;IV;
hsa-mir-223 I;II;IV; hsa-let-7i I;IV;
hsa-mir-200c HMDD;I;II;IV; hsa-mir-181b I;II;
hsa-mir-200b HMDD;I;IV; hsa-mir-133a I;II;
hsa-mir-19a HMDD;I;II;IV; hsa-mir-101 I;
hsa-mir-15a I;IV; hsa-mir-30a HMDD;I;IV;
hsa-mir-31 HMDD;I;II;IV; hsa-mir-182 HMDD;I;II;IV;
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diagnosis of Lymphoma. For example, the under-expression
of hsa-mir-150 will increase the incidence of apoptosis and
reduced cell proliferation in normal cells[61]. Here, we imple-
mented GLNMDA based on the older version of HMDD
which included 1395 associations between 271 miRNAs and
137 diseases. As a result, 49 out of the top 50 predicted
miRNAs were confirmed by the HMDD v2.0 and/or the
other four databases (Table 5). Only hsa-mir-199a was not
confirmed. The results showed that GLNMDA is a reliable
method to predict the potential miRNA-disease associations.

Discussion

The identification of novel associations between miRNAs and
diseases plays a crucial role in understanding the disease
pathogenesis at the miRNA level. In this study, considering
the sparsity and incompleteness of disease semantic similarity
matrix and miRNA functional similarity matrix, we presented
a novel method for miRNA-disease association prediction
based on global linear neighborhoods. To demonstrate the
effectiveness of the proposed method, we applied global
LOOCV, local LOOCV and 5-fold cross-validation to evaluate
the prediction performance. GLNMDA achieved AUCs of
0.929, 0.867 and 0.926 in the three frameworks, respectively.
We further compared GLNMDA with four state-of-the-art
methods and the results confirmed the superior performance
of GLNMDA over the other methods. Besides, three types of
case studies were implemented on five common human dis-
eases to further validate the utility of GLNMDA. As a result,
GLNMDA could uncover novel miRNA-disease associations
as expected.

The success of GLNMDA could be largely attributed to the
following factors. Firstly, we used the global neighborhoods
information to reconstruct the miRNA similarity matrix and

disease similarity matrix, which alleviated the sparsity and
incompleteness problem existing in the current datasets.
Secondly, known experimentally verified miRNA-disease
information were used as the benchmark dataset in the
cross-validation schema and the initial dataset for predicting
latent human miRNA-disease association. Lastly, the known
information was propagated by label propagation algorithm
iteratively to the whole network according to the similarities
reconstructed by GLNMDA.

Nevertheless, there are still limitations in the current ver-
sion of GLNMDA. Our approach can be improved in the
following directions. Firstly, the performance of GLNMDA
can be further improved by integrating more available experi-
mentally-verified human miRNA-disease associations.
Secondly, multiple information sources can be integrated
properly to measure the functional similarity between
miRNAs, such as the information of their target genes. In
essence, construction for reliable miRNA similarity matrix as
well as the disease similarity matrix would help improve the
accuracy of GLNMDA.

Materials and methods

Human mirna-disease associations

The human microRNA disease database (HMDD), which
contains 5340 experimentally verified links between 495
miRNAs and 383 diseases, is a reliable database[36]. We
downloaded miRNA-disease associations information from
HMDD database directly. Furthermore, we constructed an
adjacent matrix R, of which the element was defined as
follows: Rij = 1 if disease d(i) have an interaction with
miRNA m(j), and 0 otherwise. Our goal is to confirm the
uncertain associations between miRNAs and diseases.

miRNA functional similarity

The miRNA functional similarity used in this paper was
calculated by Wang et al. and can be downloaded directly at
(http://www.cuilab.cn/files/images/cuilab/misim.zip) [62]. We
used M to denote the miRNA functional similarity network,
where each element Mij represents the functional similarity
score between miRNA m(i) and m(j).

Disease semantic similarity model

Mesh database (http://www.ncbi.nlm.nih.gov/) is a strict sys-
tem for disease classification and is a credible dataset for
effectively researching the relationship between different dis-
eases[62]. The relationship between different diseases can be
described through a structure of Directed Acyclic Graph
(DAG). A disease A can be described as DAG(A) = (A, T(A),
E(A)), where T(A) represents all its ancestors and itself, and E
(A) contains edge information including the direct edges
linking parent nodes to child nodes. The contribution of
disease di in DAG(A) to the semantic value of disease A was
defined as follows:

Table 5. Top 50 predicted miRNAs associated with Lymphoma based on known
associations in the older version of HMDD. I, II, III and IV represent dbDEMC,
miR2Disease, miRwayDB and PhenomiR, respectively. The first and third columns
record the 1–25 and 26–50 related miRNAs, respectively.

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD;I;II;III;IV; HMDD;I;IV;
hsa-mir-155 HMDD;I;II;III;IV; hsa-mir-181a I;III;
hsa-mir-146a HMDD;I;IV; hsa-mir-34b I;II;IV;
hsa-mir-221 HMDD;I;II; hsa-mir-195 HMDD;I;IV;
hsa-let-7a I;II; hsa-mir-200a HMDD;I;II;IV;
hsa-mir-223 HMDD;I; hsa-mir-30a I;IV;
hsa-mir-29a HMDD;I; hsa-mir-205 HMDD;I;
hsa-mir-29b I; hsa-mir-183 I;III;
hsa-mir-143 HMDD;I;II;IV; hsa-mir-7 I;
hsa-mir-222 HMDD;I; hsa-mir-133a I;
hsa-let-7b HMDD;I;IV; hsa-mir-27a HMDD;I;IV;
hsa-mir-1 I; hsa-mir-141 I;
hsa-mir-31 I; hsa-mir-10b I;
hsa-let-7c HMDD;I;II;IV; hsa-mir-106a I;II;IV;
hsa-mir-199a unconfirmed; hsa-mir-148a I;
hsa-mir-9 I;II;III; hsa-mir-93 HMDD;I;
hsa-mir-18a HMDD;I;II;III;IV; hsa-mir-100 HMDD;I;
hsa-mir-19a HMDD;I;II;III;IV; hsa-mir-150 HMDD;I;II;III;IV;
hsa-mir-34c IV; hsa-mir-15b I;IV;
hsa-let-7d HMDD;I; hsa-mir-25 I;IV;
hsa-mir-106b I;III;IV; hsa-mir-199b I;IV;
hsa-mir-182 HMDD;I;III;IV; hsa-mir-203 HMDD;I;
hsa-mir-126 HMDD;I;IV; hsa-mir-224 I;
hsa-let-7e HMDD;I;II;IV; hsa-mir-22 HMDD;I;IV;
hsa-let-7f I; hsa-mir-133b HMDD;I;IV;
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DA dið Þ ¼ 1 if d ¼ A
DA dið Þ ¼ max Δ � DA di

0ð Þjdi0 2 childen of di
� �

if d�A

�
(1)

Here, Δ is the semantic contribution factor and we set Δ = 0.5
in this paper. For disease di, the contribution of itself is 1,
while the contribution of another disease dj decreases as the
distance between di and dj increases. Hence, the semantic
value of disease A can be calculated according to the contri-
bution of ancestor diseases and disease A itself [63]:

DVðAÞ ¼
X

di2TðAÞ DAðdiÞ (2)

Taken together, the semantic similarity of disease di and
disease dj can be calculated as follows:

Sðdi; djÞ ¼
P

t2TðjÞ\TðiÞðDiðtÞ þ DjðtÞÞ
DVðiÞ þ DVðjÞ (3)

According to Equation (3), we can construct an overall disease
semantic similarity matrix D where Dij represents the seman-
tic similarity between disease di and disease dj.

GLNMDA

In this work, we present a novel framework named GLNMDA
to predict potential disease-related miRNAs based on global
linear neighborhoods reconstruction. The key assumption of
GLNMDA is that each miRNA (disease) can be linearly
reconstructed by weighted combinations of its direct neigh-
bors and indirect neighbors which can be reached by any
steps of random walk. GLNMDA mainly consists of three
steps: Firstly, we reconstruct the miRNA similarity network
and disease similarity network based on the known miRNA-
disease associations. Secondly, we utilize label propagation
algorithm to prioritize novel interactions based on the recon-
structed networks, respectively. Lastly, we obtain the final
prediction results by combining the output from both
miRNA space and disease space. An overall workflow is illu-
strated in Figure 1.

Feature representation for miRNAs and diseases

Generally, the reconstruction algorithm is conducted on fea-
ture vectors. Therefore, the first step of our algorithm is to
construct the feature vectors for both diseases and miRNAs.
As presented in the previous work[64], we adopted ‘interac-
tion profile’ to build the features for miRNAs and diseases.
Specifically, suppose the miRNA-disease interaction network
consists of m RNAs and n diseases, where (M1, M2, M3, . . .,
Mm) and (D1, D2, D3, . . ., Dn) represent the miRNA set and
disease set, respectively. As stated above, if miRNA Mi is
related with disease Dj, the entry in the corresponding adja-
cency matrix Rm�n is 1 and 0 otherwise. As a result, we could
take each column as the feather vector for a given disease and
each row as the feature vector for a given miRNA. Obviously,
the adjacency matrix R is the disease feature matrix and the
transpose of R represents the miRNA feature matrix.

Reconstruction of similarity matrix for diseases and
miRNAs

With the rapid development of bio-technology, an increasing
amount of biological data is now available for miRNA-disease
association studies, including various similarity datasets for
diseases and miRNAs. However, due to the limitation of
current experimental conditions as well as the inherent noises
in these datasets, the miRNA functional similarity matrix M
and disease semantic similarity matrix D obtained were in
general sparse and incomplete, which might greatly affect the
accuracy of prediction results. To address this problem, we
here use global linear neighborhoods reconstruction (GLNR)
to rebuild the miRNA similarity network and disease similar-
ity network. We assume that each miRNA (disease) can be
linearly reconstructed by weighted combinations of its direct
neighbors and indirect neighbors which can be reached by
any steps of random walk[65]. Let X be the n × m data matrix
where xi(i = 1,2,. . .,n) is the i-th data point in X. According to
GLNR, xi can be reconstructed as follows:

xi ¼
X

j:xj2gðxiÞWijxj s:t:Wij > 0;
X

j:xj2gðxiÞWij ¼ 1 (4)

where g(xi) is the global neighborhood of xi. Let W be the
symmetric n × n similarity matrix between the data points to
be learned. Instead of explicitly selecting k neighbors to make
W sparse[66], we propose to learn a rank-k non-negative
symmetric matrix W = UUT by the following objective
function:

minQðUÞ ¼ j X � UUTX
�� ��j2; s:t: Uij � 0 (5)

where U is a n × k feature matrix. In this paper, for a more
general description, X could be either miRNA feature matrix
RT or disease feature matrix R. To solve the optimization
problem, we first calculated the derivative of Equation (5)
with respect to U and we have:

@Q
@U
¼ �2ðX � UUTXÞXTU � 2XðXT � XTUUTÞU (6)

Since X contains only non-negative data, we could obtain the
multiplicative update rule as follows:

Uij  Uij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2XXTUÞij
ðUUTXXTU þ XXTUUTUÞij

s
(7)

It is worth noting that to guarantee the convergence of the
iterative update rule, we need to normalize our training data
in advance[67,68]. Besides, to get an informative value of k for
matrix factorization, we employed the clusterONE algorithm
accordingly[69], a method for detecting potentially overlap-
ping protein complexes from protein-protein interaction net-
works. Specifically, clusterONE builds on the concept of the
cohesiveness score and uses a greedy growth process to find
groups in protein-protein interaction networks that are likely
to correspond to protein complexes. It has also been widely
adopted to identify cohesive clusters in other types of biolo-
gical networks due to its simplicity and efficiency[70]. By
substituting M into Equation (7), a miRNA clustering matrix
~U was learned as follows:
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~Uij  ~Uij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2RTR~UÞij
ð~U ~U

T
RTR ~U þ RTR ~U ~U

T ~UÞij

vuut (8)

We then reconstructed the miRNA similarity matrix ~M based
on the learned clustering matrix ~U:

~M ¼ ~M
�1=2
P ð~U ~U

TÞ ~M�1=2P (9)

Where ~MP is a diagonal matrix with its (i,i)-th element equal

to the sum of the ith row of ~U ~U
T
. Similarly, we could get the

disease clustering matrix Û by substituting D into Equation
(7) as follows:

Ûij  Ûij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2RRTÛÞij
ðÛÛ

T
RRTÛ þ RRTÛÛ

T
ÛÞij

vuut (10)

The reconstructed disease similarity matrix ~D was then
obtained by:

~D ¼ D̂�1=2P ðÛÛTÞD̂�1=2P (11)

Where D̂P is a diagonal matrix with its (i,i)-th element equal
to the sum of the ith row of ÛÛT .

After ~M and ~D were learned, we combined them with
existing similarity matrices as follows:

SD i; jð Þ ¼
~D i; jð Þ; ifD i; jð Þ ¼ 0
D i;jð Þþ~D i;jð Þ

2 ; otherwise

(
(12)

SMði; jÞ ¼
~Mði; jÞ; Mði; jÞ ¼ 0
Mði;jÞþ ~Mði;jÞ

2 ; otherwise

(
(13)

Eventually, we obtained the final disease similarity matrix SD
and miRNA similarity matrix SM according to Equation (12)
and Equation (13).

Label propagation

After the reconstructed miRNA similarity matrix and disease
similarity matrix were obtained, we applied label propagation
to predict miRNA-disease associations in miRNA space and
disease space, respectively. Generally, a traditional label pro-
pagation problem can be presented as follows:

Ztþ1 ¼ αWZt�1 þ ð1� αÞY (14)

where t is the time step and Zt+1 represents the iteration
results after t + 1 steps of label propagation. α 2 ð0; 1Þ is a
hyper-parameter, Y is a binary matrix encoding the initial
label information of data points against each class[65]. The
label information of the vertices propagates iteratively
between adjacent vertices and the propagation process will
eventually converge to a unique global optimization quadratic
criterion. Equation (14) has a closed-form solution: Z = (1-α)
(I-αL)−1Y, where I is an identity matrix, L ¼ D�1=2WD�1=2 is
the Laplacian matrix of W and D is a diagonal matrix with its
(i, i)-th element equal to the sum of the i-th row of W,
i.e. Dii ¼

P
jðWij þWjiÞ=2.

We will use Equation (14) to update the label of each
data object until convergence since the closed-form solution
to Equation (14) has high computational complexity due to
the matrix inversion operation. Here, ‘convergence’ means
that the predicted labels of unlabeled data does not change
in successive iterations. Therefore, we can predict miRNA-
disease association from both disease space and miRNA
space:

FDtþ1 ¼ α� SD� FDt þ ð1� αÞ � R (15)

FMtþ1 ¼ α� SM � FMt þ ð1� αÞ � RT (16)

where FD and FM represent the prediction results from dis-
ease space and miRNA space, respectively. Parameter α 2
0; 1ð Þ was used to allocate the weight rate of its neighbors
while (1-α) represents the probability of receiving its initial
label information. The final prediction result F was obtained
by combining the results from both miRNA space and disease
space:

F ¼ β FDð Þ þ 1� βð Þ FMð ÞT (17)

Parameter β was used to balance the prediction results
from disease space and miRNA space, and we simply set
β = 0.5. The procedure of GLNMDA is summarized in
Algorithm 1. In addition, the source code of GLNMDA
could be freely downloaded at https://github.com/
ShengPengYu/GLNMDA .

Algorithm 1: GLNMDA

Input: Matrices M 2 R
m�m ,D 2 R

n�n,R 2 R
m�n, parameter α and β.

Output: Predicted association matrix F.

1. Obtain the k value for miRNAs and diseases by ClusterONE algorithm.

2. Repeat:

Update ~Uand Û by the following rules:

~Uij  ~Uij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2RT R ~UÞij
ð~U~UT

RT R~UþRT R~U~UT ~UÞij

r

Ûij  Ûij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2RRT ÛÞij
ðÛÛT

RRT ÛþRRT ÛÛT
ÛÞij

r

Until convergence

3. Obtain the reconstructed similarity matrix ~Mand ~D:

~M ¼ ~M�1=2P ð~U~UTÞ~M�1=2P

~D ¼ D̂�1=2P ðÛÛTÞD̂�1=2P
4. Integrate similarity information to get SD and SM according to Equation

(12) and Equation (13).

5. Predict from miRNA space and disease space:
Repeat:

FDtþ1 ¼ α� SD� FDt þ ð1� αÞ � R

FMtþ1 ¼ α� SM� FMt þ ð1� αÞ � RT

Until convergence

6. Integrate the results

F ¼ βðFDÞ þ ð1� βÞ � ðFMÞT

7. Return F
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