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Abstract

Messenger RNA-based therapeutics have shown tremendous potential, as demonstrated by the rapid development of messenger RNA
based vaccines for COVID-19. Nevertheless, distribution of mRNA vaccines worldwide has been hampered by mRNA’s inherent thermal
instability due to in-line hydrolysis, a chemical degradation reaction. Therefore, predicting and understanding RNA degradation is a
crucial and urgent task. Here we present RNAdegformer, an effective and interpretable model architecture that excels in predicting
RNA degradation. RNAdegformer processes RNA sequences with self-attention and convolutions, two deep learning techniques that
have proved dominant in the fields of computer vision and natural language processing, while utilizing biophysical features of RNA.
We demonstrate that RNAdegformer outperforms previous best methods at predicting degradation properties at nucleotide resolution
for COVID-19 mRNA vaccines. RNAdegformer predictions also exhibit improved correlation with RNA in vitro half-life compared with
previous best methods. Additionally, we showcase how direct visualization of self-attention maps assists informed decision-making.
Further, our model reveals important features in determining mRNA degradation rates via leave-one-feature-out analysis.
Keywords: mRNA vaccine degradation, deep learning, bioinformatics, COVID-19 mRNA

Introduction
Messenger RNA therapeutics have emerged as a highly promising
platform that provides modularity and potentially allows any
protein to be delivered and translated [1, 2]. In comparison to
recombinant proteins expressed in mammalian cell lines, mRNA
is faster to produce with more flexibility using in vitro transcrip-
tion; the rapid deployment mRNA-based vaccines against COVID-
19 is a testament to the potential mRNA therapeutics [3, 4]. Nev-
ertheless, mRNA-based therapeutics faces a fundamental limit,
which is the inherent instability of mRNA molecules. As a result,
mRNA vaccines still suffer from decreased efficacy because of
RNA instability in vitro and in vivo. The degradation of RNA is
dependent on how prone the molecule is to in-line hydrolytic
cleavage, but currently not much is known about where in the
backbone of a given mRNA is prone to hydrolysis and where is safe
from degradation. Understanding mRNA degradation can help us
design more thermostable RNA therapeutics that would allow
increased equitability of distribution, cost reduction and even
increased potency [5]. It has even been shown that it is possible
to design more thermostable mRNA sequences that code for the
same protein with equal amounts of translation via stochastic
optimization [6].

Secondary structures of mRNA have been shown to be posi-
tively correlated with mRNA stability and translation and opti-
mizing secondary structure to increase half-lives and translation

efficiency has been shown to be viable [6, 7]. Many dynamic
programming-based RNA secondary structure packages [8–12]
can predict secondary structures of mRNA sequences with rea-
sonable accuracies. However, RNA secondary structure packages
are quite idealized and degradation of mRNA may depend on more
than just secondary structure but also local and global context of
mRNA sequences. Therefore, it is important to explore alternative
avenues to study mRNA degradation.

Deep learning is a class of data-driven modeling approaches
that has found much success in many fields including image
recognition [13], natural language processing [14, 15], genomics
[16] and computational biology [17]. It has allowed researchers
to use recurrent neural networks such as Recurrent Neural
Network/Long Short Term Memory/Gated Recurrent Unit to
efficiently predict the function, origin, and properties of DNA/RNA
sequences by training neural networks on large datasets [18–29],
but these sequential computational approaches are difficult to
parallelize and objects at long distances suffer from vanishing
gradients. Convolutional neural networks are adept at motif
recognition and works in the literature have adopted convolution-
based architectures that offer better performance than previous
non-deep learning approaches [30–38]; they still struggle to cap-
ture long-range dependencies, which are essential for DNA/RNA
tasks. Graph-based models have also been applied to study RNA
binding [39]. Transformers, on the other hand, is a recently
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proposed architecture that solely relies on attention mechanisms
that can model dependencies regardless of the distance in the
input or output sequences [14]. Transformers have been adopted
in many natural language processing tasks and seen massive
success [14, 15, 40], and very recently transformers have been
used to classify DNA sequences [41–45]; however, we have found
few studies using transformers to study the biophysical properties
of RNA sequences.

In this study, we present a neural network model RNAdeg-
former that utilizes convolution and self-attention to capture
both local and global dependencies, which enable the model to
achieve high accuracy and provide interpretability in predicting
degradation properties of mRNA sequences. We participated
in the 21-day OpenVaccine challenge and used the dataset
to train our RNAdegformer [46]. While double-stranded DNA
forms hydrogen bonds between its complementary bases, single-
stranded RNA forms secondary structures by itself, which
have been known to stabilize RNA molecules. Therefore, we
use existing biophysical models to inject knowledge of RNA
secondary structure into our deep learning models to predict
RNA degradation. Combining advanced learning techniques
(supervised,unsupervised and semi-supervised), we demonstrate
that the RNAdegformer outperforms previous best methods at
predicting RNA degradation rates at each position of a given
sequence, a task of great importance to predict and produce stable
mRNA vaccines and therapeutics. Further, we show RNAdeg-
former generalizes better to predict half-lives of sequences much
longer than those in the training dataset compared with other
machine learning and dynamic programming algorithms. Last
but not least, RNAdegformer also reveals feature importance in
predicting mRNA degradation through the usage of leave-one-
feature-out (LOFO) test, advancing our understanding of RNA
degradation.

Methods
OpenVaccine challenge dataset
The OpenVaccine challenge [46] hosted by the Eterna community
sought to rally the data science expertise of Kaggle competitors
to develop models that could accurately predict degradation of
mRNA. During the 21-day challenge, competitors were provided
with 2400 107-bp mRNA sequences with the first 68 base pairs
labels with five degradation properties at each position. These
properties are reactivity, deg_pH10, deg_Mg_pH10, deg_50C and
deg_Mg_50C. More details on these properties can be found at
https://www.kaggle.com/c/stanford-covid-vaccine/data.

Like most Kaggle competitions, the test set was divided into a
public test set and a private test set. Results on the public test
set was available during the competition, whereas private test
set results were hidden (Figure 1A). The experimental procedures
to obtain the training and public test set are detailed in [7]. The
final evaluation was done on a portion of the private test set
consisting of 3005 130-bp mRNA sequences, whose degradation
measurements were conducted during the 21-day challenge and
revealed at the end. The test set was subjected to screening based
on three criteria:

1) Minimum value across all five degradation properties must
be greater than -0.5

2) Mean signal/noise across all five degradation properties
must be greater than 1.0 [signal/noise is defined as mean(
measurement value over 68 nts )/mean( statistical error in
measurement value over 68 nts)].

3) Sequences were clustered into clusters with less than 50%
sequence similarity and chosen from clusters with 3 or fewer
members

After screening, only 1172 sequences remained on the test set.
Final evaluation was done on 3 of the 5 properties (reactivity,
deg_Mg_pH10 and deg_Mg_50C). Unlike the training set, the test
set has longer mRNA sequences with more sequence diversity
and more measurements (first 91 positions) per sequence; in fact,
more predictions had to be made for the test set than there were
training samples. The metric used for ranking in the competition
is mean columnwise root mean squared error (MCRMSE):

MCRMSE = 1
Nt

Nt∑
j=1

√√√√1
n

n∑
i=1

(yij) − ŷij)
2, (1)

where Nt is the number of columns, n the number of positions pre-
dicted, y the ground truth and ŷ the predicted value. In addition,
we also use R2 score (coefficient of determination) during further
analysis.

In vitro half-life dataset
In addition to the OpenVaccine dataset, we also use a recently
available dataset of in vitro half-lives of three CDS groups: eGFP,
Nanoluciferase and a short multi-epitope vaccine (MEV) for inde-
pendent testing [7]. This dataset consists of 69 Nanoluc CDS
variants, 13 eGFP variants and 9 MEV variants (Figure 1B). Note
that these sequences are full-length mRNA sequences with UTR
regions. Since our model does not directly output half-lives, we
sum up reactivity predictions of the CDS region as a proxy for
half-life and calculate Pearson R correlation of reactivity sums
and half-lives to evaluate performance of our model.

K-mers with 1-D convolutions
RNAdegformer captures local dependencies by extracting k-mers
with 1-D convolutions, after embedding each nucleotides. The
extraction of k-mers from a RNA sequence can be considered a
sliding window of size k taking snapshots of the sequence while
moving one position at a time from one end of the sequence to the
other, which is conceptually identical to the convolution operation
used in deep learning. Consider a simple example of convolution
involving a vector S ∈ Rl, where l is the length of the vector, and
a convolution kernel K ∈ R3, which convolves over the vector S. If
the convolutional kernel strides one position at a time, an output
vector of dot products O ∈ Rl−2 is computed:

Op =
∑

i∈{0,1,2}
KiSp+i, (2)

where Ki is the ith element of the convolution weight matrix, Sp+i is
the p + ith element in the input vector and p denotes the position
in the output vector O . In this case, the convolution operation
aggregates local information with three positions at a time, so
if S is a sequence of nucleotides, the convolution operation is
essentially extracting 3-mers from the DNA sequence S.

Since our model takes sequences of RNA nucleotides as input,
we first transform each nucleotide into embeddings of fixed size
dmodel. So now for each sequence we have a tensor I ∈ Rl×dmodel ,
where l is the length of the sequence. Now to create k-mers we
perform convolutions on the tensor I without padding and stride
= 1. When a convolution operation with kernel size k is performed
over I, a new tensor Kk ∈ R(l−k+1)×dmodel representing the sequence of

https://www.kaggle.com/c/stanford-covid-vaccine/data
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Figure 1. Datasets used in this study A. Visulization of the OpenVaccine dataset B. Visulization of the in vitro half-life dataset consisting of eGFP,
nanoluciferase, and MEV sequences.

k-mers is generated. Finally each k-mer is represented by a feature
vector of size dmodel. The 1D convolution layers are always followed
by a layer normalization layer [47].

Indeed our representation of k-mers deviates from conven-
tional representation of words in deep learning, where each word
in the vocabulary directly corresponds to a feature vector in a look
up table. The disadvantage of using look up tables for k-mers is
that a very small percentage of all possible k-mers are present
in the OpenVaccine dataset, and it is nearly impossible for the
network to generalize to unseen k-mers. Additionally, embeddings
of k-mers of larger sizes require a prohibitively large amount of
parameters, since the total possible amount of k-mers for a given
k is 4k. For example, the biggest k-mer we created with convolution
is 9 nucleotides long and using embeddings to represent would
need 49 = 262144 embeddings of size (in our case) 256.

Transformer encoder
RNAdegformer understands global dependencies with self-
attention that operates on k-mer representations. For self-
attention, we implement the vanilla transformer encoder [14],
which uses the multi-head self-attention mechanism. First, the
k-mer representations (each k-mer is represented by a feature
vector of size dmodel) are linearly projected into lower dimensional
(dmodel/nnhead) keys, values and queries for nnhead times. Next, the
self-attention function is computed with the lower dimensional
keys, values and queries for nnhead times independently. In this
case, the self-attention function essentially computes a pairwise
interaction matrix relating every k-mer to every k-mer (including
self to self interaction) and computes a weighted sum of the
values. It has been posited that the multi-head mechanism
allows different heads to learn different hidden representations
of the input, leading to better performance. The multi-head self-
attention mechanism can be summarized in a few equations:

Attention(Q, K, V) = softmax

(
QKT√

dk

)
V, (3)

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO, (4)

where headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
, (5)

where Q, K and V are the query, key, and vector,
√

dk is the size
of the attention head, WO is the linear transformation matrix for
the concatenated attention head outputs and WQ

i , WK
i and WV

i are
the linear transformation matrices for Q, K and V before the ith
attention head, respectively.

Since we are only using the transformer encoder, Q, K, V come
from the same sequence of feature vectors (hence the name
self-attention), each of which represents a k-mer with positional
encoding.

The self-attention mechanism enables each k-mer to attend
to all k-mers (including itself), so global dependencies can be
drawn between k-mers at any distance. Contrary to recurrence
and convolutions, both of which enforce sparse local connectivity,
transformers allow for dense or complete global connectivity.
The ability to draw global dependencies of transformers is a
huge advantage over recurrence and convolutions, both of which
struggle with long sequences.

The self-attention function is followed by a position-wise feed-
forward network applied separately and identically to each posi-
tion:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (6)

where W1 and W2 are linear transformation matrices, and b1 and
b2 are bias matrices for the two linear transformations, respec-
tively. The position-wise feedforward network is basically two
linear transforms with a ReLU (Rectified Linear Unit) activation
in between. Conventionally, the combination of self-attention and
position-wise feedforward network is referred to as the trans-
former encoder layer, and a stack of transformer encoder layers is
referred to the transformer encoder.

Incorporating biophysical models to predict RNA
degradation
Accurate prediction of RNA degradation requires more than
just sequence information, and here we detail how we utilize
biophysical models as additional features when training RNAdeg-
former. Biophysical models such as Viennafold predicts RNA
secondary structure using dynamic programming and ther-
modynamic scoring functions; they cannot directly predict
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RNA degradation but the secondary structure predictions are
very useful when training a neural network to directly predict
degradation. Firstly, we include the predicted structure per
position (by folding algorithms), which describes whether a
nucleotide is paired or unpaired with another one via hydrogen
bonding. The predicted structure is generated using arnie with
log_gamma set to 0. Also, we include the predicted loop type
assigned by bpRNA from folding algorithm predictions [48].
Two embedding layers are added to represent structure and
loop type, and the resulting feature vectors are concatenated
and the dimensionality reduced with a linear transformation.
Additionally, we directly add a modified version of the base-
pairing probability matrix into the attention function (note that
this is simply a modified version of 3 with Mbpp as an additional
input):

Attention(Q, K, V, Mbpp) = softmax

(
QKT√

dk

+ γ Mbpp

)
V (7)

where γ is a learnable parameter and Mbpp is the modified base-
pairing probability matrix (Algorithm 1) . The original base-pairing
probability matrix contains the probabilities for every possible
base pair in an RNA sequence and has been used for many
RNA informatics tasks. Here in addition to base-pairing proba-
bilities, we also stack inverse, inverse squared and inverse cubed
pairwise distance matrices on top of the original base-pairing
probability matrix, where the distance is the the number of cova-
lent bonds between the pair of nucleotides (this can also be
considered the path length in an RNA graph where the only
edges are the covalent bonds). The inverse distance matrices
encode some information about the relative distance between
pairs of nucleotides, since pairs of nucleotides with a small num-
ber of covalent bonds in between are likely to be closer to each
other spatially. Because the distance matrix already encodes infor-
mation about position, we do not use positional encoding for
mRNA.

.

Because 1-D convolution operation used in the RNAdegformer
does not use padding, the convolution product ends up with
reduced dimensionality in the L dimension when the convolution
kernel size is bigger than 1. As a result, the base pairing proba-
bility matrix cannot be directly added to self-attention matrix. To
circumvent this, we do 2D convolution with the same kernel size
as the 1D convolution on the modified base pairing probability
matrix without padding, so the dimensionality of the feature map
becomes C × (L − k + 1) × (L − k + 1). The attention function now

is:

Attention(Q, K, V, Mbpp) = softmax

(
QKT√

dk

+ γ conv2d(Mbpp)

)
V.

(8)

Conceptually, instead of a base pair to base pair interaction
mapping, the 2D convolution product of the modified base pair-
ing probability matrix can be seen as a k-mer to k-mer pair-
wise interaction mapping with matching dimensionality to the
1D convolution k-mer products. Aside from matching dimen-
sionality, the 2D convolution operation also makes up for some
missing information regarding the geometry of mRNA folding.
To illustrate this, we visualize an mRNA sequence in the Open-
Vaccine dataset to explain the physical and mathematical rea-
soning behind the 2D convolution operation (Figure 2A). While
inspecting the interaction between A-20 (A at position 20), G-
21, C-40 and U-41, we can visually see that A-20 and C-40 are
quite close to each other and imagine that there is some degree
of interaction between them, despite A-20 and C-40 not forming
hydrogen bonds. However, looking at the portion of base pairing
probability (BPP) matrix and distance matrix corresponding to
the 2 2 connection between A-20 (A at position 20), G-21, C-40
and U-41, we see that neither the BPP matrix nor the distance
matrix convey this information, as the component (40,20) has
zero or close to zero values on both the BPP matrix and the
distance matrix. When a 2 2 convolution kernel operates on the
BPP matrix and distance matrix (for illustration purposes here we
simply draw a kernel with all values set to unity), it essentially
fuses the four connections between A-20, G-21, C-40 and U-41 and
creates a strong connection between the 2 2mers (A-20, G-21 and
C-40, U-41). Now it becomes much easier for the network to learn
the interaction between A-20 and G-40 (as well as for G-21 and
U-41).

The combination of convolution and self-attention cannot p
roduce nucleotide position wise predictions, since it generates
k-mer encodings instead of single base pair encoding. In order
to make predictions per nucleotide position, we introduce addi-
tional deconvolution layers to retrieve full dimensional encodings,
which allow residual connections of both 1D and 2D encod-
ings before and after the transformer encoder. We name these
blocks as Conv-transformer-encoders. As a result, both the single
nucleotide embeddings and the modified BPP matrix go through
deep transforms before outputting predictions.

Now we can summarize the RNAdegformer architecture used
for the RNA task (Figure 2B), which can be seen as a special case
of a series of multiple Conv-Transformer-encoders, each with a
single transformer encoder layer followed by a deconvolution
layer. Also, because the OpenVaccine challenge requires making
predictions at each position of the RNA sequence, it is important
for the last transformer encoder layer right before outputting
predictions to operate on single nucleotide encodings instead of
k-mer encodings. With these considerations in mind, we choose
a simple strategy to construct the stack of RNAdegformers with
two main hyperparameters k and nlayer set equal to each other. The
first single layer Conv-transformer-encoder has k = nlayer and we
decrease the size of the convolution kernel by 1 for the next Conv-
Transformer-encoder. Therefore, when we get to the last Conv-
Transformer-encoder in the stack, k becomes 1 and the last Conv-
Transformer-encoder is simply a transformer encoder layer with
an added bias from the BPP feature map.
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Figure 2. RNAdegformer combines convolution and self-attention to predict RNA degradation. A. RNAdegformer architecture which takes advantage
of additional input information from biophysical models. B. Visualization of BPP+distance matrix, attention weights of a non-pretrained RNAdegformer,
and attention weights of a pretrained RNAdegformer

Optimizer and training schedule
We started with Adam but found it to be underfitting. Therefore,
we switched to a more recent and powerful optimizer, Ranger,
which uses gradient centralization from https://github.com/
lessw2020/Ranger-Deep-Learning-Optimizer [49]. As for the
training schedule, we used flat and anneal, where training
starts with a flat learning rate of 1e-3 and then 75% through

all the epochs training proceeds with cosine annealing schedule
reducing learning rate down to 0 at the end of training. Weight
decay is set to 0.1.

Learning approaches
In the OpenVaccine challenge, the number of samples in the test
set exceeds that in the training set, so we use a combination

https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
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Figure 3. The RNAdegformer is first pretrained in unsupervised settings, trained with ground truth labels in supervised settings, and finally trained
with pseudo labels and ground truth labels in semi-supervise settings.

of learning methods (Figure 3). Here we describe those learning
methods.

Multitasking learning: during pretraining, mutated/masked
sequence, structure and predicted loop type are inputted into
the RNAdegformer and then the RNAdegformer is trained with
crossentropy loss to retrieve the correct sequence, structure and
predicted loop type simultaneously at each position of the RNA
sequence. During training on ground truth labels and pseudo
labels, the RNAdegformer is trained to predict five different degra-
dation properties simultaneously at each measured position of
the RNA sequence.

Unsupervised learning (pretraining): we use all available
sequences in the OpenVaccine challenge dataset to pretrain
our network on randomly mutated and masked (with NULL
token) sequence retrieval loss (basically softmax to retrieve
correct nucleotide/structure/loop). During pretraining, the

RNAdegformer learns the rules of RNA structure, guided by
biophysical knowledge provided by biophysical models.

Supervised learning: during supervised learning, the RNAdeg-
former is trained on target values of RNA degradation properties.

Semi-supervised learning: Following RNA supervised learning,
the RNAdegformer is retrained in semi-supervised fashion on
pseudo labels generated by an ensemble of RNAdegformer with
different depths. Similar to previous work with semi-supervised
learning [50], we retrain the models first using pseudo labels at a
flat learning rate and then finetune with ground truth labels in
the training set with cosine anneal schedule.

In practice, we first pretrain our neural networks with
unsupervised learning, then train our neural networks on
ground truth labels with supervised learning, and lastly use
labeled and unlabeled data in conjunction with semi-supervised
learning.
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Table 1. Performance using inputs generated by different biophysical models to predict mRNA degradation in the OpenVaccine dataset

Package Public MCRMSE
Private MCRMSE

Public MCRMSE semi-supervised Private MCRMSE semi-supervised

RNAsoft 0.23154 0.34521 0.23101 0.33841
rnastructure 0.23637 0.34639 0.23502 0.33989
EternaFold 0.23158 0.34613 0.23081 0.33878
Contrafold_2 0.23245 0.34858 0.23123 0.34111
NUPACK 0.23679 0.34955 0.23587 0.34292
Vienna 0.23492 0.34515 0.2337 0.33864
avg of all 0.22976 0.34375 0.22914 0.33722

Table 2. Pearson correlation of RNAdegformer predictions with
in vitro half-life compared with other top methods

NLuc Eterna eGFP MEV

RNAdegformer -0.655 -0.499 -0.578
nullrecurrent (1st place) -0.601 -0.220 -0.685
kazuki (2nd place) -0.623 -0.376 -0.597
Degscore -0.637 -0.288 -0.240
Vienna SUP -0.590 -0.103 -0.130

Error weighted loss
We used a form of RMSE loss, which is also the same mathemati-
cally as the competition metric:

loss = 1
Nt

Nt∑
j=1

√√√√ 1
n

n∑
i=1

(yij − ŷij)
2. (9)

where Nt is the number of columns, n is the number of positions
predicted, y is the ground truth and ŷ is the predicted value.
Because the OpenVaccine dataset came from experimental mea-
surements that had errors, we adjusted the losses based on the
error for each measurement during supervised training:

error weighted loss = loss × (α + e−β×error), (10)

where loss is the per position loss to be back propagated, error
is the experimental error for that position and α and β are tun-
able hyperparameters to control how loss is weighted based on
experimental errors . If α is set to 1 and β to infinity, the loss
values stay the same; otherwise gradients from measurements
with large errors would be lowered to prevent the neural network
from overfitting to experimental errors. We find the best setup to
be α = 0.5 and β = 5.

Usage of biophysical models during training
We used secondary structures predicted by an ensemble of
biophysical models including RNAsoft [11], rnastructure [12],
CONTRAfold [9], EternaFold [51], NUPACK [10] and Vienna [8].
Arnie (https://github.com/DasLab/arnie) is used as a wrapper
to generate secondary structure predictions. For each sequence,
we generated secondary structure predictions at 37 and 50C,
since two of the scored degradation properties were mea-
sured at different temperatures. Although we also need to
make predictions for a degradation property at pH10, none
of the biophysical models used could generate predictions
at different pH’s. With six packages, we ended with up with
12 secondary structure predictions for each sequence. During
training, we randomly select one of the 12 secondary structure

predictions for each sample during a forward and backward
propagation pass. During validation and testing, we use the
averaged predictions made with all 12 secondary structure
predictions.

Best hyperparameters
For models trained during the OpenVaccine competition, nhead is
set to 32, dmodel is set to 256, dropout is set to 0.1 and conv2d
filter size is set to 32, α and β are both 1. Half of the models
were trained with sequences with signal to noise greater than
1 and half were trained with signal to noise greater than 0.5.
During post competition experiments, we found that results are
better when penalizing measurements with high error more by
reducing α to 0.5 and increasing β to 5. Although using more
models at more different conditions can give better results, for
better reproducibility we only trained five models with k = nlayer =
3, 4, 5, 6, 7 for each experiment hereinafter. Here nhead is set to 32,
dmodel is 256, dropout is set to 0.1 and conv2d filter size is set to 8.
We also only use sequences with signal to noise greater than 0.25
for training and signal to noise greater than 1 for 10-fold cross
validation.

Results
Interpretablility of self-attention assists
decision-making
By the end of the competition, we had trained two sets of models
to use in the final submissions, one that was trained directly
on short sequences with labels and one that was pretrained
with all available sequences (including unlabeled test sequences)
before training on short sequences with labels. Note that test
sequences appear to have a different distribution via t-sne analy-
sis (Figure 4A). In order to robustly select submissions, we visu-
alized and evaluated the learned attention weights from the
transformer encoder (Figure 4B). Since we added the BPP matrix
and distance matrix as a bias, both learned attention distribu-
tions of pretrained and non-pretrained models resembled the
BPP and distance matrix, but there were also some key differ-
ences. The non-pretrained model paid heavy attention indis-
criminately to pairs of positionally close nucleotides, as indi-
cated by the bright stripes parallel and close to the diagonal of
the attention matrix. This indicates the non-pretrained model
thought that positionally close nucleotides were always impor-
tant when making predictions on mRNA degradation proper-
ties, which seemed highly unlikely. On the other hand, the pre-
trained model did not show the same bias towards pairs of posi-
tionally close nucleotides and was able to recognize the weak
BPP connections that were barely visible on the original BPP
matrix. In this case, the model made more effective use of the
BPP matrix generated by biophysical models. Because of these

https://github.com/DasLab/arnie
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Figure 4. RNAdegformer accurately predicts RNA degradation at nucleotide level. A. T-sne plot of RNA sequences in the training set (blue), test
set (orange), and randomly generated set (green) B. Visualization of BPP+distance matrix, attention weights of a non-pretrained RNAdegformer, and
attention weights of a pretrained RNAdegformer C. Comparison of pretrained and non-pretrained models trained during the OpenVaccine competition
and post competition experiments.

considerations and given the short timeframe of the compe-
tition, we had to make a prompt decision to focus more on
experimenting with pretrained models, and we favored pretrained
models in our final submissions. Results on the private test set
validated our selection based on visual inspection of attention
weights (Figure 4B). Pretrained models performed much better

than non-pretrained models on both public test set and pri-
vate test set. The non-pretrained models would have placed us
at 39th/1636 instead of 7th/1636. Notably, the predictions on
the private test set have much higher error, likely both due to
longer sequence length and more sequence diversity in the private
test set.
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Figure 5. R2 score on the OpenVaccine private test set of the RNAdegformer. A. supervised only, B. pretrained, C. semi-supervised.

Semi-supervised learning leads to more accurate
predictions in RNA degradation
Following the competition, we found that using predictions gen-
erated by an ensemble predictions of the private test set as
pseudo-labels in semi-supervised settings, we could reduce the
test set MCRMSE to 0.33722, compared with the top solution’s
0.34198 (Figure 4B). This is somewhat surprising given the that
the predictions used as pseudo-labels could only score 0.3438 on

the private test set. When we compare the R2 scores of super-
vised only, pretrained and semi-supervised RNAdegformer, we
see that pretraining and semi-supervised learning led to sizable
improvements over the supervised only (Figure 4C, Figure 5). Also,
we notice that predictions for deg_Mg_pH10 have significantly
larger errors than the other two properties, which is expected
because the biophysical models used are incapable of generat-
ing different secondary structure predictions at different pHs.
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Figure 6. RNAdegformer generalizes well to longer mRNA sequences and reveals important features in determininh mRNA degradation A. Half-life
correlation of RNAdegformer predictions compared to previous best methods. B. LOFO feature importance on the OpenVaccine dataset.

It is also important to note that the semi-supervised learning
approach requires pseudo-labeling and knowing the test set distri-
bution before hand. Therefore, while pseudo-labeling is effective
under the competition setting, it is a risky approach and the
performance gain may not transfer in real life applications. In
addition, we also report performance of our models using differ-
ent packages and ensembled together ( 1). Overall, while RNAsoft
and Vienna consistently provide the best performance, ensem-
bling results from different biophysical models still provides an
advantage over any individual biophysical model.

RNAdegformer is a strong predictor of mRNA in
vitro half-life
Comparing predictions of RNAdegformer on groups of CDS vari-
ants mRNA design sequences to half-life data [7], we see that
the RNAdegformer provides improved correlation (Pearson R=-
0.655) with half-lives of the largest group of nanoluciferase CDS
variants (928 bp on average) compared previous models quantify-
ing mRNA degradation such as Degscore (Pearson R=-0.637) and
sum unpaired probability (SUP) (Pearson R=-0.58) (Figure 4D). On
smaller groups of CDS variants of eGFP (1191 bp on average) and
Multi-Epitope-Vaccine (MEV) (505 bp on average), RNAdegformer
shows larger improvement (-0.499/-0.578) over Degscore (-0.288/-
0.240) and SUP (-0.103/-0.130). Compared with top solutions in
OpenVaccine, we find the RNAdegformer generalizes better to
longer CDS variants (Nanoluciferase and GFP) (2), both of which
are much longer than sequences in the training data. Overall,
RNAdegformer is the only method that provides correlation equal
to or better than -0.5 across all 3 CDS groups. It has been shown
that computational design of CDS regions of mRNA sequences can
lead to close to 3 time increase in in vitro half-life using Degscore
[7], a ridge regression model, following dynamic programming

optimization of Gibbs free energy using linear design [52]; we
believe RNAdegformer can guide computational design of CDS
regions to produce even more stable sequences.

RNAdegformer reveals most important features
in RNA stability predictions
To understand what features are the most important in predicting
RNA stability, we took a simple LOFO approach. We retrained our
models from scratch with the best settings but left out one of
the available features (sequence, predicted structure, predicted
loop type or predicted base pair probabilities), and then evaluated
model performance with the absence of one feature (Figure 4G).
We found that our models took the biggest performance hit
when sequence information was left out. This indicates that
aside from secondary structure, stable raw sequence motifs/mo-
tif pairs could be extracted from experimental data to enable
design of more stable RNA molecules [7]; additionally, this also
demonstrates the powerful capabilities of the RNAdegformer in
terms of motif/pairwise motif recognition. Performance hit when
leaving out sequence information is followed by predicted base
pair probabilities, which describe the ensemble of possible folds a
particular RNA sequence can adopt. This shows that base pairing
probabilities are a rich, detailed and holistic feature that describe
RNA secondary structure well. It has also been shown experimen-
tally that base pairing probabilities are highly correlated with RNA
half lives [7], and designing RNA coding sequences to maximize
pairing has been proposed as a strategy to produce more stable
RNA molecules [53]; our LOFO results support that proposal. Fur-
ther, RNAdegformer’s ability to directly and effectively incorpo-
rate 2D features like base pairing probabilities also demonstrates
its flexibility. Surprisingly, leaving out structure and loop features
had little impact on model performance as the MCRMSE remained
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Figure 7. RNAdegformer webapp A. Home page of the RNAdegformer webapp B. Page where the user can visualize secondary structure and predict
degradation rates of any RNA sequence.

almost the same. However, the minimal impact of structure and
loop features is actually consistent with the previous findings
regarding importance of base pairing probabilities. The structure
and loop features only represent the singular most likely fold
based on predicted base pair probabilities; in other words, they
do not describe RNA secondary structure in the same holistic
fashion as base pairing probabilities. While Degscore and linear
design leverage either structure information or thermodynamics,

our RNAdegformer can simultaneously and effectively utilize
the most important features in regards to mRNA degradation:
sequence and BPP, as revealed by our LOFO ablation studies.

RNAdegformer webapp
We created a web application (Figure 7A) developed using H2O.ai’s
wave and made it available at https://github.com/Shujun-He/
RNAdegformer-Webapp, so users can utilize our RNAdegformer

https://github.com/Shujun-He/RNAdegformer-Webapp
https://github.com/Shujun-He/RNAdegformer-Webapp
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to predict and visualize RNA degradation without any need to
code. To use the webapp, the user simply needs to type in the RNA
sequence of interest (Figure 7B) and RNA degradation predictions
will be generated as a downloadale CSV file, along with relevant
features such as BPP and secondary structure. In addition, the
secondary structure, attention weight and degradation properties
of the RNA sequence will also be visualized, allowing the user to
visually inspect the degradation predictions.

Discussion
In this work, we present the RNAdegformer, an effective neural
network architecture that is capable of accurately predicting
degradation properties of mRNA COVID-19 vaccine candidates
per nucleotide. We participated in the recent 21-day OpenVaccine
challenge with an adaptation of the RNAdegformer and placed
7th out of 1636 teams of top machine learning experts from
all over the globe. We also demonstrate with semi-supervised
learning, the RNAdegformer outperforms even the top solution
in the OpenVaccine challenge by a considerable margin; RNAdeg-
former also generalizes well to predict half-lives of unseen mRNA
sequences, with better correlation than previous best methods.
Further, RNAdegformer reveals the most important features in
predicting RNA degradation. Our results show that self-attention
and convolution are a powerful combination enabling learning
both global and local dependencies effectively to predict RNA
degradation and even half-life . It has long been posited that
the transformer architecture can excel beyond natural language
processing, and our work demonstrates that.

Although there has been many dynamic programming
algorithms that predict mRNA secondary structure, there is no
precedence on predictions of mRNA degradation properties per
nucleotide. After a chaotic 2020 caused by COVID-19, mRNA vac-
cines have emerged as a fast and effective solution to the COVID
problem, with companies like Pfizer and Moderna rolling out
mRNA vaccines at unprecedented speeds. However, storage and
transport remain a challenge with fragile mRNA vaccines (Pfizer-
BioNtech’s vaccine has to be stored as −80◦C and Moderna’s at
−20◦C. One strategy to reduce mRNA hydrolysis is to redesign
RNAs to code for the same proteins but form double-stranded
regions, which are protected from these degradative processes [7,
53]. Our work can provide guidance and trained models can act as
a screening tool in development of more stable mRNA vaccines in
the future. Messenger RNA vaccines and therapeutics have many
applications towards infectious diseases and cancers [54–57], and
it is our hope the RNAdegformer will aid design of more stable
mRNA vaccines that can withstand harsher conditions than
current ones. It is important to note, however, that there is still
significant gap between errors on the 107 bp mRNA OpenVaccine
public set sequences and the 130 bp mRNA OpenVaccine private
set sequences, both due to difference in sequence length and
diversity. Actual COVID-19 candidates are even longer and
modeling those remains a challenge in the future. For these long
sequences, one key challenge is the quadratic computational
complexity of self-attention, which prohibits training on long
sequences. Notably, much work has been done in very recent
times on reducing the quadratic computational complexity of
self-attention to linear to enable training of transformer like
self-attention on much longer sequences [58–61], i.e. linear
transformers. Whole genomes and COVID-19 mRNA vaccines
both greatly exceed the length limit of full self-attention, and
COVID-19 vaccine candidates, in particular, are around 4000 bp
long, so these new approaches may serve as effective tools to
solve the challenges.

In summary, we have developed a convolution and transformer-
based deep learning platform toward prediction of mRNA
degradation and half-lives. Our work has demonstrated success
in RNA stability and half-life predictions. We believe that by
further development and optimization, we will solve many
challenges including understanding RNA degradation and
structure relationships, aiding next-generation mRNA therapy
development, and more.

Key Points

• Messenger RNA therapeutics have emerged as a highly
promising platform that provides modularity and poten-
tially allows any protein to be delivered and translated.
Messenger RNA can produced rapidly and flexibly with
in vitro transcription, but it suffers from chemical insta-
bility due to in-line hydrolysis.

• We present a model architecture RNAdegformer that
utilizes convolution and self-attention to capture both
local and global dependencies, which enable the model
to achieve high accuracy and provide interpretability in
predicting degradation properties of mRNA sequences

• Using unsupervised (pretraining), supervised and semi-
supervised learning in conjunction with each other, we
demonstrate that RNAdegformer outperforms the top
solution in OpenVaccine at predicting RNA degradation
rates at each position of a given RNA sequence, a task of
great importance to predict and produce stable mRNA
vaccines and therapeutics.

• RNAdegformer generalizes better to predict half-lives
of sequences much longer than those in the training
dataset compared with other machine learning and
dynamic programming algorithms.

• RNAdegformer also reveals feature importance in pre-
dicting mRNA degradation through the usage of leave-
one-feature-out (LOFO) test, advancing our understand-
ing of RNA degradation
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