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Deep brain stimulation procedures offer an invaluable opportunity to study disease
through intracranial recordings from awake patients. Here, we address the relationship
between single-neuron and aggregate-level (local field potential; LFP) activities in the
subthalamic nucleus (STN) and thalamic ventral intermediate nucleus (Vim) of patients
with Parkinson’s disease (n = 19) and essential tremor (n = 16), respectively. Both dis-
orders have been characterized by pathologically elevated LFP oscillations, as well as an
increased tendency for neuronal bursting. Our findings suggest that periodic single-
neuron bursts encode both pathophysiological beta (13 to 33 Hz; STN) and tremor
(4 to 10 Hz; Vim) LFP oscillations, evidenced by strong time-frequency and phase-
coupling relationships between the bursting and LFP signals. Spiking activity occurring
outside of bursts had no relationship to the LFP. In STN, bursting activity most com-
monly preceded the LFP oscillation, suggesting that neuronal bursting generated within
STN may give rise to an aggregate-level LFP oscillation. In Vim, LFP oscillations most
commonly preceded bursting activity, suggesting that neuronal firing may be entrained
by periodic afferent inputs. In both STN and Vim, the phase-coupling relationship
between LFP and high-frequency oscillation (HFO) signals closely resembled the rela-
tionships between the LFP and single-neuron bursting. This suggests that periodic
single-neuron bursting is likely representative of a higher spatial and temporal resolution
readout of periodic increases in the amplitude of HFOs, which themselves may be a
higher resolution readout of aggregate-level LFP oscillations. Overall, our results may
reconcile “rate” and “oscillation” models of Parkinson’s disease and shed light on the
single-neuron basis and origin of pathophysiological oscillations in movement disorders.
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The symptoms of Parkinson’s disease (akinetic-rigid features) and essential tremor are
associated with pathologically elevated local field potential (LFP) activity in the subthala-
mic nucleus (STN; beta frequency oscillations; 13 to 33 Hz) and the thalamic ventral
intermediate nucleus (Vim; tremor frequency oscillations; 4 to 10 Hz), respectively
(1, 2). Moreover, both of these disorders have been associated with dysregulated patterns
of action potential firing at single-neuron resolution. Extracellular microelectrodes
acquired during neurosurgery, as leveraged in this work, enable the simultaneous acquisi-
tion of single-neuron and aggregate neuronal (LFP) signals. LFPs are generally perceived
as conglomerate neural activity, with contributions from action potential firing and sub-
threshold transmembrane currents; however, spiking activity traditionally has not been
thought to substantially contribute to periodic oscillations in the LFP (3, 4) due to the
short time course of spiking signals and general sparsity of synchronous firing under
physiological conditions (5). In Parkinson’s disease, this conceptual disconnect has con-
tributed to the development of parallel theories of circuit dysfunction and information
coding, differentially focusing on “rate” versus “oscillation” changes to explain the emer-
gence of symptoms. In fact, recent attempts in establishing relationships between the fir-
ing rates of individual neurons and the amplitude of beta oscillations in the healthy
macaque motor cortex have been unsuccessful (6). Here, we hypothesize that periodic
hypersynchronous neuronal bursting is representative of a corroborative link between
competing theories. We leverage signal processing techniques to derive relationships
between brain signals across spatiotemporal resolutions, which allowed us to speculate on
the neuronal origin of the aforementioned pathophysiological oscillations.
Indeed, beta frequency LFPs within the dorsolateral STN have been shown to corre-

late with clinical symptoms (7); however, studies in animal models of Parkinson’s dis-
ease have also suggested that pathological phenotypes can be dissociated from beta
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oscillations (8, 9). Instead, it was shown that functional impair-
ment could be exclusively controlled by burst-firing patterns of
the STN (8). Thus, the relationship between the STN LFP and
somatic firing remains contentious (9). At the single-neuron
resolution, STN neurons exhibit increased firing rates and a
strong tendency to fire in bursts (10, 11). Most recently, STN
neurons that display burst firing patterns have been shown to
represent a distinct neuronal population that, much like the
source of STN beta oscillations, cluster in the dorsolateral STN
(12, 13). Despite this topographical overlap, a relationship
between neuronal bursting and LFP oscillations has not yet
been characterized.
Electrophysiological studies have moreover demonstrated

tremor-related LFP clusters in Vim (14), as well as tremor-
related single-neuron bursting that is congruent with peripheral
tremor (2, 15). However, mechanisms underlying the emer-
gence of pathophysiological tremor-frequency oscillations have
been elusive. Postmortem studies have described various levels
of cerebellar degeneration in patients with essential tremor (16),
including lower levels of GABAergic tone (17). While lower
inhibitory tone may contribute to increased disinhibition of
deep cerebellar neurons, it does not explain the emergence of a
periodic oscillation. However, a recent optogenetics study has
suggested that synaptic pruning deficits of climbing fiber to Pur-
kinje cell synapses may give rise to an increased propensity for
cerebellar oscillations (18), which may subsequently spread
throughout the cerebello-thalamo-cortical circuit.
Here, we address the relationship between LFP and single-

neuron activity in the STN and Vim of surgical patients using
frequency, time-frequency, and phase-amplitude coupling (PAC;
i.e., functional connectivity) analyses. As neurons are capable of
multiplexing (19), and as neuronal bursting (20) appears to rep-
resent a pathophysiological hallmark in both Parkinson’s disease
and essential tremor, single-neuron activity was separated into
bursting and nonbursting episodes throughout the analyses. We
moreover examined the temporal sequence between bursting and
LFP activities using effective connectivity (i.e., directionality)
analyses to investigate whether periodic bursting may give rise to
aggregate-level (LFP) oscillations, or whether the oscillation may
in fact entrain neuronal firing, enabling us to speculate on the
origin of these deleterious oscillations. Ultimately, we aimed to
provide insights as to whether the interaction between spiking
activity and LFP conforms to a singular principle or whether this
relationship needs to be investigated separately across different
disease-relevant nodes and frequency bands.

Results

STN Beta Spectral Power in LFP and Spiking Signals. Power
spectral density (PSD) calculations were used to investigate beta
peaks in the LFP signals, as seen in Fig. 1 B and C. PSD calcu-
lations performed on enveloped spiking activity revealed that
the major contributor to the PSD peak was neuronal bursting
(e.g., Fig. 1B). Increased PAC coincided with simultaneously
increased LFP and spiking activity power levels during bursts
(P = 6e�11; Fig. 1D, i), indicative of strong temporal overlap
between periodic single-neuron bursting and elevated beta
power in the LFP. However, this temporal overlap was also
present during nonbursting activity (P = 0.014; Fig. 1D,
ii) although to a much lesser degree. We were moreover inter-
ested to investigate whether potential relationships existed
between spike firing characteristics and PSD calculations. We
found a greater percentage of spikes within bursts for strong
compared to weak beta neurons (P = 6e�11; Fig. 1D, iii), and

that the average firing rate was greater for strong compared to
weak beta neurons (P = 9e�5; Fig. 1D, iv) (for details regard-
ing the classification of strong versus weak beta, please refer to
the Materials and Methods section “Spectral Power in LFP and
Spiking Signals”). We moreover found a significant relationship
between STN spike firing rate and oscillatory information car-
ried within the spike train (i.e., PSD calculations performed on
enveloped spiking signal; P = 0.004; Fig. 1D, v).

Functional Connectivity between STN Beta LFP and Spike
Signals. PAC analyses were performed to establish whether spik-
ing activity was confined to a particular phase of the LFP oscilla-
tion. The highest PAC score was found for burst-thresholded
spiking classified as having strong beta (Fig. 2A). In particular,
the PAC scores for strong beta burst-thresholded spiking were
higher than the PAC scores for strong beta nonburst-thresholded
(P = 3e�6), weak beta burst-thresholded (P = 3e�11), and
weak beta nonburst-thresholded (P = 9e�12) spiking.

Although it was revealed that strong beta burst-thresholded
spiking had the highest PAC with the LFP signal, a sinusoidal
shape was nevertheless present for strong beta nonburst-
thresholded spiking (Fig. 2A). We hypothesized that this rela-
tionship may have been driven by high-frequency oscillation
(HFO) activity contained within the spiking signals, which has
been suggested to be representative of low-amplitude multiunit
spiking activity, or neuronal noise. After separating HFO com-
ponents (Fig. 2B), strong beta burst-thresholded spiking with
HFO removed showed a stronger PAC relationship than strong
beta nonburst-thresholded spiking with HFO removed (P =
2e�7) and HFO alone (P = 3e�6). Notably, uniform PAC
from nonburst-thresholded spiking was absent upon removal of
the HFO but preserved within the HFO-only signal.

Effective Connectivity between STN Beta LFP and Spike
Signals. Having identified that the most robust relationship
between spiking and LFP activity was during periods of single-
neuron bursting (when the HFO was removed), we subse-
quently analyzed the directional information flow between the
strong beta burst-thresholded spiking with HFO removed and
the LFP signal (Fig. 2C). This revealed that bursting activity
preceded LFP activity in 64% of recordings, while bursting suc-
ceeded LFP activity in 36% of recordings. We looked at PAC
relationships once more after categorizing data by temporal
sequence. While the shape of the PAC curve was more uniform
for bursts preceding the LFP, the difference in PAC scores was
not significant between preceding versus succeeding bursts (P =
0.844). Finally, preceding bursts expressed a clear sinusoidal
distribution with a ∼�110° phase preference.

Vim Tremor-Band Spectral Power in LFP and Spiking Signals.
As with STN beta, neuronal bursting was a major contributor to
the Vim tremor-related power spectrum (e.g., Fig. 3B). Increased
PAC coincided with simultaneously increased LFP and spiking
activity power levels only during bursts (P = 0.004; Fig. 3D,
i) and not during nonbursting activity (where no PAC was pre-
sent; thus, a statistic could not be calculated; Fig. 3D, ii). We
moreover found a greater percentage of spikes within bursts for
strong compared to weak tremor neurons (P = 0; Fig. 3D,
iii) but no significant difference in the firing rate between strong
and weak tremor neurons (P = 0.721; Fig. 3D, iv). Moreover,
we did not find a significant relationship between the Vim spike
firing rate and oscillatory information carried within the spike
train (i.e., PSD calculations performed on the unthresholded
enveloped spiking power; P = 0.123; Fig. 3D, v).
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Functional Connectivity between Vim Tremor-Band LFP and
Spike Signals. As with STN, the highest PAC score was found for
strong tremor burst-thresholded spiking (Fig. 4A). In particular,
PAC scores of strong tremor burst-thresholded spiking were higher
than the PAC scores of strong tremor nonburst-thresholded (P =
2e�5), weak tremor burst-thresholded (P = 9e�20), and weak
tremor nonburst-thresholded (P = 7e�15) spiking.
HFO separation (Fig. 4B) revealed that strong beta burst-

thresholded spiking with HFO removed was associated with a
stronger PAC than strong beta nonburst thresholded spiking
with HFO removed (P = 2e�7) and HFO alone (P = 0.003).

Effective Connectivity between Vim Tremor-Related LFP and
Spike Signals. Directionality analyses (Fig. 4C) revealed that
strong tremor burst-thresholded spiking with HFO removed
preceded LFP activity in 35% of recordings, whereas bursting
succeeded LFP activity in 65% of recordings. This preferred
temporal sequence was opposite to our observation for STN beta.

We moreover found a small but not statistically significant
(P = 0.089) difference in PAC score when comparing neurons
succeeding versus preceding LFP activity. Finally, succeeding
bursts expressed a clear sinusoidal distribution with a ∼±180°
phase preference.

Discussion

We explored the relationship between LFPs and single-neuron
activity in the context of STN beta oscillations in Parkinson’s dis-
ease and Vim tremor oscillations in essential tremor. Discoveries
of pathophysiological changes across various spatial and temporal
resolutions have led to the development of mechanistic models to
explain circuit dysfunction (21). In Parkinson’s disease, for exam-
ple, the “rate” model suggests that changes in single-neuron rates
and patterns across nodes of the basal ganglia give rise to certain
clinical symptoms of the disorder. The “oscillation” model sug-
gests that local clusters of individual neurons synchronize their

A

B

C

D

Fig. 1. STN single-neuron and LFP activities. (A) Exemplary strong beta neuron showing periodic neuronal bursting and a weak/no-beta neuron with mini-
mal bursting. (B and C) Raw traces are divided into LFP, burst-thresholded, and nonburst-thresholded signal components. From left to right: same sample
data as in (A), but at a higher time resolution; PSD estimates showing prominent frequency-matched peaks for LFP and burst-thresholded signals only; time-
frequency spectrograms showing prominent frequency-matched oscillations for LFP and burst-thresholded signals only; PACtogram showing the strength of
PAC over time between the LFP and corresponding single-neuron signals. (D) Group-wise statistics showing that significantly increased PAC coincided with
simultaneously increased LFP and spike PSD power (i) during bursts and (ii) during nonbursting activity, although to a much lesser degree; (iii) the percent-
age of spikes within bursts and (iv) firing rates were significantly greater for strong compared to weak beta neurons; (v) there was a significant relationship
between STN spike firing rate and PSD calculations performed on unthresholded spiking signal.
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activity, giving rise to rhythmic, pathophysiologically elevated
aggregate-level oscillations. Although both models attempt to
abstract pathophysiological processes of the same disorder, there
has been little conceptual overlap, leading to the suggestion that
these processes may be mutually exclusive (8). By exploring the
relationship between single-neuron activity and aggregate-level
LFP oscillations, we investigated whether rate and oscillatory
neural correlates converge to a common electrophysiological sig-
nature or should be conceptualized as distinct hallmarks of the
underlying pathophysiology. Overall, our results agree with pre-
vious studies that have suggested a relationship between spiking
and LFP activity (22–24), but provide additional insights by
identifying the critical role of neuronal bursting in facilitating
this relationship across spatial and temporal resolutions.

Neural Coding with Bursts to Reconcile Rate and Oscillation
Theories. We found distinct peaks within power spectral estima-
tions performed on enveloped spiking activity that corresponded
to peaks within the power spectra of LFPs (Figs. 1 and 3). How-
ever, spiking activity thresholded to contain busting only resulted
in far stronger power spectral estimates, whereas spiking activity
occurring outside of bursts carried almost no oscillatory informa-
tion. Moreover, we found a large degree of temporal overlap
between the periodic bursting of single-neuron activity and the
ongoing LFP oscillation, both confined to the same frequency
band (Figs. 1D, i and 3D, i and corresponding PACtograms).
These findings suggest that bursting activity within the spike train
may represent a high spatial resolution readout of the aggregate
level LFP oscillation (discussed in more detail in the following
sections). Indeed, recordings with strong beta or strong tremor
oscillatory activity in the LFP had more bursting than recordings
with weaker oscillatory activity (Figs. 1D, iii and 3D, iii).
Moreover, the percentage of spikes within bursts was greater in
Vim recordings with strong tremor-related activity than in STN
recordings with strong beta (P = 2e�5; not depicted), suggesting
the transient (25, 26) nature of elevated beta LFPs compared to
more sustained/enduring Vim tremor-related oscillations.
Neuronal bursting is a ubiquitous physiological means of neural

information coding (27), serving several important functional roles

in the brain. One such role is to increase the reliability of informa-
tion transfer across synapses (28). However, pervasive and highly
correlated neuronal bursting in STN and Vim may represent a
maladaptive change to brain circuitry that overwhelms other
meaningful forms of information transfer (29). To this end, exces-
sive STN and Vim bursting can indeed explain specific clinical
features of Parkinson’s disease and essential tremor, respectively.

Our findings suggest important implications of neuronal
bursting activity as a means of reconciling and corroborating the
“rate” (30, 31) and “oscillation” (32) models of Parkinson’s dis-
ease. The rate model suggests that dopaminergic degeneration
(among other sequelae) results in decreased inhibition of the
STN and subsequent overexcitation of the globus pallidus inter-
nus and substantia nigra pars reticulata, which in turn overinhi-
bit thalamocortical and brainstem motor networks, resulting in
the hypokinetic symptoms of Parkinson’s disease. In addition to
increased firing rates, there is also an increased propensity for
neuronal bursting within STN. Rather than considering individ-
ual neurons, the oscillation model implicates synchronous,
aggregate-level network oscillations in the beta frequency band as
a pathophysiological hallmark of the akinetic-rigid features of
Parkinson’s disease (7, 33–35). Within this work, we show a
direct temporal link between neuronal bursting activity and the
aggregate-level LFP oscillation (via PAC results), additionally cor-
roborating the topographical overlap of these phenomena in
STN (12, 13). As such, we suggest that the single-neuron rate
model and LFP oscillation model, both hallmarks of the hypoki-
netic features of Parkinson’s disease, are in fact not distinct and
competing theories, but can be linked directly to one another
through bursting. Our results suggest that increased beta activity
in the STN LFP represents a functional readout of an increased
propensity for periodic neuronal bursting (likely synchronized
across many neurons), which is also associated with a net increase
in neuronal output (Fig. 1D, iii/iv). This explanation may there-
fore reconcile the rate and oscillation models of Parkinson’s dis-
ease (Fig. 1D, v), particularly given that both models implicate
the hypokinetic features of the disorder and given that both neu-
ronal firing rates/patterns and LFP oscillations are modulated by
voluntary movements (36, 37) (SI Appendix, Figs. 2 and 3) and

A

D

C

B

Fig. 2. Group-wise phase-coupling between beta LFP and single-neuron activities in STN. (A) The greatest PAC relationship was found between LFP and
strong beta burst-thresholded spiking, and this relationship was significantly greater than the three other conditions. (B) Upon removal of the HFO from
strong beta spiking signals, the PAC sinusoidality of nonburst-thresholded spiking dissipated but was preserved for burst-thresholded spiking and the
HFO-only signal. PAC was significantly greater for burst-thresholded spiking with HFO removed than the two other conditions. (C) Based on directionality
analyses, burst-thresholded spiking activity preceded the LFP oscillation 64% of the time; however, when signals were stratified by temporal sequence, PAC
was not significantly different between the two conditions. (D) A schematic summary of the main findings.
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antiparkinsonian medications (38, 39). Moreover, therapeutic
deep brain stimulation has been suggested to disrupt pathological
pattens of activity (40) through LFP desynchronization (41), local
suppression (42) and desynchronization of pattered firing (15),
and regularization of efferent output (43). A rate model in essen-
tial tremor has not previously been put forth; however, pathophy-
siologically elevated tremor-related neuronal bursting in the Vim
is a well-known phenomenon (2). As with STN beta activity, we
established a strong link between neuronal bursting and the
tremor-frequency LFP signal in the Vim. Circuit dysfunction in
essential tremor is indeed characterized by an increased propensity
for periodic neuronal bursting across the cerebello-thalamo-corti-
cal motor circuit, ultimately resulting in clinical/behavioral man-
ifestations of tremor (44).

Connectivity between Neural Signals across Spatial Resolutions.
For STN, the highest degree of PAC between beta LFP and
spiking activity occurred during bursting, particularly when the

bursting activity preceded the LFP. Importantly, before removal
of the HFO signal, a PAC relationship was nevertheless present
between the beta LFP and nonburst signals (Fig. 2A). Recent
reports have described a relationship between the phase of beta
LFP signals and the amplitude of HFOs within the parkinsonian
STN (23) and motor cortex (45). In our analyses, the removal
of HFO components from the spiking signals completely abol-
ished any semblance of a phase-amplitude relationship between
the beta LFP and isolated nonburst spiking activity (Fig. 2B),
while emphasizing the critical contributions of isolated single-
neuron bursting activity to the beta LFP. As such, increased
HFO amplitudes may indeed be driven by synchronous single-
neuron bursting, and our results may thus define and corrobo-
rate micro- (single-neuron), meso- (HFO), and macro- (LFP)
level representations of parkinsonian subthalamic beta oscilla-
tions across multiple scales of observation (4). Although deriva-
tion of relationships between neural signals across spatiotemporal
resolutions has been considered a nontrivial task (4, 6), it has

A

B

C

D

Fig. 3. Vim single-neuron and LFP activities. (A) Exemplary strong tremor neuron showing periodic neuronal bursting and a weak/no-tremor neuron with
minimal bursting. (B and C) Raw traces are divided into LFP, burst-thresholded, and nonburst-thresholded signal components. From left to right: same sam-
ple data as in (A), but at a higher time resolution; PSD estimates showing prominent frequency-matched peaks for LFP and burst-thresholded signals only;
time-frequency spectrograms showing prominent frequency-matched oscillations for LFP and burst-thresholded signals only; PACtogram showing the
strength of PAC over time between the LFP and corresponding single-neuron signals. (D) Group-wise statistics showing that significantly increased PAC coin-
cided with simultaneously increased LFP and spike PSD power (i) during bursts, but (ii) not during nonburst spiking; (iii) the percentage of spikes within
bursts was significantly greater for strong compared to weak tremor neurons, (iv) but no differences were found in firing rates, (v) nor was there a relation-
ship between STN spike firing rate and PSD calculations.
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indeed previously been shown in the primate motor cortex
that neuronal firing rates could be directly estimated from LFP
signals (46).
The above results in STN were also generally valid for

tremor-related oscillations in the Vim, with three important dif-
ferences: the PAC relationship was strongest when the tremor
bursting in Vim succeeded LFP activity; the overall contribution
of the HFO signal on nonbursting activity was less substantial;
and neuronal bursting phase preference was ±180° with respect
to the LFP (compared to a �110° for STN). Typically, phase
preference across signals in different brain regions can be difficult
to interpret, given that it may evolve over time (22) or based on
medication state (38), resulting in a spectrum of phase relation-
ships (47). However, in this work, we investigate phase relation-
ships between signals of different spatiotemporal resolutions (i.e.,
spiking versus LFP) within the same structure. In the context of
this work, it is possible that the difference in phase preference
between STN and Vim is the result of differences in the tempo-
ral sequence/directionality between the neuronal bursting and
LFP signals. To this end, our effective connectivity analysis of
the temporal sequence between bursting and LFP may provide
insights about the origin and propagation of pathophysiological
oscillations within respective brain circuits and disorders, which
are discussed in the following two sections.

On the Emergence of STN Beta Oscillations in Parkinson’s
Disease. Exaggerated STN beta oscillations have been corre-
lated with clinical symptoms of Parkinson’s disease (7, 34, 35).
At the initiation of elevated levels of LFP oscillations, coordi-
nated action potential firing has been observed across cortex-
basal ganglia structures (22, 47). Critically, ensemble-level
properties of synchronization have been shown to be underlain
by the timing of action potentials in relation to cortical beta
bursts, suggesting that cortical areas may be involved in the
orchestration of beta activity through the basal ganglia-
thalamocortical loops (22). The importance of a cortical drive
is further supported by recent evidence that has shown that the
hyperdirect pathway is implicated in the transduction of beta
oscillations to the STN (48). Repeated observations suggest

that the synchrony between cortex and STN occurs predomi-
nantly at high beta frequencies (21 to 33 Hz). However, it has
been shown that low beta frequencies are more directly corre-
lated with parkinsonian symptoms (7, 49–51). Cortical control
of the STN may still be implicated in the generation of this
activity, as biophysical models have revealed that an exaggerated
hyperdirect pathway can lead to the generation of subcortical
synchrony at lower beta frequencies (48). This suggests that the
dopamine-depleted basal ganglia may provide a resonance cir-
cuit that amplifies cortical high beta, producing an exaggerated
prevalence of pathological low-frequency bursts. The mainte-
nance of subthalamic beta oscillations has been suggested to
be the result of the reciprocal connections of the STN with
the globus pallidus externus (47, 52). In particular, prototypic
globus pallidus externus neurons have been shown to regulate
beta activity by providing synaptic inhibition to STN neurons
(53). When arriving in antiphase to a synchronized cortical drive
(54), synaptic inhibition can support action potential generation
by increasing the availability of Na+ channels, thus promoting
the precision, efficiency, and, ultimately, the synchrony of STN
spiking (55). Furthermore, the STN itself has been shown to be
critical for the expression of beta oscillations in 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine-treated monkeys (56, 57).

Overall, these studies implicate a role of coordinated synaptic
mechanisms localized to the STN that are necessary for the
generation and amplification of pathological beta oscillations.
Excitatory cortical inputs to STN are thought to cause loose
cortico-STN synchronization, but these excitations trigger
recurrent inhibition via globus pallidus externus, which sculpts
neuronal firing into the pathological beta oscillatory pattern,
particularly when arriving in antiphase to the cortical inputs. It
is therefore possible that this pathological oscillatory pattern is
generated de novo within STN, and that elevated population-
level LFP oscillations are driven by and only detectable when
enough individual neurons are subject to periodic oscillations
of the firing rate (i.e., it is possible that the LFP signal is a sum-
mation of synchronous action potential bursting). This would
corroborate our findings that neuronal bursting most commonly
precedes the LFP oscillation. Contrarily, Vim tremor-related

A

D

B

C

Fig. 4. Group-wise phase coupling between tremor LFP and single-neuron activities in Vim. (A) The greatest PAC relationship was found between LFP and
strong beta burst-thresholded spiking, and this relationship was significantly greater than the three other conditions. (B) Removal of the HFO from strong
beta spiking signals refined the sinusoidality of burst-thresholded spiking. PAC was significantly greater for burst-thresholded spiking with HFO removed
than the two other conditions. (C) Based on directionality analyses, the LFP oscillation preceded burst-thresholded spiking activity 65% of the time; however,
when signals were stratified by temporal sequence, PAC was not significantly different between the two conditions. (D) A schematic summary of the main
findings.
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bursting may be the result of direct feedforward neuronal entrain-
ment via strong periodic excitatory inputs of the cerebellum
(elaborated upon below). This would corroborate our findings
that neuronal bursting most commonly succeeds the LFP oscil-
lation in Vim.

On the Emergence of Vim Tremor Oscillations. Essential
tremor is regarded as a disorder of the cerebellum, evidenced by
postmortem studies showing increased Purkinje cell loss (58)
and axonal swelling (59) in the neocerebellum and vermis, as
well as lower levels of GABA receptors in the dentate nucleus
(17). However, these pathological changes do not directly
explain the emergence of tremor-related oscillations. While
unique ion channel dynamics in the thalamus, inferior olive,
and cerebellum can generate oscillations via inhibition-induced
rebound excitations (60), they have been reported to contribute
to the generation of 10-Hz physiological tremor only, but not
essential tremor (44). Rather, there has been an important the-
ory that can directly explain the emergence of tremor-related
oscillations based on essential tremor pathology. Recent studies
in the postmortem cerebellum of patients with essential tremor
have shown synaptic pruning deficits of climbing fiber to Pur-
kinje cell synapses (61). In particular, an increased number of
climbing fiber synapses on the Purkinje cell dendrites within
the parallel fiber synaptic territory have been observed in essen-
tial tremor (62). These synaptic pruning deficits were linked to
glutamate receptor delta 2 (GluRδ2) protein insufficiency (18).
Critically, it was found that mice with GluRδ2 insufficiency
and climbing fiber-to-Purkinje cell synaptic pruning deficits
develop essential tremor-like behavior that could be suppressed
with the viral rescue of GluRδ2 protein (18). Moreover, opto-
genetic or pharmacological inhibition of neuronal firing, axonal
activity, or synaptic vesicle release confirmed that excessive
climbing fiber-to-Purkinje cell synaptic activity was required for
the generation of tremor and tremor-related oscillations in the
cerebellum (18).
As such, it is likely that tremor-related oscillatory activity is

generated within the cerebellum, which may subsequently
spread to efferent structures, including the Vim. Strong peri-
odic afferent inputs to Vim may therefore directly entrain local
neuronal populations, which would corroborate our findings
that neuronal bursting most commonly succeeds the LFP
oscillation.

Limitations. There are various limitations associated with intra-
cranial neurophysiological studies in humans, including but not
limited to time constraints and the inability to use pharmaco-
logical agents or sophisticated tools such as optogenetics to elu-
cidate ionic and molecular mechanisms of interest. However,
these studies have an advantage in that it is not fully known
how well animal models correspond to human conditions or
anatomy. Moreover, while our connectivity results provided
interesting insights regarding temporal sequence between signals,
which may shed light on the origin of beta and tremor-related
oscillations, the temporal sequences were not unanimous. The
question of whether spiking activity drives the LFP or vice versa
is in fact a ubiquitous one in neuroscience, which can only be
unequivocally answered by simultaneous recording of far greater
numbers of neurons than is currently feasible in humans or ani-
mals (4). Furthermore, it should be noted that a small propor-
tion of STN neurons exhibited an antiphasic phase preference
(70° versus the commonly observed �110°). Finally, in future
studies, it would be valuable to assess whether differences in con-
nectivity metrics are somatotopically organized. In this analysis,

although neurons were sampled from the entire spatial extent of
the STN and Vim, we do not possess information as to the pre-
cise topographic location of each sampled neuron.

Conclusions. Through the derivation of relationships between
neural signals across spatiotemporal resolutions, it was found
that periodic neuronal bursting encodes pathophysiological LFP
oscillations in Parkinson’s disease (STN beta oscillations) and
essential tremor (Vim tremor-related oscillations). Increased neu-
ronal bursting was associated with elevated LFP oscillatory power
in the time, frequency, and phase domains. Overall, the findings
of synchronization between periodic neuronal bursting and
periods of elevated LFP oscillations may reconcile the canonical
parkinsonian single-neuron rate and aggregate-level oscillation
models. Furthermore, our directionality analyses allowed us to
speculate on the origin of these deleterious oscillations. In STN,
bursting activity most commonly preceded the LFP oscillation,
suggesting that neuronal bursting generated within STN may
give rise to an aggregate-level LFP oscillation. In Vim, LFP oscil-
lations most commonly preceded bursting activity, suggesting
that neuronal firing may be directly entrained by strong periodic
afferent inputs. A generalizable takeaway from this work is that
the applied signal-processing techniques revealed that periodic
single-neuron bursting is likely representative of a higher spatio-
temporal resolution readout of periodic increases in the ampli-
tude of HFOs, which themselves are likely higher resolution
readouts of aggregate-level LFP oscillations. These findings may
therefore facilitate interpretation of aggregate-level oscillations,
in various neuroscientific contexts, from the perspective of the
single-neuron resolution and the increased propensity for pat-
terned synchronization across local neuronal populations.

Materials and Methods

Data Acquisition. Each patient underwent deep brain stimulation implantation
into the STN (akinetic-rigid dominant Parkinson’s disease; n = 19) or VIM
(essential tremor; n = 16). During surgery, intraoperative microelectrode record-
ings were used to localize STN (63) or Vim (64). Single-neuron recording
segments were extracted from 117 STN neurons and 32 Vim neurons; a data
overview is provided in SI Appendix, Table 1. Acquired electrophysiological data
were sampled at ≥12.5 kHz using Guideline System GS3000 amplifiers (Axon
Instruments, Union City, CA). Written informed consent was provided by all of
the patients, and the study was approved by the University Health Network
Research Ethics Board.

For all of the analyses described below, the same methodological techni-
ques were applied for STN and Vim recordings; however, analyses of STN
recordings were focused on beta oscillations (13 to 33 Hz), while analyses of
Vim recordings were focused on tremor oscillations (4 to 10 Hz).

Extracting Individual Signals from the Superimposed Microelectrode
Data. Microelectrode recording signals were divided into several individual sig-
nals throughout the analyses (S1 to S7). (S1) LFP recordings were extracted
using a low-pass finite impulse response filter (50 Hz), and (S2) a high-pass
finite impulse response filter (300 Hz) was used to better isolate spiking activity.
Spiking activity was subsequently divided into subgroups of activity that occurred
(S3) during bursts and (S4) outside of bursts (i.e., nonbursts). Burst detection
was done via dissection of the interspike interval (ISI) probability distribution
functions (27, 65); SI Appendix, Fig. 1 contains details on ISI threshold setting
for beta and tremor datasets. Undesired data points in signals (S3) and (S4)
were masked by either zeros for subsequent power estimates or Gaussian noise
for subsequent connectivity estimates.

Spectral Power in LFP and Spiking Signals. PSD estimates (i.e., Figs. 1
and 3) were used to determine the overall amplitude of beta/tremor activity for
each of the delineated signals (S1 to S4). While PSD estimations were directly
calculated on the low-pass filtered LFP data (S1), spiking activity signals (S2 to
S4) were first enveloped (absolute of the Hilbert transform). The PSD estimates
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were calculated using Welch’s (66) method (1 Hz bins, 50% overlap). PSD esti-
mates obtained from unthresholded spiking signals (S2) were used to classify
each neuron as a strong or weak beta/tremor neuron in a semiautomated man-
ner. An initial group of strong beta/tremor neurons were identified based on
visual inspection of beta/tremor peaks in the PSD plots. The remaining neurons
were subsequently classified using a naive Bayes classifier trained on the manu-
ally identified samples. For the relative height of the PSD peak at beta/tremor
frequency to be automatically assessable, the absolute power at the peak fre-
quency of interest was divided by an estimate derived from the interpolation of
lower and higher frequency bins surrounding the peak.

Time-frequency spectrograms were also generated from PSD estimates (beta:
2s windows, 1s window step size, and 1 Hz wide bins; tremor: 4s windows,
0.25s window step size, and 0.25 Hz wide bins). The PACtograms in Figs. 1 and
3 were generated from PAC estimates (described in detail in the following sec-
tion) using 2s (beta) or 4s (tremor) data segments (beta: 1s window step size,
and 1 Hz wide bins; tremor: 0.25s window step size, and 0.25 Hz wide bins)
across various frequencies for the phase component of the LFP.

Functional Connectivity between LFP and Spike Signals. For PAC analy-
ses, we leveraged the Hilbert transform to return the instantaneous amplitude
and/or the instantaneous phase of a given signal (23, 45). Using these readouts,
PAC plots (Figs. 2 and 4) were generated by plotting the instantaneous ampli-
tude of burst- (S3) or nonburst- (S4) thresholded spiking signals with respect to
the instantaneous phase of each cycle of the corresponding LFP signal (S1). In
these plots, positive values imply spiking activity, whereas negative values imply
lack of spiking. For the group-wise PAC histograms, amplitudes were normalized
with respect to 25th and 75th percentiles on an individual sample level. A more
sinusoidal and uniform PAC plot implies a stronger phase amplitude relation-
ship between LFP and spiking activity. As such, an amplitude constrained
(0.95 to 1.05) sinusoidal function was fit to each recorded sample individually.
The resulting PAC score describes the goodness of fit between the fitted sinu-
soid and the sampled data points. The score was quantified as one minus the
normalized mean square error between the sinusoidal fit and the generated
PAC waveform. The PAC plots also enabled the determination of the average
phase preference between LFP and spiking activities. The phase offset was
determined by comparing the group-wise fitted sinusoidal function (yellow
curves in Figs. 2 and 4) to an idealized sinusoidal function with zero phase shift
(blue curves in Figs. 2 and 4).

We also took into consideration that each of the signals (S3) and (S4) (burst-
and nonburst-thresholded spiking, respectively) also contained high-frequency
oscillatory activity (>300 Hz) in addition to spiking activity. In general, HFOs are
thought to represent aggregate spiking activity, or neuronal noise. Previous reports
have suggested that HFO amplitude modulation is a representation of synchro-
nized spiking activity across a local cluster (23). Therefore, in subsequent analyses
(Figs. 2B and 4B), we removed HFO activity from the spiking signals (S3) and (S4)
to generate (S5) burst-thresholded spiking with HFO removed, and (S6) nonburst-
thresholded spiking with HFO removed. We also generated an (S7) HFO-only sig-
nal by removing spiking activity from the high-pass filtered signal (S2). Unwanted
data points were replaced with Gaussian white noise. As only strong beta/tremor
signals expressed high PAC values, the following analyses were exclusive to record-
ings from these neurons. As only strong beta/tremor signals expressed high PAC
values, these analyses were exclusive to recordings from these neurons.

Effective Connectivity between LFP and Spike Signals. Temporal sequence
between LFP and spiking activity (i.e., which signal precedes which) was deter-
mined using same-frequency connectivity estimates. These estimates were calcu-
lated from burst-thresholded spiking with HFO removed (S5) of strong beta/
tremor neurons as these signals expressed a much stronger PAC than their non-
burst counterparts (S6). Same-frequency coupling was estimated using direction-
alized absolute coherence (3° minimal angle threshold). Briefly, directionalized
absolute coherence is a conglomerate same-frequency coupling metric that
quantifies the direction of the information flow using the phase slope index,

volume conductance via imaginary coherency, and magnitude of the relationship
via magnitude squared coherence (67). Based on the results of supercritical fluid
chromatography analysis, each individual recording was subdivided based on
whether spiking activity preceded LFP activity or vice versa. PAC analyses were
subsequently repeated on these subgroups (Figs. 2C and 4C).

Statistical Analyses. Several group-wise statistical tests were computed based
on the analyses presented in Fig. 1 for STN beta and Fig. 3 for Vim tremor. We
were interested in whether there were time- and frequency-dependent overlaps
in the time-frequency spectrograms of LFP and spiking signals and whether these
overlaps in elevated spectral power coincided with the generated PACtogram
plots. To investigate this, we used the time-frequency spectrograms from LFP and
enveloped spiking activity to determine areas of above-average activity. Then, we
calculated the overlap between these areas across signals, and compared PAC
within these areas to PAC outside these areas using linear mixed models (Figs.
1D, i/ii and 3D, i/ii). For neuronal recordings, we also used linear mixed models
to assess whether there was a difference in the percentage of spikes within bursts
and the average firing rate when the recording sites were stratified by oscillatory
strength (i.e., strong versus weak spectral power) (Figs. 1D, iii/iv and 3D, iii/iv).
Linear mixed models were also used in the context of regression analyses to
determine whether relationships existed between spike firing rates and PSD cal-
culations performed on the unthresholded spiking signals (Figs. 1D, v and 3D, v).

We also performed statistical tests using PAC scores seen in Figs. 2 and 4 by
comparing each condition to the condition with the highest PAC score (i.e., refer-
ence condition). For example, in Fig. 2A, strong beta burst-thresholded spiking was
used as a reference and PAC was compared to strong beta nonburst-thresholded,
weak beta burst-thresholded, and weak beta nonburst-thresholded spiking.

For all of the linear mixed model evaluations, patient and trial identities were
included as random factors to compensate for multiple measurements across and
within patients. Exact linear mixed models formulas, parameters, and hypothesis
counts for multiple comparison corrections (false discovery rate corrected using the
Benjamini-Hochberg method (68)) are available in SI Appendix, Tables 2 and 3.

Data Availability. Python code is available at https://github.com/toronto-tnbs/
pac_investigation and data are available at https://www.biorxiv.org/content/10.
1101/2022.04.05.486956v1 (69).

ACKNOWLEDGMENTS. The authors thank the patients for their participation.
This work was supported by research grants from the Natural Sciences and Engi-
neering Council of Canada (NSERC) RGPIN-2022-05181 (to L.M.), the Alexander
Von Humboldt Foundation (to M.S.), the German Research Foundation (DFG)
Project-ID 424778381 TRR 295 (to L.A.S. and A.A.K.), and the Junior Clinician
Scientist Program of the Berlin Institute of Health (BIH) and German Academic
Exchange Service (DAAD) (to L.A.S.).

Author affiliations: aKrembil Brain Institute, University Health Network, Toronto, M5T
2S8, Canada; bDepartment of Neurology, Charit�e-Universit€atsmedizin Berlin, Berlin,
10117, Germany; cBerlin Institute of Health (BIH), Berlin, 10178, Germany; dDepartment
of Surgery, University of Toronto, Toronto, M5T 1P5, Canada; eKITE Research Institute,
University Health Network, Toronto, M5G 2A2, Canada; fCenter for Advancing
Neurotechnological Innovation to Application (CRANIA), Toronto, M5T 2S8, Canada;
gInstitute of Medical Sciences, University of Toronto, Toronto, M5S 1A8, Canada;
hDepartment of Physiology, University of Toronto, Toronto, M5S 1A8, Canada; and
iInstitute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada

Author contributions: M.S., L.A.S., and L.M. conceptualized the study and designed
research; M.S. and L.M. designed the methodology; M.S., L.A.S., S.K.K., M.H., S.K.K.,
A.A.K., A.M.L., W.D.H., and L.M. performed research; M.H., A.A.K., A.M.L., and W.D.H.
provided resources; M.S. provided the software; M.S. and L.M. curated data; M.S. and
L.M. analyzed data; W.D.H. performed the validation; M.S., L.A.S., and L.M. wrote the
paper; S.K.K., M.H., A.A.K., A.M.L., W.D.H., and L.M. edited the manuscript; A.A.K. and
L.M. supervised the study; and L.M. acquired the funding.

Competing interest statement: Honoraria, travel funds, consultancy fees, and/or grant
support have been received from Medtronic (S.K.K., M.H., A.A.K., A.M.L., W.D.H., and
L.M.), Boston Scientific (S.K.K., A.A.K., and A.M.L.), St. Jude-Abbott (A.A.K. and A.M.L.),
Inbrain Neuroelectronics (S.K.K.), Stada Pharm (A.A.K.), and Insightec (A.M.L.) (none of
these are related to this work). M.S. and L.A.S. have no disclosures.

1. A. A. K€uhn, A. Kupsch, G.-H. Schneider, P. Brown, Reduction in subthalamic 8-35 Hz oscillatory
activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23,
1956–1960 (2006).

2. F. A. Lenz et al., Single unit analysis of the human ventral thalamic nuclear group: Correlation of
thalamic “tremor cells” with the 3-6 Hz component of parkinsonian tremor. J. Neurosci. 8,
754–764 (1988).

3. P. L. Nunez, R. Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG (Oxford University
Press, New York, 2006).

4. G. Buzs�aki, C. A. Anastassiou, C. Koch, The origin of extracellular fields and currents–EEG, ECoG,
LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

5. P. Andersen, T. V. Bliss, K. K. Skrede, Unit analysis of hippocampal polulation spikes. Exp. Brain
Res. 13, 208–221 (1971).

8 of 9 https://doi.org/10.1073/pnas.2205881119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205881119/-/DCSupplemental
https://github.com/toronto-tnbs/pac_investigation
https://github.com/toronto-tnbs/pac_investigation
https://www.biorxiv.org/content/10.1101/2022.04.05.486956v1
https://www.biorxiv.org/content/10.1101/2022.04.05.486956v1


6. J. Confais, N. Malfait, T. Brochier, A. Riehle, B. E. Kilavik, Is there an intrinsic relationship between
LFP beta oscillation amplitude and firing rate of individual neurons in macaque motor cortex?
Cereb. Cortex Commun. 1, tgaa017 (2020).

7. W.-J. Neumann et al., Subthalamic synchronized oscillatory activity correlates with motor
impairment in patients with Parkinson’s disease.Mov. Disord. 31, 1748–1751 (2016).

8. M.-K. Pan et al., Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor
control. J. Clin. Invest. 126, 4516–4526 (2016).

9. C. B. Swan, D. J. Schulte, D. T. Brocker, W. M. Grill, Beta frequency oscillations in the subthalamic
nucleus are not sufficient for the development of symptoms of parkinsonian bradykinesia/akinesia
in rats. eNeuro 6, ENEURO.0089-19.2019 (2019).

10. A. Benazzouz et al., Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s
disease.Mov. Disord. 17 (suppl. 3), S145–S149 (2002).

11. H. Bergman, T. Wichmann, B. Karmon, M. R. DeLong, The primate subthalamic nucleus. II.
Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72, 507–520 (1994).

12. I. Tamir et al., Eight cylindrical contact lead recordings in the subthalamic region localize beta
oscillations source to the dorsal STN. Neurobiol. Dis. 146, 105090 (2020).

13. H. Jeon et al., Topographic connectivity and cellular profiling reveal detailed input pathways and
functionally distinct cell types in the subthalamic nucleus. Cell Rep. 38, 110439 (2022).

14. D. J. Pedrosa et al., Essential tremor and tremor in Parkinson’s disease are associated with distinct
‘tremor clusters’ in the ventral thalamus. Exp. Neurol. 237, 435–443 (2012).

15. L. Milosevic et al., Physiological mechanisms of thalamic ventral intermediate nucleus stimulation
for tremor suppression. Brain 141, 2142–2155 (2018).

16. E. D. Louis et al., Neuropathological changes in essential tremor: 33 cases compared with 21
controls. Brain 130, 3297–3307 (2007).

17. S. Paris-Robidas et al., Defective dentate nucleus GABA receptors in essential tremor. Brain 135,
105–116 (2012).

18. M.-K. Pan et al., Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing
fibers contribute to tremor pathophysiology. Sci. Transl. Med. 12, eaay1769 (2020).

19. M. Lankarany, D. Al-Basha, S. Ratt�e, S. A. Prescott, Differentially synchronized spiking enables
multiplexed neural coding. Proc. Natl. Acad. Sci. U.S.A. 116, 10097–10102 (2019).

20. C. Lobb, Abnormal bursting as a pathophysiological mechanism in Parkinson’s disease.
Basal Ganglia 3, 187–195 (2014).

21. W. D. Hutchison et al., Neuronal oscillations in the basal ganglia and movement disorders:
Evidence from whole animal and human recordings. J. Neurosci. 24, 9240–9243 (2004).

22. H. Cagnan et al., Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia
network. Proc. Natl. Acad. Sci. U.S.A. 116, 16095–16104 (2019).

23. A. C. Meidahl et al., Synchronised spiking activity underlies phase amplitude coupling in the
subthalamic nucleus of Parkinson’s disease patients. Neurobiol. Dis. 127, 101–113 (2019).

24. A. I. Yang, N. Vanegas, C. Lungu, K. A. Zaghloul, Beta-coupled high-frequency activity and
beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. J. Neurosci. 34,
12816–12827 (2014).

25. Y. M. Kehnemouyi et al., Modulation of beta bursts in subthalamic sensorimotor circuits predicts
improvement in bradykinesia. Brain 144, 473–486 (2021).

26. G. Tinkhauser et al., Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic
medication. Brain 140, 2968–2981 (2017).

27. F. Zeldenrust, W. J. Wadman, B. Englitz, Neural coding with bursts-current state and future
perspectives. Front. Comput. Neurosci. 12, 48 (2018).

28. J. E. Lisman, Bursts as a unit of neural information: Making unreliable synapses reliable. Trends
Neurosci. 20, 38–43 (1997).

29. H. Bergman et al., Physiological aspects of information processing in the basal ganglia of normal
and parkinsonian primates. Trends Neurosci. 21, 32–38 (1998).

30. R. L. Albin, A. B. Young, J. B. Penney, The functional anatomy of basal ganglia disorders. Trends
Neurosci. 12, 366–375 (1989).

31. M. R. DeLong, Primate models of movement disorders of basal ganglia origin. Trends Neurosci.
13, 281–285 (1990).

32. P. Brown, Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology
of Parkinson’s disease.Mov. Disord. 18, 357–363 (2003).

33. C. Hammond, H. Bergman, P. Brown, Pathological synchronization in Parkinson’s disease:
Networks, models and treatments. Trends Neurosci. 30, 357–364 (2007).

34. A. A. K€uhn et al., Pathological synchronisation in the subthalamic nucleus of patients with
Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 215, 380–387 (2009).

35. L. A. Steiner et al., Subthalamic beta dynamics mirror Parkinsonian bradykinesia months after
neurostimulator implantation.Mov. Disord. 32, 1183–1190 (2017).

36. A. Abosch, W. D. Hutchison, J. A. Saint-Cyr, J. O. Dostrovsky, A. M. Lozano, Movement-related
neurons of the subthalamic nucleus in patients with Parkinson disease. J. Neurosurg. 97,
1167–1172 (2002).

37. A. A. K€uhn et al., Event-related beta desynchronization in human subthalamic nucleus correlates
with motor performance. Brain 127, 735–746 (2004).

38. L. Iskhakova et al., Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia
beta oscillations. Nat. Commun. 12, 7026 (2021).

39. M. Weinberger et al., Beta oscillatory activity in the subthalamic nucleus and its relation to
dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96, 3248–3256 (2006).

40. C. J. Wilson, B. Beverlin II, T. Netoff, Chaotic desynchronization as the therapeutic mechanism of
deep brain stimulation. Front. Syst. Neurosci. 5, 50 (2011).

41. L. K. Feldmann et al., Toward therapeutic electrophysiology: Beta-band suppression as a biomarker
in chronic local field potential recordings. NPJ Parkinsons Dis. 8, 44 (2022).

42. L. Milosevic et al., A theoretical framework for the site-specific and frequency-dependent neuronal
effects of deep brain stimulation. Brain Stimul. 14, 807–821 (2021).

43. Q.-X. Zhuang et al., Regularizing firing patterns of rat subthalamic neurons ameliorates
parkinsonian motor deficits. J. Clin. Invest. 128, 5413–5427 (2018).

44. R. C. Helmich, I. Toni, G. Deuschl, B. R. Bloem, The pathophysiology of essential tremor and
Parkinson’s tremor. Curr. Neurol. Neurosci. Rep. 13, 378 (2013).

45. C. de Hemptinne et al., Exaggerated phase-amplitude coupling in the primary motor cortex in
Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 110, 4780–4785 (2013).

46. T. M. Hall, K. Nazarpour, A. Jackson, Real-time estimation and biofeedback of single-neuron firing
rates using local field potentials. Nat. Commun. 5, 5462 (2014).

47. M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam, C. J. Wilson, Move to the rhythm:
Oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25,
525–531 (2002).

48. A. Oswal et al., Neural signatures of hyperdirect pathway activity in Parkinson’s disease.
Nat. Commun. 12, 5185 (2021).

49. P. Brown et al., Dopamine dependency of oscillations between subthalamic nucleus and pallidum
in Parkinson’s disease. J. Neurosci. 21, 1033–1038 (2001).

50. A. Eusebio et al., Deep brain stimulation can suppress pathological synchronisation in
parkinsonian patients. J. Neurol. Neurosurg. Psychiatry 82, 569–573 (2011).

51. D. Whitmer et al., High frequency deep brain stimulation attenuates subthalamic and cortical
rhythms in Parkinson’s disease. Front. Hum. Neurosci. 6, 155 (2012).

52. J.-S. Brittain, P. Brown, Oscillations and the basal ganglia: Motor control and beyond. Neuroimage
85, 637–647 (2014).

53. B. Crompe et al., The globus pallidus orchestrates abnormal network dynamics in a model of
Parkinsonism. Nat. Commun. 11, 1570 (2020).

54. J. A. Goldberg et al., Enhanced synchrony among primary motor cortex neurons in the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. J. Neurosci.
22, 4639–4653 (2002).

55. J. Baufreton, J. F. Atherton, D. J. Surmeier, M. D. Bevan, Enhancement of excitatory synaptic
integration by GABAergic inhibition in the subthalamic nucleus. J. Neurosci. 25, 8505–8517
(2005).

56. S. Chiken, A. Nambu, Disrupting neuronal transmission: Mechanism of DBS? Front. Syst. Neurosci.
8, 33 (2014).

57. Y. Tachibana, H. Iwamuro, H. Kita, M. Takada, A. Nambu, Subthalamo-pallidal interactions
underlying parkinsonian neuronal oscillations in the primate basal ganglia. Eur. J. Neurosci. 34,
1470–1484 (2011).

58. J. E. Axelrad et al., Reduced Purkinje cell number in essential tremor: A postmortem study. Arch.
Neurol. 65, 101–107 (2008).

59. M. Yu et al., Increased number of Purkinje cell dendritic swellings in essential tremor.
Eur. J. Neurol. 19, 625–630 (2012).

60. R. R. Llin�as, The intrinsic electrophysiological properties of mammalian neurons: Insights into
central nervous system function. Science 242, 1654–1664 (1988).

61. C.-Y. Lin et al., Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor
cerebellum. Brain 137, 3149–3159 (2014).

62. T. Miyazaki et al., Ablation of glutamate receptor GluRδ2 in adult Purkinje cells causes multiple
innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory.
J. Neurosci. 30, 15196–15209 (2010).

63. W. D. Hutchison et al., Neurophysiological identification of the subthalamic nucleus in surgery for
Parkinson’s disease. Ann. Neurol. 44, 622–628 (1998).

64. I. M. Garonzik, S. E. Hua, S. Ohara, F. A. Lenz, Intraoperative microelectrode and semi-
microelectrode recording during the physiological localization of the thalamic nucleus ventral
intermediate.Mov. Disord. 17 (suppl. 3), S135–S144 (2002).

65. D. J. Bakkum et al., Parameters for burst detection. Front. Comput. Neurosci. 7, 193 (2014).
66. P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on

time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73
(1967).

67. M. Scherer, T. Wang, R. Guggenberger, L. Milosevic, A. Gharabaghi, Directional Absolute
Coherence: A phase-based measure of effective connectivity for neurophysiology data. bioRxiv
Preprint. (2022). https://doi.org/10.1101/2022.02.07.479359 (Accessed August 10, 2022).

68. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach
to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

69. M. Scherer et al., Single-neuron bursts encode pathological oscillations in subcortical nuclei of
patients with Parkinson’s disease and essential tremor. bioRxiv. https://www.biorxiv.org/content/
10.1101/2022.04.05.486956v1. Deposited 07 April 2022.

PNAS 2022 Vol. 119 No. 35 e2205881119 https://doi.org/10.1073/pnas.2205881119 9 of 9

https://doi.org/10.1101/2022.02.07.479359
https://www.biorxiv.org/content/10.1101/2022.04.05.486956v1
https://www.biorxiv.org/content/10.1101/2022.04.05.486956v1

