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Background: Ascending aortic aneurysms constitute an important hazard for individuals with a bicuspid aortic
valve (BAV). However, the processes that degrade the aortic wall in BAV disease remain poorly understood.
Methods:We undertook in situ analysis of ascending aortas from 68 patients, seeking potentially damaging cel-
lular senescence cascades. Aortas were assessed for senescence-associated-ß-galactosidase activity, p16Ink4a and
p21 expression, and double-strand DNA breaks. The senescence-associated secretory phenotype (SASP) of
cultured-aged BAV aortic smooth muscle cells (SMCs) was evaluated by transcript profiling and consequences
probed by combined immunofluorescence and circular polarization microscopy. The contribution of p38 MAPK
signaling was assessed by immunostaining and blocking strategies.
Findings: We uncovered SMCs at varying depths of cellular senescence within BAV- and tricuspid aortic valve
(TAV)-associated aortic aneurysms. Senescent SMCs were also abundant in non-aneurysmal BAV aortas but
not in non-aneurysmal TAV aortas. Multivariable analysis revealed that BAV disease independently associated
with SMC senescence. Furthermre, SMC senescence was heightened at the convexity of aortas associated with
right-left coronary cusp fusion. Aged BAV SMCs had a pronounced collagenolytic SASP. Moreover, senescent
SMCs in the aortic wall were enriched with surface-localized MMP1 and surrounded by weakly birefringent col-
lagen fibrils. The senescent-collagenolytic SMC phenotype depended on p38 MAPK signaling, which was chron-
ically activated in BAV aortas.
Interpretation:Wehave identified a cellular senescence-collagen destruction axis in at-risk ascending aortas. This
novel “seno-destructive” SMC phenotype could open new opportunities for managing BAV aortopathy.
Fund: Canadian Institutes of Health Research, Lawson Health Research Institute, Heart and Stroke Foundation of
Ontario/Barnett-Ivey Chair.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Individuals with a bicuspid aortic valve (BAV) are at risk of develop-
ing ascending aortic aneurysms [1]. The basis of these aneurysms, and
their complications of dissection and rupture, are incompletely under-
stood but hemodynamic and genetic factors are implicated [2–4].
There are well-recognized pathological features of BAV aortopathy,
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including elastin fiber degradation, non-inflammatory loss of smooth
muscle cells (SMCs), and accumulation of mucoid extracellular matrix
(ECM) [5]. However, there are currently no strategies to prevent or
delay aortic degeneration in individuals with a BAV and a better under-
standing of the cellular events that underlie the destructive process is
warranted.

Medial SMCs are central to aortic structure and function. SMCs im-
part stability to the aorta through their contractile properties, their abil-
ity to secrete and assemble ECM fibrils [6–8], and by the firm
attachments they form with each other and the ECM [9,10]. Inherently
abnormal SMCs can render the aortic wall susceptible to dilation and
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Individualswith a bicuspid aortic valve (BAV) are prone to develop-
ing ascending aortic aneurysms, which can catastrophically rup-
ture or dissect. The integrity of the aortic wall is determined in
large part by the actions of smoothmuscle cells (SMCs), including
their contractile and synthetic properties. SMC apoptosis and dif-
ferentiation defects have been identified in BAV aortas yet the
basis for the profound degenerative changes in the aortic wall re-
mains poorly understood.

Added value of this study

We discovered senescent SMCs in the media of dilated thoracic
aortas, and found a particular predisposition to SMC senescence
in BAV aortopathy. Moreover, we determined that these prema-
turely aged SMCs have a destructive senescence-associated se-
cretory phenotype (SASP). This SASP entails reduced expression
of fibrillar collagens and upregulated collagenases, including
membrane-localized MMP1. Associated with this was local colla-
gen fibril degradation within the aortic media. This senescent and
destructive cellular phenotype was particularly enriched at sites
of hemodynamic perturbation and is controlled by p38 MAPK.

Implications of all the available evidence

The presence of “seno-destructive”SMCs in the BAV aorticwall re-
veals amechanistic route to aortic degeneration in individuals with
BAV and opens a new, senescence-targeting framework for po-
tential therapy.
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dissection, a paradigm established by certain genetic and syndromic
aortopathies [11–13]. A role for dysfunctional SMC in BAV aortopathy
is less clear, although SMC abnormalities have been identified. This in-
cludes SMC apoptosis [14–16] which, if greater than SMC replication,
could lead to SMC loss. Defects in SMC differentiation and maturation
have also been reported in BAV aortopathy [17–21]. SMCs that are not
highly differentiated can promote ECM degradation through elabora-
tion of matrix metalloproteinases (MMPs), which have been identified
in the BAV aorta [17,22]. However, SMC apoptosis by itself is unlikely
to contribute to the ECM breakdown of aortopathy and less differenti-
ated SMCs can be fundamental to vascular repair. What determines a
destructive versus reparative SMC in the ascending aorta remains
unknown.

Another cellular fate that is known to compromise tissue health is
senescence. Cellular senescence is a state of essentially permanent cell
cycle arrest butwith ongoingmetabolic activity. Cells become senescent
in response to certain triggers, including unrepaired DNA damage and
burdens of oxidative stress [23]. Of particular importance to tissues
that accrue senescent cells is a transcriptionally-driven shift in the
secretome of these cells, referred to as the senescence-associated secre-
tory phenotype (SASP) [24,25]. The components of SASP can vary de-
pending on cell type and context [26], but altered MMP production is
a common feature [27]. Data on the extent and consequences of SMC se-
nescence in the vasculature is limited, particularly in humans. However
the propensity for human vascular SMCs to become senescent in culture
is well recognized [28], and senescent SMCs have been identified in ad-
vanced human atherosclerotic lesions [29]. Interestingly, SMCs cultured
from BAV ascending aortas have been reported to have shortened telo-
meres and increased transcript abundance of cell-cycle inhibitors
[30,31]. Whether overtly senescent SMCs exist within aneurysmal or
at-risk ascending aortas is unclear. Moreover, whether a senescent cell
in this context has consequences is unknown.

Herein, we report that senescent SMCs accumulate in aneurysmal
ascending aortas associated with bicuspid and tricuspid aortic valves.
Moreover, we identified a particular predisposition to SMC senescence
in BAV aortopathy, indicated by the presence of senescent SMCs in
non-aneurysmal BAV aortas, enrichment of cellular senescence at the
aortic convexity, and multivariable analysis of potential aneurysm risk
factors.We further show that senescent aortic SMCs have a pronounced
collagenolytic SASP, a destructive profile that is controlled by p38
MAPK. The findings identify a cellular aging cascade in human BAV dis-
ease and a “seno-destructive” SMC phenotype that may underlie the
aortic wall degeneration.

2. Materials and methods

2.1. Procurement of ascending aorta tissue

The study complies with the Declaration of Helsinki and was carried
out with approval of theWestern University Research Ethics Board. As-
cending aortic tissue was harvested from subjects with either bicuspid
or tricuspid aortic valves at the time of thoracic aorta replacement sur-
gery. Patients with genetic or syndromic aortopathy, including connec-
tive tissue disorders, were excluded. Ascending aortic tissue was also
harvested during elective coronary artery bypass surgery or at the
time of heart transplantation. Informed consent was obtained from all
subjects, with the exception of heart transplant donors and one heart
transplant recipient. In the latter instances, normally discarded tissue
with no patient identifiers was studied. These aortic samples were his-
tologically non-diseased. Aortic tissuewas categorized into four groups:
TAV-non-aneurysm (TAV-NA, n=15), BAV-non-aneurysm (BAV-NA, n
= 10), TAV-aneurysm (TAV-A, n = 14), BAV-aneurysm (BAV-A, n =
28). Aortic aneurysm was defined as having a body-surface area
(BSA)-normalized diameter of ≥2.1 cm/m2, based on published data
[32–35]. This thresholdwas refined for extremes of body size to account
for overcorrection [35]. For a BSA ≤1.5m2, aortaswere deemed aneurys-
mal if the BSA-normalized diameter was ≥2.1 cm/m2 and the absolute
diameter was ≥4.0 cm. For BSA ≥2.5 m2 the threshold was an absolute
diameter ≥ 4.5 cm2. For the 12 BAV-non-aneurysm aortas the indication
for aortic replacement was driven by the co-existing aortic valve/root
disease. In 22 instances, a full circumferential ring of aortic tissue was
harvested,with the convexity denotedwith an adventitial suture. Aortic
valve morphology was determined from the pre-operative echocardio-
gram and confirmed intraoperatively.

Tissues were divided so that a ~4.0 × 0.3 cm fragment was used for
SMC culture, a ~1.5 × 0.5 cm fragment was assessed immediately for
SA-ßGal activity, and the remaining and generally largest fragment
was fixed in 10% neutral buffered-formalin. The diameter of the ascend-
ing aorta at the level of the right pulmonary artery was measured from
the double-oblique short axis plane of 3D reconstructed, contrast-
enhanced multi-detector helical CT images. All procedures involving
human bio-specimens adhered to the BRISQ guidelines.

2.2. Senescence-associated ß-galactosidase activity in aortic tissue

Immediately upon harvesting, an aortic tissue fragment was incu-
bated in senescence-associated ß-galactosidase staining solution
(1 mg/ml 5-bromo-4-chloro-3-indolyl ß-D-Galactosidase (X-gal),
40mMcitric acid/sodiumphosphate (pH 6.0), 5mMpotassium ferrocy-
anide, 5 mM potassium ferricyanide, 150 mM sodium chloride, 2 mM
magnesium chloride) for 12 h at 37 °C. Tissues were washed twice
with PBS, fixed with 10% formalin for 4 h, and cryoprotected in 30% su-
crose overnight at 4 °C and embedded in OCT (Optical Cutting Temper-
ature, Tissue-Tek®). Cryosections were then immunostained for the
leukocyte cell surface marker, CD45 (see below), and non-leukocyte,
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SA-ßGal-positive cells in the section were counted and expressed as a
percentage of all SMCs.

2.3. Immunohistochemistry

OCT-embedded sections of X-gal-incubated tissues and formalin-
fixed, paraffin-embedded aortic tissue sections were immunostained
using mouse antibodies against human smooth muscle α-actin (M-
0851, 1:300, Agilent Technologies, Santa Clara, CA, USA, RRID: AB_
2223500) and p16Ink4a (sc-1661, 1:100; Santa Cruz Biotechnology, Mis-
sissauga, ON, Canada, RRID: AB_628067) and rabbit anti-human CD45
(ab10558, 1:500; Abcam, Toronto, ON, Canada, RRID: AB_442810) or
p21 (SC-756, 1:200, Santa Cruz Biotechnology, RRID: AB_2229243).
Bound primary antibodies were detected using horseradish
peroxidase-labeled sheep anti-mouse IgG antibody (NXA931, 1:200,
Sigma-Aldrich, Oakville, ON, Canada, RRID: AB_772209) or horseradish
peroxidase-labeled donkey anti-rabbit IgG (NA934V, 1:200, GE
Healthcare Life Sciences, Mississauga, ON, Canada, RRID: AB_772206).
Antibodies were visualized with ABC reagent and diaminobenzidine
(DAB, Vector Laboratories, Burlington, ON, Canada). Sections were
counterstained with Harris' hematoxylin. The proportion of immune-
positive cells were quantified from eight to ten evenly distributed re-
gions (x20 objective) from themiddle third of the aorticmedia. Sections
were also double-immunostained for SM-α-actin (ab5694, 1:300,
Abcam, RRID: AB_2223021) and p16Ink4a (F-12, Santa Cruz Biotechnol-
ogy), with bound primary antibodies detected with Alexa Fluor 488-
conjugated goat anti-rabbit (1:500, RRID: AB_143165) and Alexa Fluor
546-conjugated goat anti-mouse secondary antibodies (1:500,
ThermoFisher Scientific, Burlington, ON, Canada, RRID: AB_144695).
As well, sections were double-labeled with SM-α-actin (M-0851,
1:300, Agilent Technologies) and p21 (sc-756, 1:200, Santa Cruz Bio-
technology) and visualized with Alexa Fluor 488-conjugated goat anti-
mouse (1:500, ThermoFisher Scientific, RRID: AB_138404) and DyLight
549-conjugated goat anti-rabbit secondary antibodies (1:500, Vector
Laboratories, RRID: AB_2336407). Sections were imaged with a Leica
TCS SP8 confocal laser scanning microscope, 63× oil-immersion objec-
tive and Diode 405, OPSL 488, OPSL 552 and Diode 638 lasers to gener-
ate 0.9-μm-thick z-slices at a pixel resolution of 59 nm. Z-axis maximal
intensity projections were generated using LAS X software based on
image stacks with a z-step size of 0.3 μm and spanning a total of 3 μm.

To assess for DNA damage, sections were double-immunostained
using rabbit anti-human γH2AX (9718, 1:50, Cell Signaling, Danvers,
MA, USA, RRID: AB_2118009) and the proliferation marker, mouse
anti-human Ki67 (M-7240, 1:50, Agilent Technologies, RRID: AB_
2142367). Bound antibodies were detected using DyLight® 488-
conjugated goat anti-rabbit (1:100, Vector Laboratories, RRID: AB_
2336402) and Alexa Fluor 546-conjugated goat anti-mouse (1:100,
ThermoFisher Scientific) secondary antibodies, respectively. Sections
were mounted with DAPI-supplemented VECTASHIELD Mounting
Media (Vector Laboratories). Tissues were imaged using
epifluorescence microscopy (Olympus BX51, UPlan S Apo objectives,
cooled Retiga EXi Mono Fast 1394 camera (Q-imaging Inc.) or Leica
SP8 and 8–10 images/aorta captured usingNorthern Eclipse image anal-
ysis software. Cells with at least five, discrete γH2AX nuclear foci were
deemed positive for unrepaired DNA damage and the proportion of
γH2AX-positive/Ki67-negative nuclei was determined from a mini-
mumof 500 SMCs per tissue.Maximal intensity projectionswere gener-
ated from serial 0.3 μm-stacks spanning 5 μm.

In situ p38MAPK activitywas assessed by immunostaining for rabbit
anti-human phosphorylated p38 MAPK (T180/Y182; 8690, 1:100, Cell
Signaling, RRID: AB_10999090), visualized with goat anti-rabbit
DyLight® 594-conjugated secondary antibody (1:500, Vector Laborato-
ries, RRID: AB_2336413). The association of MMP1 and p16 expression
was assessed by double-immunolabelling, using mouse anti-human
p16 (F-12, 1:100) and rabbit anti-human MMP1 (ab52631, 1:50,
Abcam, RRID: AB_2144301), differentially visualized with secondary
antibodies against donkey anti-mouse conjugated to Alexa Fluor 488
(1:500, RRID: AB_141607) and donkey anti-rabbit conjugated to Alexa
Fluor 594 (1:1000, ThermoFisher Scientific, RRID: AB_141637), respec-
tively. Fluorescent intensity ofMMP1 signal within the aorticmediawas
quantified, with identical exposure times, as the mean intensity from
eight to twelve evenly distributed medial zones (x20 objective) using
ImageJ. To quantify the MMP1 signal intensity associated with individ-
ual SMCs, a rectangular field of view measuring 10 × 90 μm was
superimposed over each cell, centered over the nucleus. These dimen-
sions corresponded to the average aortic inter-lamellar distance (10.4
± 0.6 μm, n = 90) and the average of seven nuclear lengths (89.7 ±
1.1 μm, n = 90).

2.4. Aortic SMC isolation and culture

SMCswere cultured by outgrowth from explanted fragments of aor-
tic media. Endothelial cells were removed by scraping the luminal sur-
face with a scalpel blade and the adventitia and outermost media
peeled away with forceps and surgical scissors. The resulting fragment
was cut into ~1 × 1 mm pieces, placed on culture dishes pre-coated
with 0.4% gelatin, and incubated in M199 media supplemented with
10% fetal bovine serum (FBS, Invitrogen, Burlington, Canada). Cell pop-
ulation doubling rate was determined as previously reported [36].

SA-ßGal activity was assessed in SMCs fixed in 2% formaldehyde/
0.2% glutaraldehyde in PBS for 3 min and incubated with X-gal staining
solution, as above. Nuclei were stained with Hoechst 33258 (2.5 μg/ml)
and the proportion of SA-ßGal-positive cells was quantified from a total
of ~500 cells per patient sample or experimental condition.

p38 activity was inhibited by incubating cultures with SB203580
(Cell Signaling) at 10 μM daily. p38 expression was knocked down
using siRNA against p38 MAPK (50 nM, Ambion), delivered using
lipofectamine-assisted transfection (Lipofectamine® RNAiMAX,
Thermo Fisher). Negative Control siRNA #1 (50 nM, Applied
Biosystems) was similalrly delivered as control.

2.5. Real-time quantitative RT PCR

Total RNA was isolated from BAV and control SMCs with the Qiagen
RNeasy kit (Qiagen, Mississauga, ON, Canada). RNA concentration was
determined using a NanoDrop ND-1000 spectrophotometer (Thermo
Scientific, Mississauga, ON, Canada). Complementary DNA was synthe-
sized with Multiscribe Reverse Transcriptase (Applied Biosystems,
Streetsville, ON, Canada) and amplified through real-time RT PCR (ABI
7900HT Fast Real-Time PCR apparatus and Sequence Detection System
software). Primers for senescence marker genes and secreted gene
products were custom-designed (OriGene) and synthesized (Sigma)
(Supplemental Table S1). Quantification of relative mRNA abundance
based on critical threshold (CT)was assessed using 18 smRNAas the in-
ternal control.

2.6. Collagen fibril assessment by circular polarization microscopy

Paraffin-embedded sections were stained with picrosirius red
(Polysciences, Warrington, PA, USA) and collagen fibrils imaged by cir-
cular polarization microscopy, using an Olympus BX51 microscope
equipped with Olympus BX series circular polarizer/interference filters,
a liquid crystal compensator and CCD camera, and processing software
(Abrio LC-PolScope, Cambridge Research & Instrumentation, Woburn,
MA, USA). To assess for the integrity of collagen fibrils specifically
around senescent SMCs, we developed a strategy to immunostain sec-
tions for p16Ink4a and also stain for picrosirius red. Briefly, p16Ink4a im-
munoreactivity was developed using a black chromogen (Deep Space
Black chromogen kit, Biocare Medical, Pacheco, CA, USA) and nuclei
were lightly counterstained using celestine blue (Sigma-Aldrich)-alum
hematoxylin (Leica Biosystems, Concord, ON, Canada), followed by
picrosirius red staining. The resulting p16Ink4a and nuclear signals
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Table 1
Clinical characteristics of study subjects.

Characteristics TAV-NA BAV-NA TAV-A BAV-A

Number (female) 15 (5) 10 (2) 14 (6) 29 (5)
Age (y) 66 ±

23
47 ±
13b

69 ± 13 59 ± 15

Hypertension, n (%) 4 (40)a 2 (20) 10 (71) 18 (62)
Diabetes, n (%) 5 (50)a 2 (20) 2 (14) 2 (7)
Smoking, n (%) 4 (40)a 6 (60) 4 (29) 10 (35)
Aortic stenosis n (%) 0 (0)a 5 (50) 0 (0) 16 (55)
Aortic regurgitation 0 (0)a 5 (50) 4 (29) 17 (59)
Maximum Ascending Aorta Diameter
(cm)

3.2 ±
0.4

3.7 ±
0.4

5.3 ±
0.8c

5.1 ±
0.5c

Maximum Ascending Aorta Diameter
(cm/m2)

1.9 ±
0.3

1.9 ±
0.3

2.7 ±
0.4c

2.6 ±
0.3c

a n = 10.
b P = .049 vs TAV-NA.
c P b .0001 vs TAV-NA and BAV-NA.
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were thus both resistant to acidic condition of picrosirius red staining.
Fields containing p16Ink4a-positive SMCs were captured with bright-
field microscopy and correspondingly recaptured under circular polar-
ized light microscopy. To assess for collagen integrity associated with
each cell, 10 μm × 90 μm rectangular fields of view described above
were superimposed over each cell. The mean light retardation (nm)
by collagen fibrils associatedwith p16Ink4a -expressing SMCswas deter-
mined and expressed relative to that of non-senescent cells in the same
section.

2.7. Statistics

The target sample size was based on a preliminary study of p16Ink4a

immunoreactivity in 5 aortas from each group which yielded an esti-
mated effect size (expressed as the ratio of between-group to common
within-group standard deviation (SD)) of 0.83. This translated to a tar-
get sample size of 8 subjects per group, with a power of 95% and α of
0.05. Descriptive subject data are presented as mean ± standard devia-
tion (SD). Aortic tissue and cell culture data obtained for group compar-
isons are presented as mean ± standard error of the mean (SEM). All
data distributions were tested for normality using the D'Agostino and
Pearson omnibus normality test. Comparisons among normal distribu-
tions were made by t-test and among non-normal distributions by
Mann-Whitney U test. Non-normal distributions existed for p21-, SA-
ßGal- and phospho-p38 MAPK-positive SMCs in control aortas,
pericellular collagen birefringence in control aortas, and p16Ink4a and
p21 mRNA abundance in cultured SMCs. Comparisons between more
than two groups were undertaken using analysis of variance with
Bonferroni's post-hoc test (normal distributions) or Kruskal-Wallis
test with Dunn's post-hoc test (non-normal distributions). Transcript
expression differences between BAV and control SMCs were assessed
with P values adjusted for multiple testing using the Benjamini-
Hochberg procedure at false discovery rate of 0.05. To determine if bi-
cuspid aortic valve was an independent risk factor for SMC senescence,
we performedmultiple linear regressionwith adjustment for ascending
aortic diameter and age, for each of the measured senescence markers.
Linear regression analyses were used to assess relationships between
continuous variables. Statistical analyses were performed using Prism
7 (Graphpad Software) and SPSS 19 (IBM Corp., Armonk, New York).

3. Results

3.1. A proportion of medial SMCs in BAV and TAV adult aortas undergo pre-
mature senescence

Ascending aortic tissue from 68 subjects was harvested. Aortas were
categorized into four groups based on valve cuspidity and aortic dimen-
sions: TAV-non-aneurysm (TAV-NA, n = 15), BAV-non-aneurysm
(BAV-NA n = 10), TAV-aneurysm (TAV-A, n = 14), BAV-aneurysm
(BAV-A, n = 29). Clinical information for all subjects is presented in
Table 1 and Supplemental Tables S2-S5. To seek evidence for SMC se-
nescence, tissues were immunostained for p16Ink4a and p21, cyclin-
dependent kinase inhibitors (CDKI) that define the two core senescence
induction pathways [23,25]. Interestingly, this revealed scattered
immuno-positive SMCs in the media of TAV-NA aortas - 7.5 ± 1.1% for
p16Ink4a and 2.2 ± 0.6% for p21 (Fig. 1a,b). However, in BAV-NA aortas,
the proportion of 16Ink4a-positive SMCs was 3.2-fold greater (P =
.0009), and the proportion of p21-positive SMCs 10.9-fold greater (P b

.0001) (Fig. 1a-c). Aneurysmal aortas, either TAV-A or BAV-A, also had
abundant p16Ink4a-expressing and p21-expressing SMCs, significantly
more that in TAV-NA aortas (p b .01 or less) but on average not different
than in BAV-NA aortas (Fig. 1a-c). Double-labeling for p16Ink4a and SM-
α-actin and for p21 and SM-α-actin supported the identity of the CDKI-
positive cells as SMCs (Fig. 1d).

We also assayed fresh aortic tissue for SA-ßGal activity, a senescence
biomarker that reflects lysosomal expansion. There was no SA-ßGal
activity detected among CD45-negative medial cells in 10 of 13 TAV-
NA aortas, and fewer than 0.1% SA-ßGal-positive cells in the remaining
three aortas. However, there were SMCs with SA-ßGal activity in all
BAV-NA aortas (2.8 ± 0.8% of CD45-negative medial cells, P = .017)
(Fig. 1e,f). SA-ßGal activity was also prevalent in the media of TAV-A
aortas (5.2 ± 0.8%, P b .0001) and BAV-A aortas (5.8 ± 1.2%, P b

.0001) (Fig. 1e,f). Double-staining for SA-ßGal activity and p16Ink4a re-
vealed that almost all SA-ßGal-positive SMCs also expressed p16Ink4a.
In contrast, most p16Ink4a-expressing SMCs did not have demonstrable
SA-ßGal activity (Fig. 1e). Double-labeling for SA-ßGal activity and SM
α-actin confirmed the identity of SA-ßGal-positive cells as SMCs
(Fig. 1e).

These data reveal that senescent SMCs can be found in the media of
adult ascending thoracic aortic, and are particularly prevalent in aneu-
rysms and in BAV aortas that have not yet progressed to an aneurysmal
state. The multi-marker characterization and lower prevalence of SA-
ßGal-activity also suggests that aortic SMCs can exist within a spectrum
of senescence [37], with CDKI/SA-ßGal-double-positive SMCs likely
having a deeper level of senescence than the more prevalent CDKI-
single-positive SMCs.

3.2. SMCs in BAV aortas have an increased predisposition to senescence

The observation that non-aneurysmal BAV aortas contained SA-
ßGal-positive SMCs, and significantly more CDKI-expressing SMCs
than non-aneurysmal TAV aortas, suggested a predisposition to SMC se-
nescence in BAV disease. At the same time, SMC senescence was not
specific to BAV aortopathy. Therefore, to further assess if BAV disease,
per se, increased the likelihood of SMC senescence, we undertook mul-
tiple linear regressionmodeling. Specifically, for all 68 patients, the rela-
tionships between the prevalence of cellular senescence biomarkers
and patient age, aortic diameter, and valve cuspidity were modeled. In-
terestingly, this revealed that in this population patient age was not
found to be an independent predictor of SMC senescence. However, aor-
tic diameter independently associated with the abundance of p16Ink4a-
and SA-ßGal-positive SMCs (Table 2, Fig. 2a), and BAV disease indepen-
dently associated with the abundance of each of the three markers of
SMC senescence (Table 2). Because aortic stenosis has been associated
with short leukocyte telomeres [38], we also examined whether aortic
valve stenosis or regurgitation associated with aortic wall SMC senes-
cence. However, the prevalence of aortic wall SMC senescence among
patients with either aortic stenosis or aortic regurgitation (≥moderate)
did not differ from that in those without aortic valve dysfunction (p N

.10 for all three senescence biomarkers), suggesting that differences in
stenosis or regurgitation did not account for the heightened cellular se-
nescence in BAV aortas vs. TAV aortas. Together with the biomarker
staining data, these findings suggest a propensity to SMC senescence
in BAV disease, in addition to that imposed by aortic dilation itself.
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3.3. SMC senescence is enriched at the convexity of BAV-associated
ascending aortas

Fusion of the right and left coronary aortic cusps directs flow toward
the convex region of the ascending aorta, a zone that has been reported
to be preferentially damaged [2]. Among all BAV patients, 68% had fu-
sion of the right and left coronary cusps with a single raphe (Sievers
classification Type 1; L-R). Among 15 individuals inwhom a full circum-
ference aortic tissue was retrieved (n= 3 BAV-NA, n= 12 BAV-A), the
proportion of p16Ink4a-positive SMCs was 1.4-fold higher at the



Table 2
Association of senescence markers with cuspidity, patient age, and aortic diameter.

Senescence marker Independent variable Beta SE P

SA-ßGal BAV 2.302 1.001 0.026⁎

Age 0.032 0.030 0.289
Aortic diameter 0.441 0.101 b0.0001⁎

P16Ink4a BAV 8.259 2.981 0.008⁎

Age 0.065 0.089 0.474
Aortic diameter 0.914 0.302 0.003⁎

P21 BAV 7.040 3.379 0.042⁎

Age −0.043 0.100 0.630
Aortic diameter 0.344 0.342 0.318

SE, standard error
⁎ P b .05.
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convexity than the concavity (P = .039) and the proportion of p21-
positive SMCswas 1.3-fold higher (P= .002; Fig. 2b).We did not detect
spatial differences in SA-ßGal activity among BAV aortas, recognizing
however the comparatively low prevalence of SA-ßGal-positive SMCs.
No regional differences in the proportion of CDKI-positive SMCswas ev-
ident in those BAV aortas with other than R-L coronary cusp fusion (P=
.511, P= .212). Likewise, regionalization of senescence was not evident
in TAV aneurysms (P = .250, P = .563).
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3.4. SMCs in the BAV-associated aorta accumulate unrepaired double-
strand DNA breaks

Unrepaired double-strand DNA breaks are a driver of cellular senes-
cence [23]. To determine if damaged DNA could be detected in the as-
cending aorta, we double-immunostained for Ki67 and the double-
strand break signal, phosphorylated histone γ-H2AX. Interestingly,
this revealed DNAdamage foci in non-proliferating SMCswithin control
TAV-NA aortic tissue, with an average of 4.2 ± 1.0% of SMCs having
unrepaired DNA lesions (Fig. 3). However, the prevalence of DNA le-
sions in the each of three other groups was substantially higher - 3.7-
fold higher for BAV-NA aortas (P = .0002), 2.9-fold higher for TAV-A
aortas (P = .008), and 3.4-fold higher for BAV-A aortas (P b .0001,
Fig. 3a,b). The abundance of γH2AX-positive SMCs correlated with SA-
ßGal activity (r = 0.37, P = .005), p16Ink4a (r = 0.49, P b .0001) and
p21 (r = 0.61, P b .0001) (Fig. 3c).
3.5. Senescent aortic SMCs from patients with BAV have a collagen-
degrading secretory profile

Senescent cells have a distinct secretory phenotype (SASP) which
can extend the impact of senescence beyond the cell itself [24]. SASP
components differ among different cell types andmany are upregulated
transcriptionally [26]. To investigate the potential for senescent
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BAV-associated SMCs to impact their environment, we evaluated a
panel of transcripts encoding secreted gene products in SMCs harvested
from 10 BAV aortas (5 BAV-NA and 5 BAV-A). SMCs were subjected to
an additional 5 weeks of culture-induced aging which yielded 41 ±
5% SA-ßGal-positive SMCs. This did not differ between BAV-NA and
BAV-A SMCs. Given this, and the similar senescence profiles in situ,
BAV-NA SMCs and BAV A SMCs were considered as a single population.
Transcript abundance was compared to that of SMCs from four TAV-NA
aortas subjected to identical culture conditions. The latter SMCs
displayed more robust growth (50% shorter doubling time, P = .021)
and 48% fewer SA-ßGal-positive cells (P = .019).

Fig. 4 depicts hierarchically clustered mRNA expression data for 13
MMPs, four TIMPs, nine collagen α-chains, and six inflammatory cyto-
kines, with multiple-test corrected P values for all differences. Interest-
ingly, all three interstitial collagenases were upregulated in aged BAV
SMCs - MMP1 (10.2-fold), MMP8 (2.2-fold), and MMP13 (3.4-fold) -
with a trend to upregulated MMP2. In contrast, the stromelysins
MMP3, MMP10, andMMP11were down-regulated, as was the elastase,
MMP12. Transcript abundance of membrane-type MMPs (MMP14, 15,
16) was not different between SMC types. However, all four TIMPs
(TIMPs1–4) were significantly down-regulated, with TIMP1 decreased
by 94% in BAV aortic SMCs. As well, expression of COL1A1, COL1A2,
and COL3A1, which encode the main interstitial collagen α-chains
within human aorta, were all significantly decreased in aged BAV aortic
SMCs. COL12A1, which encodes the α-chain for the type I collagen-
interacting type XII collagen was also downregulated. TGF-ß1 abun-
dance was increased in the senescence-enriched BAV aortic SMCs how-
ever therewere no increases in TNF-α, IL-1ß, IL-6 orMIP1-α expression,
and MCP-1 expression was significantly lower.

Collectively, these data suggest that senescent BAV aorta SMCs are
programmed for depleting collagen fibrils, via a collagenolysis- and col-
lagen gene suppression-related SASP.

3.6. BAV-associated aortas contain senescent, MMP1-expressing SMCs

To determine if the collagen-degrading attribute of aged BAV aorta-
derived SMCs existed in the aortic wall, we immunostained human aor-
tic tissue for MMP1, the canonical fibrillar collagen-degrading enzyme
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in the vasculature. Control (TAV-NA) aortic tissues were found to have
weakMMP1 signal thatwas primarily cell-associated (Fig. 5a-c). In con-
trast, in either BAV-NA or BAV-A aortas, SMCs with pronounced MMP1
expression were evident. Particularly strong signal was evident at the
cell periphery, suggestingMMP1 localized at the cell surface (Fig. 5d-h).

To further assess the linkage betweenMMP1 and senescence, tissues
were double-labeled for MMP1 and p16Ink4a. This revealed intense
MMP1 signal associatedwith p16Ink4a-positive SMCs (Fig. 5f-h). Height-
enedMMP1 expression by senescent SMCswas particularly appreciable
in regions where p16Ink4a-positive SMCs were adjacent to p16Ink4a-
negative SMCs (Fig. 5h). Quantitation revealed a 1.7-fold greater
MMP1 signal in the media of BAV aortas than in control, TAV-A aortas
(P= .0009, Fig. 5i). Furthermore,within a given BAV aorta, the intensity
of cell-associated MMP1 signal in p16Ink4a-expressing SMCs was 2.5-
fold greater than that in p16Ink4a-negative SMCs (P b .0001, Fig. 5j).
3.7. Senescent SMCs in BAV aortas are surrounded by disrupted collagen
fibrils

To determine if the senescent SMCs were linked to aortic degenera-
tion, we examined the state of collagen fibrils using circular polarization
microscopy. This revealed that, in control TAV-NAaortas,fibrillar collagen
existed as concentric bands of birefringent fibrils on either side of each
elastic lamella (Fig. 6a). In BAV-NA and BAV-A aortas, these bands could
be discontinuous, thinner, and less birefringent. This disrupted collagen
pattern was particularly evident surrounding p16Ink4a-positive SMCs
(Fig. 6a,b). Overall, among 10 BAV aortas (2 BAV-NA, 8 BAV-A) there
was a 43% reduction in totalmedial collagen content and a 35% reduction
in collagen fibril retardation compared to TAV-A aortas (Fig. 6c,d).

Using a co-immuno-labeling and circular polarized light imaging
strategy, we also found that, within BAV aortas and on an individual
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cell basis, light retardation by those collagen fibrils closely adjacent to
p16Ink4a-positive SMCs was 43% lower than that around p16Ink4a-
negative cells (P b .0001). The pericellular collagen retardation around
p16Ink4a-positive SMCs in BAV NA/A aortas was 54% lower than that
around p16Ink4a-negative cells in TAV-NA aortas (P b .0001, Fig. 6e). Col-
lectively, these findings strongly suggest that senescent SMCs in BAV
aortas have degenerative consequences for collagen fibrils. In particular,
there is a subset of SMCs expressing both p16Ink4a and MMP1 that
have attributes of what we have termed a “seno-destructive” cell
phenotype.
3.8. p38 MAPK regulates the collagenolytic SASP in BAV SMCs

We next asked if acquiring this seno-destructive phenotype was
regulatable. p38MAPK is a stress-activated kinase that canmediate cel-
lular senescence [39]. As well, chronic, but not acute, activation of p38
MAPK has been identified as a driver of SASP in fibroblasts [40]. There-
fore, we assessed for sustained activation of p38 MAPK in human as-
cending aorta by immunostaining for the phosphorylated state. This
revealed discrete nuclear phospho-p38 MAPK signals in an unexpect-
edly high proportion of medial SMCs (14.0 ± 3.6%), but with 2.8-fold
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more SMCs in BAV-associated aortas with p38 MAPK activation (P b

.0001, Fig. 7a).
To determine if p38 MAPK signaling participated in induction of

aortopathy-derived SMC senescence, cells were incubatedwith the spe-
cific inhibitor, SB203580. This revealed 34% and 20% reductions in
p16Ink4a and p21 transcript abundance (P = .034, P = .038), and a
50% reduction in culture-induced SA-ßGal-positive SMCs (P = .0002)
(Fig. 7b). Introducing p38 siRNA into BAV aortic SMCs, which decreased
p38 transcript abundance by 86.2 ± 3.4% (vs 2.1 ± 0.7% for control
siRNA), also reduced p16Ink4a and p21 expression (by 20% and 23%, P
TAV-NAa

Vehicle SB

S
A

-ß
G

al
+
 S

M
C

s 
(%

)

0

20

40

60

80

100
b

p<0.001

Vehicle
0

0.2

5.0

0.4

0.6

4.0

R
el

at
iv

e 
p1

6 
ex

pr
es

si
on

p=

si-Ctrl

R
el

at
iv

e 
p1

6 
ex

pr
es

si
on

0

0.5

1.0

1.5

2.0 p=

MMP1 MMP8
0

2

4

6

8
d

Transcript 
*

*

S
A

-ß
G

al
+
 S

M
C

s 
(%

)

c

si-Ctrl si-p38
0

10

20

30

50

70
p<0.001

60

40

Fig. 7. Activation of p38 MAPK in medial SMCs in BAV aortas. (a) Fluorescence images of aort
counterstained with DAPI (blue) and data are shown on right. (b-c) Graphs depicting the
prevalence of SMCs with SA-ßGal activity and on transcript abundance of p16Ink4a and p21.
− 13 in culture-aged BAV SMCs. Dashed line represents the control SMC signals set at unity. *
= .004, P = .006) and the proportion of SA-ßGal-positive SMCs (by
49%, P = .003, Fig. 7c). Importantly, inhibiting p38 in culture-aged
BAV SMCs also blunted the up-regulation of MMP1 (by 47%) and
MMP13 (by 71%) and reversed the upregulation MMP8 (reduced to
27% of control) (Fig. 7d). Not all SASP changes were mitigated by p38
MAPK inhibition as COL1A1 expression was unchanged (p = .141)
and the downregulated COL3A1 was modestly reduced further (10%, p
= .007). Collectively, these findings implicate p38MAPK in the acquisi-
tion of senescence and the associated collagenolytic profile in BAV
aortopathy-associated SMCs.
R
el

at
iv

e 
p2

1 
ex

pr
es

si
on

si-Ctrl si-p38

R
el

at
iv

e 
p2

1 
ex

pr
es

si
on

0

1.0

2.0

3.0

4.0

Vehicle SB

p=0.038

p=0.006

BAV

SB

0.034

si-p38

0.004

0

10

20

30

40

50

*

TAV-NA BAV

p-
p3

8+  S
M

C
s 

(%
)

MMP13

Vehicle
SB203580

*

0

1.0

2.0

3.0

4.0

20 m

a sections immunostained for phosphorylated p38 MAPK (red nuclear foci). Nuclei were
effect of the p38 MAPK inhibitor, SB203580 (b) or siRNA against p38 MAPK (c) on the
(d) Graph depicting the effect of SB203580 on transcript abundance of MMP1, −8 and
P b .0001, n = 5.



65B. Balint et al. / EBioMedicine 43 (2019) 54–66
4. Discussion

Usingmultiple in situ readouts we have established that: 1) ascend-
ing aortic aneurysms associated with either a bicuspid or tricuspid aor-
tic valve contain senescent SMCs; 2) senescent SMCs are also in non-
aneurysmal aortas of individuals with BAV disease, suggesting a height-
ened proclivity to SMC senescence in this population; 3) SMCs with
unrepaired double-strand DNA breaks, a driver of senescence, are prev-
alent in ascending aortic disease; 4) senescent BAV SMCs have a hazard-
ous SASP profile characterized by interstitial collagen fiber degradation;
and 5) this collagenolytic phenotype is regulated by p38 MAPK signal-
ing. These findings uncover a seno-destructive cellular cascade in as-
cending aortic disease, including BAV aortopathy, that could underlie
its progression and the catastrophic complications.

Cellular senescence in aged tissues has the potential to be more de-
structive than apoptosis, the latter a SMC fate that has been recognized
in ascending aortopathy for over two decades [14–16]. Unlike apoptotic
cells, senescent cells can reside in tissues for extended periods, during
which time they can compromise the surrounding tissue via their
SASP. We found that, for aortopathy, the destructive potential of senes-
cent SMCs was directed, at least in part, toward fibrillar collagen, the
primary load-bearing element in the aorta. This senescence-collagen
axis was evident by: 1) suppressed expression of α-chains for types I
and III collagens, the dominant collagens in the aortic media [8,41];
2) heightened expression of those MMPs that can cleave triple helical
collagen; and 3) pronounced downregulation of all four TIMPs. The ob-
served trend toward upregulated MMP2 was also noteworthy given
that increased MMP2 has been documented in BAV aortas [17,22], as
has reduced TIMP1 [17,22].

In addition, we identified a population of senescent, p16Ink4a-
expressing SMCs within the BAV aorta wall that strongly expressed
MMP1. The MMP1 signal in these SMCs concentrated at the cell periph-
ery, likely reflecting plasma membrane association that has been docu-
mented in cultured SMCs [42,43]. An adverse impact of p16Ink4a-MMP1-
double expressing cells on aortic integrity was further supported by the
finding of reduced content and birefringence of collagen fibrils adjacent
to these cells. Accordingly, we propose that p16Ink4a-MMP1 double-
expressing SMCs constitute hubs of degenerative activity within the as-
cending aorta of individuals with BAV.

That senescent SMCswere found in non-aneurysmal BAV aortas, and
the multivariable statistical support for an independent association of
BAV with SMC senescence, strongly suggest a predisposition of BAV
SMCs for premature senescence. This is consistent with a reported pro-
clivity of BAV SMCs for maladaptive behavior [19]. Importantly how-
ever, our findings indicate that senescence is not exclusive to BAV
aneurysms. This is in keepingwith a report of progerin being expressed
in aneurysmal TAV aortas [18]. It is also interesting that, in BAV disease,
reduced SMC differentiation and maturity have been reported [18–21]
but aortic aging, a seemingly opposite paradigm, has also beenproposed
[31,44]. We propose that these paradigms are not mutually exclusive.
Indeed, our discovery of seno-destructive SMCs in the aortic media is
compatiblewith both scenarios, given that cellular senescence could de-
velop from replicative stresses incurred by immature SMCs, as well as
from the accumulation of oxidative and hemodynamic stresses [25]. Im-
portantly, although our studies do not prove causality, the relationship
we found between SMC senescence and aortic diameter, and the tight
spatial associations among senescent SMCs, MMP1 expression, and col-
lagen fibril attenuation, implicate SMC senescence as a determinant of
the aneurysmal process itself. We propose that seno-destructive SMCs
may be an early event in BAV aortopathy and also one that is exacer-
bated over time, in a self-perpetuating cycle of dilation and further
senescence.

SMCs normally have a strong capacity to repair double strand DNA
damage. The unrepaired SMCDNA lesions we observed in diseased aor-
tas, including non-aneurysmal BAV aortas, thus indicate a vulnerability
and an upstream driver of senescence. The reasons for accumulated
DNA damage signals are unknown, but it is possible that the hemody-
namic disturbance arising from the BAV either directly or indirectly
plays a role [45]. Such a hemodynamic linkagewas supported by the ob-
served enrichment of senescent SMCs in the aortic convexity, a region
where disordered flow is concentrated [3]. We also recently identified
that NAD+ metabolism is perturbed in SMCs of the dilated ascending
aorta, with an associated failure to repair damaged DNA [46]. We spec-
ulate that BAV aortic SMCs that are unable to effectively repair damaged
DNA enter a state of senescence as a protective strategy, but that this
comes at the cost of degrading the ECM through the SASP.

Fibrillar collagens are critical to the structural integrity of the aortic
media, making the collagen depletion components of the SMC SASP
noteworthy. However other SASP products might also contribute to
aortopathy progression. For example, inhibition of stem cell-based cel-
lular repopulation is a SASP phenomenon reported in tumors [47] and
assessing the interplay between cellular senescence and cellular regen-
eration in the diseased aorta is warranted. Interestingly, the lack of up-
regulation of genes for the inflammatory cytokines/chemokines TNF-α,
IL-1ß, IL-6 andMIP1-α in senescent BAV SMCs, relative to control SMCs
under the same conditions, is consistent with the non-inflammatory
medial destruction of BAV aortopathy. It is thus conceivable that SMC
senescence, at least in part,may explain the paradox of proteolytic dam-
age to the aortic media with little inflammatory cell infiltrate.

We have identified sustained activation of p38MAPK as a previously
unrecognized signaling event in BAV aortopathy. Sustained activation of
p38MAPK is distinct from themorewidely studied acute p38MAPK re-
sponse to stress, and has been identified as a driver of SASP in a number
of cell types [39,40]. It is noteworthy therefore that expression of key
collagenolytic components of the SASP profile were controlled by p38
MAPK. This finding also raises the potential for therapeutically targeting
processes in the vulnerable aorta. Inhibitors of p38 MAPK are currently
under investigation for therapy of a number of chronic diseases [48]. In
addition, a paradigm of selective clearing of senescent cells, so-called
senolytic therapy, has been proposed as a treatment strategy for
aging-related diseases [49], with recent proof-of-principle human data
[50]. It is interesting to consider BAV aortopathy as a potential context
for senescence-targeted therapy.

In summary, we have discovered that senescent SMCs accumulate in
the dilated ascending aorta of patientswith BAV and TAV, and that there
is a senescence predisposition in BAV aortopathy. The SASP of these pre-
maturely aged SMCs imparts a strong collagen-depletion profile, a de-
structive phenotype driven by sustained activation of p38. These
findings open new perspectives for managing thoracic aortopathy, in-
cluding that of BAV disease.
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