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Previously, we screened 38 inbred mouse strains for susceptibility to monkeypox virus (MPXV) and
focused on wild-derived CAST mice because of their extreme vulnerability. Here, we provide further
analysis of inbred mouse strains. NZW/Lac and C58 mice exhibited more weight loss than other classical
inbred strains but all survived intranasal challenges with 10* to10° PFU of MPXV. Mice from three wild
derived strains, in addition to CAST, exhibited severe weight loss and died or were euthanized. LDsq
values for CASA, MOLF and PERA were 100, 6800 and > 10° PFU, respectively. CASA was inbred

Keywprds: independently from the same founders as CAST, whereas MOLF and PERA are genetically and
Poxvirus geographically distinct. The MPXV susceptibility of the F1 progeny of CAST and either C57BL/6 or
\S/?ifj;:cg:nt BALB/c indicated that resistance is dominant. Back-crossing the F1 progeny of C57BL/6 and CAST to CAST

Pathogenesis suggested more than one independent resistant locus.

Published by Elsevier Inc.

Introduction

Monkeypox virus (MPXV) is the most severe poxvirus infection
of humans, excluding variola virus, and has been designated as a
Select Agent by the United States government because of the
potential to exploit MPXV for bioterrorism. MPXV primarily infects
rodents in Africa but can be transmitted to other animals as well as
humans. Human monkeypox clinically resembles smallpox except
for lower mortality and fewer human-to-human transmissions
(McCollum and Damon, 2014; Parker et al., 2007). A virulent strain
of MPXV is prevalent in the rain forests of central Africa, particu-
larly in the Democratic Republic of the Congo, whereas a milder
strain is present in West Africa. The latter was imported to the
United States with infected dormice, rope squirrels and giant
pouched rats in 2003 and spread to closely housed North Amer-
ican prairie dogs and ultimately to humans, resulting in 47
laboratory confirmed and additional clinically diagnosed human
cases (Hutson et al., 2007; Reynolds and Damon, 2012). The ability
to infect prairie dogs and other wild rodents and the occurrence of
sporadic human MPXV infections in countries neighboring the
Democratic Republic of the Congo, contribute to concerns that
monkeypox may be an emerging disease.

Several small animal models including the American black-tailed
prairie dog, the thirteen-lined ground squirrel, and the African
dormouse have been used for studies of MPXV pathogenicity,
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antivirals and vaccines (Hutson and Damon, 2010; Parker and
Buller, 2013). However, except for the African dormouse these
animals are not readily raised in captivity and there are no
commercial sources of the latter. Moreover, immunological reagents
are not available for these rodents. Although the commonly used
classical inbred mouse strains are relatively resistant to MPXV, a few
wild-derived inbred strains are susceptible (Americo et al., 2010) and
one of these, the CAST/Ei] mouse, has been further studied (Americo
et al., 2014; Earl et al,, 2012). The susceptibility to MPXV varied by
age and route and was greater by the intraperitoneal route
(LDso=14 PFU) compared to the intranasal route (LDso=680 PFU)
for 6-week old female mice (Americo et al., 2010). Scarification and
footpad inoculation only caused local lesions. The low interferon y
response of CAST mice to infection with MPXV and the protection
afforded by exogenous interferon y may be clues to the nature of
their susceptibility (Earl et al., 2012). Moreover, the sensitivity of
CAST mice extends to other orthopoxviruses including vaccinia virus
and cowpox virus (Americo et al., 2014). The primary purpose of the
present study was to analyze the susceptibility to MPXV of mouse
strains that showed less severe symptoms than CAST mice in the
initial screen and to gain insight into the genetics of resistance by
cross breeding sensitive and resistant strains.

Results
Resistance of classical inbred mouse strains to MPXV

We previously screened 38 mouse strains, of which 32 were
classically inbred, from the Jackson Laboratory Phenome Project
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for sensitivity to an intranasal (i.n.) dose of 2 x 10* PFU of the
virulent MPXV-Z79-CB2 virus (Americo et al., 2010). NZW/LacJ and
C58/] exhibited an average maximum 14% weight loss, which was
greater than any of the other classical inbred strains. In that
screen, C57BL/6] mice lost 4% of their weight and BALB/c] mice
lost no weight. The resistance of BALB/c mice was confirmed by
the absence of mortality after infection with doses up to 107 PFU.
We considered, however, that NZW/Lac and C58 mice might be
more susceptible to MPXV at higher doses than the 2 x 10* PFU
used in the screen. To further evaluate their susceptibility, NZW/
Lac and C58 mice were infected with several doses of MPXV. The
animals were monitored for signs of disease including hunched
posture, ruffled fur, and lethargy for up to 18 days. Weight loss was
recorded daily and is shown as percent of the pre-infection weight
(Fig. 1A and B). Both strains infected with 10 PFU displayed signs
of disease including maximal weight loss of 20-23%. Loss of
weight was first observed between days 3-5 post-infection and
continued until days 6-10, after which animals showed improved
health, increased weight and recovery from disease. As reported in
the original screen (Americo et al., 2010), both NZW/Lac and C58
mice (Fig. 1A and B) exhibited greater weight loss than C57BL/6
(Fig. 2A,B and C). With the 10° PFU dose, the difference in weight
loss of NZW/Lac mice relative to C57BL/6 was highly significant
(p < 0.004) each day from 8 onwards; for C58 mice the difference
from C57BL/6 was significant each day from 4 through 12
(p=0.001-0.04). With all three strains, weight loss was delayed
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and less severe at 10° PFU than at the higher dose and at 10* PFU
there was only minor weight loss and minimal disease. In
summary, no deaths were observed in any of the classical inbred
strains even with an inoculum of 10° PFU, indicating a high degree
of resistance to MPXV.

Susceptibility of wild-derived strains of mice to MPXV

In our initial multi-strain screen (Americo et al., 2010), three
wild-derived strains showed signs of morbidity and mortality at
the input dose of 2 x 10% PFU. CAST, MOLF/Ei] and PERA/Ei] mice
exhibited greater than 20% weight loss and 100%, 75%, and 40%
died or were euthanized, respectively. The sensitivity of CAST mice
was further investigated and an LDso of 680 PFU was determined
(Americo et al., 2010). To more closely analyze the susceptibility of
the MOLF, and PERA mice, we infected them i.n. with doses of
MPXV ranging from 10® to 10° PFU. We also challenged CASA/RK]
mice, which were inbred independently from the same founder
mice used to derive CAST mice, with 10? to 10° PFU of MPXV. The
CASA mice lost substantial weight even at the lowest dose of
102 PFU (Fig. 1C), whereas MOLF (Fig. 1D) and PERA (Fig. 1E) mice
lost substantial weight with 10° and 10% PFU but had only mild
weight loss at 10® PFU. All CASA mice died or were euthanized
after infection with 10® PFU or more (Fig. 1F) and a substantial
number of MOLF mice succumbed at doses of 10 PFU (Fig. 1G) or
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Fig. 1. Weight loss and survival of classical and wild derived inbred mouse strains infected i.n. with MPXV. Weight loss of groups (n=5) of female NZW/lac (A) and C58
(B) classical inbred mice infected with 10-10° PFU of MPXV are shown. Weight loss and survival of groups (n=3-5) of female CASA (C, F), MOLF (D, G) and PERA (E, H) wild-
derived inbred mice infected with 10~10° PFU of MPX are shown. Doses of MPXV are indicated by color.
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Fig. 2. MPXV infection of the F1 generation of CAST mice crossed with C57BL/6 or BALB/c mice. Percent of starting weight (A, C and E) and survival (B, D and F) of parental
CAST and C57BL/6 and F1 progeny infected i.n. with MPXV. BALB/c: 10° (n=>5 male, 5 female), 10° (n=4 male, 4 female), 10* PFU (n=5 male, 5 female). CAST: 10° PFU (n=4
male), 10° PFU (n=4 male), 10* PFU (n=5 male). F1: 10° PFU (n=3 male, 3 female); 10° PFU (n=3 male, 3 female); 10* PFU (n=3 male, 3 female). Percent of starting weight
(G) and survival (H) of parental CAST and BALB/c and F1 progeny infected i.n with MPXV. BALB/c: 10° PFU (n=5 female). CAST: 10° PFU (n=4 female). F1: 10° PFU (n=2 male,

4 female), 10° PFU (n=2 male, 3 female). Mouse strains are color-coded.

more, whereas only 1 PERA mouse succumbed at 10° PFU (Fig. 1H).
Based on these data, the LDsq values for CASA, MOLF and PERA
were 100, 6,800 and > 100,000 PFU, respectively. The LDsy of
CASA was slightly lower than that previously determined for the
closely related CAST strain (Americo et al., 2010). However, we
continue to use CAST mice because of their greater availability
than CASA.

Evidence for dominance of resistance over sensitivity to MPXV

In order to determine whether resistance of C57BL/6 mice to
MPXV is a dominant or recessive trait, C57BL/6 female mice were
crossed with CAST mice to produce F1 progeny. Groups of F1 mice
(3 male and 3 female) as well as parental C57BL/6 and CAST mice
were infected i.n. with 104 10°, or 10° PFU of MPXV. As shown in
Fig. 2A-F, weight loss and survival of the F1 mice were indis-
tinguishable from that of the resistant C57BL/6 parent regardless
of sex. In the same experiment, parental CAST mice suffered severe
weight loss and succumbed by day 10 post-infection with survival
of only one mouse at the lowest dose (Fig. 2A-F). We also
compared the F1 progeny with parental C57BL/6 and CAST mice
infected with 10® PFU by the intraperitoneal route. Again, the F1
progeny were resistant to MPXV compared to CAST mice (data not

shown). Thus, resistance to MPXV is a dominant characteristic of
C57BL/6.

We also crossed female BALB/c mice with male CAST mice and
infected the F1 progeny as well as the parental strains with 10° or
10° PFU of MPXV. The F1 progeny survived; whereas all CAST mice
succumbed by day seven (Fig. 2G and H) indicating that resistance
is dominant. However, at 10° PFU the F1 mice lost more weight
than the parental BALB/c mice (p=0.03 to 0.004 from days
9 through 12) (Fig. 2G).

Evidence for multiple resistance loci to MPXV in C57BL/6 mice

To investigate whether dominance is due to more than a single
genetic locus, the female F1 generation of parental C57BL/6 and
CAST mice were backcrossed with male CAST mice. Nineteen
progeny, 8 males and 11 females, were infected with 2 x 10* PFU
of MPXV. Heterogeneity of weight loss was observed ranging from
minimal C57BL/6-like to severe CAST-like for both male (Fig. 3A)
and female (Fig. 3B) backcross mice. All 11 female backcross mice
survived, whereas 3 of 8 male backcross mice (38%) did not
(Fig. 3C). If resistance of C57BL/6 mice were determined by a
single genetic locus, then 50% of the backcross progeny would be
fully resistant and 50% fully sensitive. If resistance were deter-
mined by two independent loci, then 75% of the backcross progeny
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Fig. 3. MPXV infection of progeny from backcross of the F1 generation of parental
CAST and C57BL/6 mice with CAST mice. Mice were infected i.n. with 2 x 10* PFU of
MPXV. (A) Weight loss of male backcross progeny (n=8). (B) Weight loss of female
backcross progeny (n=11). (C) Percent survival of mice. Mice strains are color
coded according to key.

should be resistant and 25% sensitive. The survival of all female
backcross mice strongly suggests multiple loci. A large number of
backcross mice would be needed for single nucleotide polymorph-
ism (SNP) analysis to identify resistant loci and evaluate the
apparently greater sensitivity of male compared to female
backcross mice.

Discussion

Common classical inbred mice have mosaic genomes derived
predominantly from the Western European Mus musculus domes-
ticus with additional sequences mainly from the Japanese M. m.
molossinus and exhibit limited diversity (Takada et al., 2013). Our
previous (Americo et al., 2010) and present data demonstrating
the relative resistance to MPXV infection displayed by more than
30 classical inbred strains, likely represent conserved genetic
sequences. The two most sensitive classical inbred strains of 32
tested are NZW/Lac and C58, although all survived doses up to
10° PFU. In contrast, we found that genetically diverse wild-
derived strains exhibit a broad range of susceptibilities to MPXV.
CAST and CASA are the most sensitive with LDsq of less than 103,
MOLF has intermediate sensitivity with a LDsq of less than 10* and
PERA has a LDs of greater than 10°. CAST and CASA are species of
M.m. castaneus that were derived from a small population of
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founder mice originally trapped in a grain storage facility in
Thailand (JAX®™ NOTES Issue 456, Winter 1994). However, as CAST
and CASA mice were inbred separately in different laboratories,
the founder mice may also have been susceptible to MPXV. MOLF
is an inbred species of M. m. molossinus that was derived from
mice trapped in Japan and PERA is an inbred species of M. m.
domesticus trapped in Peru. Not all wild-derived mice are highly
susceptible to MPXV; however, since in our initial screen we found
that SPRET/EiJ and CZECHII/EIJ lost no weight at all after infection
with 2 x 10* PFU and PWK/Ph] lost less than 8%.

Crossbreeding of CAST with C57BL/6 and with BALB/c was
carried out to investigate whether resistance or sensitivity to
MPXV was dominant. In both cases the F1 progeny were relatively
resistant to MPXV. Based on the number of survivors, a backcross
of F1 females derived from CAST X C57BL/6 with male CAST mice
indicated the likely presence of more than one resistance locus.
However, there was a sex difference: 3 of 8 male backcross mice
succumbed whereas the 11 female backcross mice survived.
A much larger number of backcross mice than the 19 used here
would be necessary to confidently map resistant loci by SNIP
analysis. We also challenged the F1 generation between a cross of
CAST and MOLF mice and found that they were more resistant to
MPXV than the CAST parent (our unpublished data).

There is evidence from serial backcross experiments that
multiple genes contribute to the resistance of C57BL/6 mice to
ectromelia virus (Browstein et al., 1992). However, unlike MPXV,
ectromelia is pathogenic in many classical inbred mouse strains.
Increased severity of male compared to female mice has also been
reported for infection of inbred mice with ectromelia virus
(Browstein et al., 1992; Wallace et al., 1985). The Collaborative
Cross panel (Threadgill and Churchill, 2012), which was derived by
interbreeding eight different mouse strains, could provide an
alternative method of mapping MPXV-resistance loci. Although
the CAST mouse was included among the founders, the other
seven strains in the panel all exhibit resistance to MPXV, possibly
making it difficult to identify individual resistance genes.

For several reasons, we believe that the greater sensitivity of
CAST mice compared to classical inbred strains is due to an
inadequate immune response. Lung titers of MPXV in BALB/c mice
following i.n. infection approach that of CAST mice but, in contrast
to CAST mice, the virus is rapidly cleared. BALB/c mice make a
more rapid and greater interferon y response than CAST mice (Earl
et al, 2014; Earl et al, 2012). In addition, interferon y- and
interferon y receptor-knock-out C57BL/6 mice are less resistant
to MPXV than parental C57BL/6 mice and exogenous interferon y
protects CAST mice against MPXV infection (Earl et al., 2012). The
transcription factor STAT1 is involved in up regulating host
response gene expression due to signaling by types I, II or III
interferons and STAT1-deficient mice are even more susceptible to
MPXV than interferon y- and interferon y receptor-deficient mice
(Stabenow et al., 2010).

Materials and methods
Cells and Viruses

BS-C-1 cells were maintained at 37 °C and 5% CO, in modified
Eagle minimal essential medium (EMEM; Quality Biologicals, Inc.,
Gaithersburg, MD) supplemented with 8% heat-inactivated fetal
bovine serum, 2 mM t-glutamine, 10 U of penicillin/ml, and 10 pg
of streptomycin/ml. MPXV-Z79-CB2 (Americo, 2010), a clonal
isolate derived from MPXV-Z79-005, was used in all experiments.
Purified virus was prepared as described previously (Americo
et al,, 2010).
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Mice

The following inbred mouse strains were obtained from Jackson
Laboratories (Bar Harbor, ME): C57BL/6], CAST/Ei], MOLF/EiJ, C58/],
NZW/LacJ, CASA/RK], and F1 and back-cross progeny. BALB/c mice
were obtained from Taconic Biotechnology, Germantown, NY). Mice
were maintained in small, ventilated microisolator cages.

Inoculation of mice

Animal experiments were performed in an ABSL-3 facility with
approval of the NIAID Animal Care and Use Committee and the
Centers for Disease Control. On the day of infection, MPXV was
thawed, sonicated, and diluted in phosphate buffered saline
containing 0.05% bovine serum albumin. The titer of each dose
was verified by plaque assay on BS-C-1 cells. Infections were
performed by instillation of 10 pl of virus into one nostril. All wild-
derived mice and progeny of wild-derived mice were lightly
anaesthetized with isoflurane prior to infection. Mock-infected
animals were inoculated with an equivalent volume of diluent.
Animals were observed and weighed daily for up to 18 days.
Animals that lost 30% of their starting weight were humanely
euthanized in accordance with NIAID Animal Care and Use
Guidelines
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