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Optimal recovery of immune competence after periods of hematopoietic insults or stress
is crucial to re-establish patient response to vaccines, pathogens and tumor antigens.
This is particularly relevant for patients receiving high doses of chemotherapy or
radiotherapy, who experience prolonged periods of lymphopenia, which can be
associated with an increased risk of infections, malignant relapse, and adverse clinical
outcome. While the thymus represents the primary organ responsible for the generation of
a diverse pool of T cells, its function is profoundly impaired by a range of acute insults
(including those caused by cytoreductive chemo/radiation therapy, infections and graft-
versus-host disease) and by the chronic physiological deterioration associated with aging.
Impaired thymic function increases the risk of infections and tumor antigen escape due to
a restriction in T-cell receptor diversity and suboptimal immune response. Therapeutic
approaches that can promote the renewal of the thymus have the potential to restore
immune competence in patients. Previous work has documented the importance of the
crosstalk between thymocytes and thymic epithelial cells in establishing correct
architecture and function of thymic epithelium. This crosstalk is relevant not only during
thymus organogenesis, but also to promote the recovery of its function after injuries. In this
review, we will analyze the signals involved in the crosstalk between TECs and
hematopoietic cells. We will focus in particular on how signals from T-cells can regulate
TEC function and discuss the relevance of these pathways in restoring thymic function
and T-cell immunity in experimental models, as well as in the clinical setting.
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INTRODUCTION

Optimal immune recovery after periods of hematopoietic insults is key to reestablish patient
immune competence and sustain response to vaccines, pathogens and tumor antigens. This is
particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, for instance,
associated with the conditioning regimen employed in preparation to hematopoietic cell
org June 2022 | Volume 13 | Article 9203061
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transplantation (HCT). These patients experience profound and
prolonged periods of lymphopenia, which can be associated with
an increased risk of developing life-threatening infections and, in
cancer patients, tumor relapse. In fact, infections and relapse
have been inversely correlated with the degree of immune
reconstitution and account for greater than 50% of mortality
after allogenic HCT (allo-HCT) (1–5).

The thymus represents the primary organ responsible for the
maturation and differentiation of a broad pool of naïve T cells
capable of recognizing an extremely large array of pathogens and
tumor antigens. The process of T-cell development involves the
migration of bone marrow-derived T-cell progenitors through the
thymus and requires physical contact between developing
thymocytes and the supporting thymic stromal microenvironment
which consists of thymic epithelial cells (TECs), macrophages,
endothelial cells (ECs), fibroblasts and dendritic cells (DCs) (6–8).
Multiple developmental pathways, including Notch, Sonic
Hedgehog, and WNT coordinate this complex hierarchical
process (9–12). Despite its crucial role in generating T cells,
thymic function may be profoundly impaired by acute insults,
such as that caused by infections, stress, chemotherapy and
radiotherapy. Delayed or defective recovery of thymic function
has been associated with adverse clinical outcomes in patients
receiving allo-HCT (13–18). Thymic function progressively
declines with age, a well-known physiological process known as
thymic involution (19). Age-associated thymic involution limits the
recovery of thymic function after acute insults and significantly
contributes to the decline of T-cell receptor (TCR) diversity in older
individuals (20, 21). As a direct consequence, older patients are
more prone to bacterial and viral infections and, possibly, to tumor
antigen escape. The identification of clinical strategies that can
restore thymic function and enhance immune reconstitution
represent a major clinical need.

Through the mechanistic understanding of the molecules and
pathways driving the maintenance of thymic function and its
recovery after insults, several potential regenerative targets have
been identified. They include growth factors (such as bone
morphogenetic protein 4, stem cell factor, kit ligand and
keratinocyte growth factor), the modulation of hormones (such
as the inhibition of sex steroids and the use of growth hormone,
insulin-like growth factor-1 and ghrelin), cytokines (such as
interleukin (IL)-7, IL-12 and IL-21), chemokines (such as
CXCL12/CXCR4) and the adoptive transfer of preformed T-cell
progenitors, as well as ex vivo expanded thymus-derived
endothelial cells (22). However, at present, none of these
approaches is approved as a standard therapy to enhance
thymic function and immune reconstitution.
THYMIC CROSSTALK REGULATES
TISSUE MAINTENANCE AND ITS
REGENERATION

Thymic crosstalk, a set of reciprocal regulations between
thymocytes and the thymic environment, is critical to
Frontiers in Immunology | www.frontiersin.org 2
orchestrate thymocyte and TEC development, as well as to
start thymic recovery after periods of stress or immunological
injuries (23). Thymic epithelium represents a predominant
stromal cell population within the thymus, which is classically
divided into two subsets based on their spatial distribution and
specialized function: cortical TECs (cTECs) and medullary TECs
(mTECs) are responsible for positive and negative selection of
thymocytes, respectively (10).

cTECs are critical for fate commitment, expansion, and
positive selection of the developing thymocytes. On the other
hand, mTECs are involved in the negative selection and
maturation of thymocytes (2–4). mTECs can be further
divided based on the expression of MHCII and additional
molecules, such as CD40 and CD80/86. Within thymic
microenvironment, while innate lymphoid cells (ILCs),
endothelial cells and fibroblasts are mostly resistant to damage
(24–26), thymic epithelium is particularly sensitive to the effects
of chemotherapy and radiotherapy, with the MHCIIhigh mTEC
subset representing the population most sensitive to insults,
likely due to the high proliferative rate of these cells (27, 28).

TECs play a fundamental role in the development and
selection of T cells providing key thymopoietic signals,
including Interleukin-7 (IL-7), Notch-ligand Delta Like 1 and
4, as well as self-peptide–MHC complex. On the other hand, the
maturation and maintenance of TECs is closely dependent on
instructive signals provided by the bone marrow-derived
lymphoid component. Indeed, thymocyte-derived signals are
indispensable for the appropriate development and spatial
organization of cTEC and mTEC subsets during late fetal
development and adult life as revealed through the use of
different genetic mouse models (29–31). Tcra KO and Zeta-
chain-associated protein kinase 70 (Zap70) KO mice, in which
thymocyte development is blocked at the double positive (DP)
stage, showed severely impaired thymic medulla organization
(32, 33). Similarly, Recombination activating gene (Rag)1 KO and
Rag2 KO mice, in which thymocyte development is arrested at
the double negative (DN) 3 stage, showed impaired medulla
formation. Transgenic mice expressing high copies of the human
CD3 epsilon molecule, which display a block at the DN1 stage of
differentiation, showed impaired cortical thymic function and
disrupted thymic architecture (34, 35). Importantly,
transplantation of T-cell depleted bone marrow cells in severe
combined immunodeficiency (SCID) mice, restored thymic
architecture organization (36). In addition, the transfer of
mature T cells into SCID mice promoted the recovery of the
medullary epithelial structure, providing evidence that the
regenerative signals on thymic epithelium can be instructed by
both progenitor and mature T cells (37).

Interestingly, data suggesting that the infusion of mature T
cells can boost thymic and immune recovery come also from
clinical studies in which patients received allo-HCT followed by
the adoptive transfer of donor T cells. Vago et al. demonstrated
that the transfer of donor T cells genetically engineered to
express the Herpes Simplex Virus thymidine kinase suicide
gene (a safety switch system to be activated in case of graft-
versus-host disease, GvHD) induced improved thymic function,
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as demonstrated by increased levels of T-cell receptor excision
circles (TRECs) and recent thymic emigrants (RTEs) (38). Using
chest tomography scans, this study also demonstrated that
patients infused with modified T cells showed enlargement of
active thymic tissue when compared to pre-transplant levels (38).
In addition, recent observations collected at our center suggested
that patients receiving donor T-cells genetically modified with
the inducible Caspase 9 suicide gene showed rapid recovery of
thymic function evaluated by the quantification of TRECs in
patient peripheral blood (39). Data on enhanced immune
recovery after the infusion of mature T-cells in patients, come
also from studies in which the adoptive transfer of virus-specific
T-cells generated a broad enhancement of the T-cell immunity
(40, 41). The beneficial effect of the infused mature T cells on
thymic function is likely to be transient in nature, but sufficient
to provide regenerative signals, which result in faster recovery of
thymic structure and accelerated immune reconstitution post
damage. Nevertheless, it remains to be explored the long term
persistence of these effects. The characterization of the
underlying mechanisms of such effects could be of valuable
importance to reveal pathways crucial for the regeneration of
the human thymus that can be exploited to develop immune
boosting therapies.
REGENERATIVE PATHWAYS

In this review, we will analyze the signals involved in the
crosstalk between TECs and T-cells, looking beyond the
process of thymocyte maturation and exploring how signals
from T cells can regulate TEC function (Figure 1). Although
several pathways (including Notch and Hedgehog) are known to
have pivotal roles in T-cell and TEC development, we will
highlight crosstalk signals described to regulate thymic
function and T-cell immunity postnatally in experimental
models, as well as in the clinical setting.
RANKL

Receptor activator of nuclear factor kappa B ligand (RANKL) is a
TNF superfamily member encoded by Tnfsf11 gene in mouse
(42). Although a soluble form of RANKL (sRANKL) exists, this
factor is expressed as a type II transmembrane protein whose
ectodomain specifically interacts with its cognate receptor RANK
(encoded by Tnfrsf11a). Thus, RANK-RANKL signaling is
mostly mediated by the physical interaction of different cell
types. RANK stimulation results in both canonical and non-
canonical NF-kB signaling, together with MAPK activation (43).
These events lead to the upregulation of genes involved in
proliferation, survival and differentiation, thus resulting in
pleiotropic effects on human physiology. First identified as a
key component of bone metabolism, RANKL was then
characterized as a crucial mediator in both organ development
and immunity (44). In fact, despite having normal splenic
architecture, Tnfrsf11a KO mice show null lymph-nodes
Frontiers in Immunology | www.frontiersin.org 3
organogenesis, while Tnfsf11 KO mice show reduced thymic
size and block of thymocyte maturation between DN3 and DN4
stage of differentiation (45, 46).

Within the thymus, RANK is expressed by subsets of mTECs
residing in both Aire+ and Aire- subpopulations (47, 48). On the
other hand, RANKL is mostly provided by CD4 SP thymocytes
and LTi cells, while CD8 SP thymocytes and invariant natural
killer T (iNKT) cells contribute for the presentation of RANKL to
a lesser extent (48–50). In this context, cell-cell interactions are of
paramount importance in controlling central tolerance and T-cell
production, as RANK signaling stimulates Aire+ mTEC
maturation in concert with CD40 and LTa pathways (47, 51).
Importantly, Aire+ mTECHI cells are also the primary cell
population responsible for the production of osteoprotegerin
(OPG) in the thymus, a soluble decoy receptor for RANKL
encoded by Tnfrsf11b (52). OPG binding to RANKL inhibits its
interaction with RANK. In fact, thymus tissues from Tnfrsf11bKO
mice show increased mTEC cellularity (50, 53).

Besides its roles in thymic physiology, RANK-RANKL
pathway is also implied in thymic regeneration upon
immunological insults. In fact, RANKL is upregulated in CD4
thymocytes and LTi cells during thymus recovery in mice
exposed to sublethal total body irradiation (SL-TBI) (54). On
the other hand, a recent report demonstrated that increased CD4
T-cell-mediated RANK signaling in the thymus causes enhanced
generation of mTEC. This results in an imbalance of cTEC and
mTEC proportion, eventually leading to defective thymopoiesis
(55). For its pivotal role in health and disease, the administration
of RANKL or RANKL partial agonists has been exploited in
mouse models reproducing particular clinical conditions, such as
psoriasis and ischemic stroke (54, 56–58). Furthermore, in
mouse models of HCT, sRANKL exogenous administration
drives TEC regeneration, as demonstrated by increase in
cellularity of thymic epithelial progenitor cells, cTEC and
mTEC subsets (54). sRANKL-treated mice also showed early
homing of lymphoid progenitors in the thymus and T-cell
reconstitution (54). Moreover, Desanti et al. showed that
stimulation of mTEC progenitors with RANK agonistic
antibodies resulted in CD40 upregulation, thus suggesting a
role in mTEC maturation (59).
CD40L

CD40L is a transmembrane protein and a tumor necrosis factor
(TNF) superfamily component playing key roles in both innate
and adaptive immunity (60). CD40L is expressed by activated T
and B cells, basophils, monocytes, NK and mast cells and signals
through physical interaction with its cognate receptor CD40
(61). The latter is a transmembrane costimulatory receptor firstly
identified on B cells as a factor responsible for their activation
and proliferation (62). In subsequent studies, CD40 was also
reported to be expressed by activated T cells, DCs, fibroblasts,
epithelial and endothelial cells (60, 63–66). CD40 signaling
drives upregulation of co-stimulatory molecules, cytokine
production and cross-presentation of the antigen in DCs, thus
June 2022 | Volume 13 | Article 920306
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promoting DC-mediated T-cell activation (60, 67). Moreover, it
was shown that CD8 and CD4 T cells directly communicate
through CD40-CD40L interaction and this pathway is
indispensable for the generation of CD8 T-cell memory (66).

As CD40-CD40L axis plays a crucial function in antigen
presenting cell (APC) regulation, several studies investigated the
role of CD40 signaling within the thymus in the context of T-cell
development and selection, and self-tolerance induction (68).
Here, similarly and in synergy with RANKL, CD40L stimulates
mTEC maturation in the postnatal thymus, with both Cd40 KO
and Cd40lg KO mice showing a reduction in mTECs without
affecting cTEC compartment (27, 51). On the other hand, Dunn
et al. produced transgenic mice expressing CD40L cDNA under
the control of the proximal lck promoter (69). These mice
carrying Cd40lg overexpression in thymocytes showed
alterations in organ architecture, with an abnormal mTEC
proportion and reduction in thymus cortex (69).

Within the thymic medulla, RANKL and CD40L are
upregulated in CD4 single positive (SP) thymocytes, this finding
suggesting a key role of CD4 SP in regulating mTEC maturation
and homeostasis (50, 59, 70). However, flow-cytometry analyses
highlighted a great heterogeneity within CD4 SP population, with
CD25-CD4+TCRbhigh thymocytes showing the highest RANKL
positivity during the early SP stage (CD69+), while being mostly
CD40L+ in subsequent maturation steps (CD69-) (59). This
Frontiers in Immunology | www.frontiersin.org 4
temporal regulation of TNF family ligands expression in
thymocytes is paralleled by a RANKL-dependent CD40
upregulation in mTECs, eventually leading to mTEC
proliferation and maturation (59).
LYMPHOTOXIN-a

Lymphotoxin-a (LTa) is another member of TNF superfamily
that was originally identified as a soluble factor secreted by
lymphocytes having cytotoxic effects on tumor cells (71, 72).
Subsequent studies showed that, besides its soluble homotrimer
(LTa3) form, LTa could associate with the transmembrane
protein LTb resulting in the membrane-bound heterotrimer
LTa1b2 (73). The latter signals through cell-cell interactions
with its cognate receptor LTbR, resulting in both canonical and
non-canonical activation of NF-kB pathway (74, 75). This
signaling has several implications in immunity including the
regulation of lymphoid organ development. In fact, both Lta, Ltb
and Ltbr KOmice show similar phenotypes lacking lymph nodes
and Peyer’s patches, and abnormal splenic architecture (76–78).

Besides activated T and B cells, LTa1b2 is also expressed by
NKs and type 3 ILCs (ILC3). On the other hand, LTbR is mainly
expressed by epithelial and endothelial cells among macrophages
and DCs (72).
FIGURE 1 | Overview of the crosstalk signals driving TEC development, differentiation and regeneration. Recover of thymus function is strictly dependent on the
crosstalk signals between TECs and cells of the hematopoietic compartment. LTa and RANKL are mostly provided by SP thymocytes leading to mTEC maturation
and differentiation. RANKL is overexpressed by CD4 thymocytes and LTi cells upon insults and can drive the recovery of thymus function. WNT signaling regulates
TEC proliferation and homeostasis, while CD40L is involved in TEC maturation and proliferation. LTi- and T-cells-derived IL-22 is key in sustaining TEC proliferation
and thymus recovery upon insults. IL-7 is mostly produced by cTEC acting as a key mediator of thymocyte maturation and proliferation. Elements of the figure were
generated using Biorender.com.
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Within the thymus, LTbR is expressed by the entire stromal
compartment, especially by TECs, while LTa1b2 is mostly
provided by single positive thymocytes (70, 79). Here, LTb or
LTbR deficiency leads to aberrant mTEC development and
altered medulla organization (79–82). In particular, it was
shown that LTa/LTbR signaling mediated by mature
thymocytes is indispensable for the generation of terminally
differentiated mTECs, as demonstrated by involucrin
expression (83).

Besides its role in steady state, LTa is also important during
insult recovery, as demonstrated by the fact that both Lta and
Ltbr KO mice show impaired thymic recovery in in vivomodels
of HCT (47, 84). Upon SL-TBI, LTa1b2 upregulation is
induced in radio-resistant LTi cells leading to thymic
recovery through the stimulation of TEC proliferation and
survival (54). On the other hand, LTa/LtbR signaling is also
implied in T-cell progenitors homing and mature T-cells egress
from the thymus in both steady state and HCT settings (84–86).
For these reasons, LtbR agonistic antibody administration
following HCT has been evaluated in mouse models,
leading to an increase in thymic output and immune
reconstitution (85).
INTERLEUKIN-7

IL-7 is a stromal-derived, non-redundant cytokine having a key
role in regulating immunity and immune reconstitution (87).
The active form of human IL-7 is a glycoprotein of 25 kDa that
is mainly produced within the lymphoid organs and that signals
through the IL−7 receptor (IL−7R) (2). The latter is a hetero
−dimer consisting of IL−7Ra and the common cytokine
receptor g−chain (gc). Triggering of the receptor mediates
anti−apoptotic and co−stimulatory proliferative signals,
mostly on T- and B-cell lineages (88). In the thymus, IL-7 is
primarily produced by TECs and fibroblasts (22). Using a IL-7
reporter mouse, it has been shown that TECs expressing high
levels of IL-7 reside within a subset of cTECs defined as
CD205+Ly51+CD40low (89). Cooperatively with Notch1, IL-7
provides proliferative signals to DN and DP thymocytes (90)
and also sustains the recombination of the T-cell receptor
g−chain (TCRg) locus (87). On the other hand, besides
receiving maturation signals throughout their development,
t h ymocy t e s con t r o l mTEC gene exp r e s s i on and
differentiation, thus regulating the formation of a proper
thymic microenvironment architecture (50, 70). For instance,
thymocytes can downregulate Il7 expression by TECs in a
negative feedback fashion (91). In fact, lymphopenic Rag2
Il2rg double KO mouse strain shows a markedly increased
proportion of IL−7+ TECs compared to WT mice (91). IL-7R-
deficient mice show defective thymic microenvironment,
especially in corticomedullary structure, and reduced mTEC
development (92, 93). While this phenotype is most likely due
to a failure of the crosstalk normally provided by IL-7-
dependent thymocytes and other cells of the hematopoietic
lineage, a possible direct impact of IL-7 on thymic stromal cells
Frontiers in Immunology | www.frontiersin.org 5
is currently unknown. Interestingly, as discussed above, Vago et
al. observed that serum levels of IL-7 peaked after every
infusion of donor T-cells in transplanted patients, this
suggesting that mature T-cells may induce IL-7 production,
although the underlying mechanism is still largely obscure (38).

In the periphery, IL-7 has a key role in T-cell homeostatic
proliferation and its production is tightly regulated, as the levels
of IL-7 in the peripheral blood increase during lymphopenia
remaining high until T-cell pool returns to steady state
conditions (18, 94, 95). Given its crucial role in T-cell
homeostasis, exogenous administration of IL-7 has been
tested in several clinical conditions (87). In the context of
HCT, IL-7 administration drives both CD4 and CD8 T-cell
expansion, and this phenomenon is accompanied by an
increase of TCR repertoire diversity (96). Most recently, IL-7
administration has been used in a murine model of age-related
lymphopenia. Aged mice were subjected to IL-7 treatment and
both numbers of CD4 and CD8 naïve T-cells in spleen and
lymph nodes rose to levels similar to those observed in adult
mice (97).
INTERLEUKIN-22

IL-22 is a monomeric cytokine released as a 179 amino acid
monomeric protein (98). As IL-7, IL-22 is a non-conventional
cytokine targeting stromal rather than hematopoietic
compartment. In fact, the main targets of IL-22 are epithelial
cells and fibroblasts within the thymus, liver, kidneys, lung and
pancreas (99). On the other hand, the main contributors for IL-
22 production are ab and gd T-cells, as well as ILCs, although
fibroblasts, neutrophils and macrophages are also reported as
secondary sources of IL-22 (99–104).

While systemic expression of IL22 is low during steady state,
its production is induced upon negative stimuli, such as tissue
injury and inflammation (99). During these pathologic
conditions, IL-22 exerts controversial effects, being involved in
both epithelial tissue regeneration and upregulation of different
inflammatory mediators, including TNF, IL-6 and LPS-binding
protein (105–107).

Within the thymus, IL-22 is involved in stromal
regeneration following insults. In fact, IL-22 upregulation
occurs in thymus-resident lymphoid tissue inducer (LTi) cells
in mice exposed to SL-TBI (107). In turn, IL-22 production
acts directly on mTEC compartment, providing proliferation
and survival signals to the damaged tissue (107). Besides
endogenous IL-22 production in injured thymus, recent
findings demonstrated that exogenous administration of IL-
22 could also promote faster thymic recovery. In fact, murine
models of HCT showed that donor-derived T-cells are a major
contributor for IL-22 production upon transplantation, leading
to TEC proliferation and thymus recovery (108, 109).
Moreover, exogenous IL-22 administration accelerates thymic
regeneration after insults (107, 109).

Although IL-22 administration is currently being evaluated
for the treatment of several conditions, only few trials are
June 2022 | Volume 13 | Article 920306
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exploring the infusion of IL-22 or their agonists in the HCT
setting (NCT02406651, NCT04539470). While these studies are
primarily focused on acute GvHD treatment or prevention, the
recent results herein reviewed suggest the possibility to use IL-22
in restoring thymic function during the first period after
the transplant.
WNT

WNT-signaling plays an important role during thymic
development and in the maintenance of its function in adult
life (11). In humans, 19 different WNT family members have
been identified along with 15 WNT receptors and coreceptors.
WNT regulates the stabilization of b-catenin which, in the
absence of any WNT signaling, is degraded in a cytoplasmatic
“destruction complex” consisting of glycogen synthase kinase 3b
(GSK), adenomatous polyposis coli (APC), axis inhibition
protein (AXIN) and casein kinase (CK). After the binding of
WNT to a member of the Frizzled receptor family and its
coreceptors low-density lipoprotein-receptor related proteins
(LRP) 5 and 6, the b-catenin is no longer degraded leading to
its accumulation, activation and translocation to the cell nucleus
where it regulates downstream transcription factors of the TCF/
LEF family. The crucial role of WNT in the thymus has been
demonstrated in several genetic models. Tcf-1 KO mice showed
altered T-cell differentiation with a partial block at the double
negative and immature single positive stages (110). Mice
carrying a constituency active form of b-catenin in TECs show
altered thymic organogenesis, reduced TEC proliferation and
loss of TEC identity (111). The inhibition of WNT signaling
through the forced expression of the canonical WNT inhibitor
DKK1 leads to loss of TEC progenitors and thymic degeneration
(112). Downregulation of WNT signaling has been also linked to
the age-associated involution of the human thymus (113).

While stromal cells, such as TECs, are the major producers of
WNT family members, cells of the hematopoietic lineage can
also express WNTs. WNT proteins, such as WNT4 and WNT5b,
expressed by TECs and thymocytes sustain the proliferation of
TECs, which is partially achieved by increasing the expression of
the key thymopoietic factor FoxN1 (114–116). Upregulation of
FoxN1 expression represents a major step towards the
regenerat ion of thymic funct ion. Previous studies
demonstrated that FoxN1 and its downstream genes are
upregulated during the endogenous process of thymic
reconstitution after sublethal dose of radiation (24).
Importantly, induction of FoxN1 expression alone is sufficient
to reverse thymic involution and regenerate the organ in mice
(117). Together, these data demonstrate that the levels of FoxN1
tightly control thymic regeneration and the identification of
factors regulating its expression could have a strong rationale
for thymic boosting approaches. Whether mature T-cells can
express members of the WNT family and induce the
upregulation of FoxN1 in TECs when transferred in vivo
would represent an interesting regenerative approach
to investigate.
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CONCLUSIONS

Several strategies have been proposed to restore thymic function
after injuries and insults. Among these, the administration of
chemokines and growth factors have been explored in several
preclinical mouse studies displaying very promising results.
However, when transferred to the clinic, the same strategies
have shown modest regenerative potential. Until now, increasing
thymic function and T-cell production remains a major challenge
for the treatment of several conditions, especially in the early phase
following HCT. Besides the HCT setting, boosting thymic function
is of paramount importance for the treatment of other T-cell
deficiencies associated with pathological, as well as physiological
conditions. Thymic involution is a well-known phenomenon
associated with a progressive decline of thymic size and output
with age which paralleled with a decrease in immune surveillance
in the elderly (118–120). Therapeutic approaches that can
promote thymic function in older individuals can increase
peripheral T-cell diversity, enhance the immunity against
pathogens and response to vaccines, and, possibly, reduce the
risk of malignancy through better immune-surveillance
mechanisms against transformed cells. As previously discussed,
the work by Vago et al. demonstrated that the infusion of mature
donor T cells can rejuvenate the thymus of adult transplanted
patients (aged 17-66). Whether a similar approach can restore
TEC functionality in older individuals, in which the residual
thymic tissue is limited (121) remains an avenue to be
explored. On the other hand, it is highly unlikely that the same
approach can mediate beneficial effects in restoring thymic
function and the process of T-cell development in patients with
intrinsic genetic defects which alter TEC function, for instance as a
consequence of FoxN1 deficiency in patients affected by the nude/
severe combined immunodeficiency. In fact, these defects cannot
be mitigated by changes in the hematopoietic compartment as
suggested by the inefficacy of bone marrow transplantation in
these patients (122).
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