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ABSTRACT
Purpose  The depth and breadth of clinical data within 
electronic health record (EHR) systems paired with 
innovative machine learning methods can be leveraged to 
identify novel risk factors for complex diseases. However, 
analysing the EHR is challenging due to complexity 
and quality of the data. Therefore, we developed large 
electronic population-based cohorts with comprehensive 
harmonised and processed EHR data.
Participants  All individuals 30 years of age or older who 
resided in Olmsted County, Minnesota on 1 January 2006 
were identified for the discovery cohort. Algorithms to 
define a variety of patient characteristics were developed 
and validated, thus building a comprehensive risk profile 
for each patient. Patients are followed for incident 
diseases and ageing-related outcomes. Using the same 
methods, an independent validation cohort was assembled 
by identifying all individuals 30 years of age or older who 
resided in the largely rural 26-county area of southern 
Minnesota and western Wisconsin on 1 January 2013.
Findings to date  For the discovery cohort, 76 255 
individuals (median age 49; 53% women) were identified 
from which a total of 9 644 221 laboratory results; 9 
513 840 diagnosis codes; 10 924 291 procedure codes; 
1 277 231 outpatient drug prescriptions; 966 136 heart 
rate measurements and 1 159 836 blood pressure (BP) 
measurements were retrieved during the baseline time 
period. The most prevalent conditions in this cohort 
were hyperlipidaemia, hypertension and arthritis. For 
the validation cohort, 333 460 individuals (median age 
54; 52% women) were identified and to date, a total 
of 19 926 750 diagnosis codes, 10 527 444 heart rate 
measurements and 7 356 344 BP measurements were 
retrieved during baseline.
Future plans  Using advanced machine learning 
approaches, these electronic cohorts will be used to 
identify novel sex-specific risk factors for complex 
diseases. These approaches will allow us to address 
several challenges with the use of EHR.

INTRODUCTION
The wide adoption of electronic health 
records (EHRs) has led to an unprece-
dented expansion in the availability of 

comprehensive longitudinal datasets for 
research.1 Thus, EHR systems represent an 
untapped resource for studying life-course 
biology, multimorbidity and the prediction 
of complex diseases, such as cardiovascular 
disease (CVD), dementia, cancers and other 
ageing-related diseases. However, deriving 
data from EHRs is challenging and requires 
extensive harmonisation and processing 
guided by content experts.

As opposed to research cohort data 
sources that typically measure a limited set 
of factors, EHRs capture the full-range of 
clinical data. However, analysing EHR data 
can be challenging due to the complex and 
uneven nature of clinical documentation 
and data quality.2 Hallmark challenges for 
leveraging EHR data in predictive modelling 
include high degrees of data sparsity, incom-
pleteness, noise and biases.3 4 Furthermore, 
changing and evolving EHR systems within 

Strengths and limitations of this study

►► By capitalising on the untapped depth and breadth 
of clinical data available in modern electronic health 
record (EHR) systems, we can go beyond traditional 
risk factors and create comprehensive risk profiles 
for complex diseases.

►► We created an independent validation cohort of pa-
tients from a largely rural area in which to assess 
the generalisability of our findings from our discov-
ery cohort.

►► We have biological samples and genomic data in a 
large subset of patients.

►► Using innovative machine learning methods will al-
low us to address several important and challenging 
questions associated with the use of EHR data.

►► One limitation of this study is that it may be difficult 
to develop accurate and transportable EHR pheno-
type algorithms for some female-specific conditions 
or procedures.
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and between institutions add another layer of complexity. 
Thus data extraction, cleaning, harmonisation, interpre-
tation, management and analyses are major challenges 
for efficient EHR-based clinical studies.

However, recent advances in data science and machine 
learning aim to address the uneven nature of clinical 
documentation intrinsic to EHR data. For example, 
EHR-based deep learning methods have been proposed 
for handling missing data imputation,5 as well as for 
extracting high-level patient data patterns for prediction 
algorithms.6 Furthermore, extensive effort has been dedi-
cated to develop advanced clinical data processing (eg, 
natural language processing (NLP) technologies) and 
data management methodologies (eg, ontology-based 
approaches) to facilitate EHR-based clinical studies.7 8 
Importantly, NLP methods allow for the ascertainment 
of risk factors recorded in the medical history section of 
clinical notes that predate EHR systems and/or occurred 
at another medical centre. Moreover, EHR phenotyping 
algorithms incorporating multiple data types may be 
accurate, scalable and transportable.9 10 Thus, our goal 
is to capitalise on the depth and breadth of clinical data 
within the EHR systems to revolutionise risk prediction 
and to optimise personalised care for every patient.

In order to achieve this goal, we assembled a longitu-
dinal cohort of adult patients in a geographically defined 
area in southeastern Minnesota, a state in the Upper 
Midwest region of the USA, to serve as the discovery 
cohort. Comprehensive EHR data over a 15-year period 
were ascertained, allowing for complete ascertainment 
of risk factor profiles. Thus, we have the ability to move 
beyond traditional risk factors to include reproductive 
factors, age of risk factor onset and a broader spectrum 
of clinical tests, diagnoses and patient provided informa-
tion (PPI). Importantly, we have also created a validation 
cohort of patients from a largely rural area in which to 
assess the generalisability of our findings and models. 
With detailed and rich EHR data, these population-based 
cohorts can be used for a wide-range of studies, including 
but not limited to studying novel disease associations (risk 
factors), clusters of disease or creating sex-specific risk 
scores for disease prediction.

COHORT DESCRIPTION
Setting
Our study uses the resources of the Rochester Epidemi-
ology Project (REP).11 12 In brief, the REP is a records-
linkage system which allows retrieval of nearly all 
healthcare utilisation and outcomes of residents living in 
Olmsted County, the home of Mayo Clinic.12 Thus, the 
REP captures and updates comprehensive EHR-derived 
phenotypic data within this population, and is uniquely 
positioned to characterise longitudinal disease trajec-
tories and outcomes in communities. The electronic 
indexes of the REP include demographic information, 
diagnostic and procedure codes, healthcare utilisation 
data, outpatient drug prescriptions, results of laboratory 

tests and information about smoking, height, weight and 
body mass index (BMI).

Starting in 2010, the REP population expanded to 
include an additional 26-county region in southern 
Minnesota and western Wisconsin. The REP now includes 
medical record data from many sources of care across 
the region including the two largest providers of care in 
these areas (ie, Mayo Clinic, Mayo Clinic Health System 
clinics and hospitals, and Olmsted Medical Center and 
its affiliated clinics).11 The expansion of the REP from 
1 to 27 counties in the Upper Midwest has increased 
the size of the population fivefold, and its adoption of 
innovative electronic platforms are important assets to 
follow our cohorts. The expanded population now offers 
breadth and depth of data for a large sample size, thereby 
providing a powerful resource for more precise risk 
prediction. Importantly, the recent REP expansion mark-
edly increased the proportion of persons living in rural 
areas to 50%.11 Additionally, the REP region has similar 
age, sex and ethnic characteristics as the entire Upper 
Midwest region of the USA.11 12

Our cohorts, updated under the auspices of the 
expanded REP, will offer a singular opportunity to address 
the disproportionate burden of disease experienced by 
rural populations. Rural disparities have been recently 
underscored by the Centers for Disease Control and 
Prevention and the American Heart Association, which 
have called for studies to understand and address these 
disparities.13 14

All individuals 30 years of age or older who resided 
in Olmsted County, Minnesota on 1 January 2006 were 
identified for the discovery cohort (figure 1). An age cut-
off of 30 was selected because ageing-related diseases are 
infrequent in children and adults aged 18–29. Addition-
ally, traditional risk factors are not routinely screened in 
this younger population. The Mayo Clinic EHR began 
phasing in during the 1990s, and primary care and most 
specialty departments were added by 2000. Thus an index 
date of 1 January 2006 was selected to allow a sufficient 
time period for the electronic ascertainment of patient 
characteristics and risk factors from the EHR, for the 
identification of prevalent disease and for more than a 
decade of follow-up to assess incident or secondary events. 
Similarly, all individuals 30 years of age or older who were 
residing in the other 26 counties in southern Minnesota 
and western Wisconsin on 1 January 2013 were identified 
for the validation cohort. This region has EHR history 
beginning in 2010; thus, the index date of 1 January 2013 
allows an ample window of time for the collection of data 
and follow-up.

This study was approved by the Mayo Clinic and 
Olmsted Medical Center Institutional Review Boards.

Data collection
Baseline data were collected from 2001 to 2005 for the 
discovery cohort and from 2010 to 2012 for the validation 
cohort (figure 1). Follow-up for outcomes is ongoing for 
both cohorts.
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Details of our data processing, management and algo-
rithm development are detailed below. All data were 
collected via the REP, unless indicated otherwise.

Exposures
Demographics
Date of birth, sex, race and ethnicity were obtained. 
Within the REP, race is classified per the US Census: 
White, Black, Asian, American Indian or Alaskan Native, 
Native Hawaiian or Pacific Islander. Categories of ‘Other 
and mixed’ and ‘Unknown’ are also included.11 Ethnicity 
is classified per the US Census: Hispanic or non-Hispanic.

Baseline clinical measurements
Heart rate
The median heart rate per calendar day was used for anal-
yses. The most recent daily median heart rate among all 
heart rate measurements for a person during the baseline 
data collection period was considered the baseline heart 
rate. All daily values were retained to assess associations 
with heart rate variability and outcomes.

Blood pressure
All systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) measurements with values of 0 and values 
that were not whole numbers were excluded. For each 
measurement the following criteria were applied:
1.	 If the measurement was <1000, it was kept as is.
2.	 If the measurement was between 1000 and 9999, it was 

assumed that it was recorded as a two digit SBP and two 
digit DBP and split apart.

3.	 If the measurement was ≥10 000, then it was assumed 
that it was recorded as a three digit SBP and a two digit 
DBP and split apart.

4.	 All SBP >300 and all DBP >200 were excluded.
Furthermore, some measurements had time recorded 

as 00:00 and a real time on the same day. When this 
occurred, the measurement with time=00:00 was dropped. 
The median SBP and the median DBP per day were calcu-
lated. For each day, any instances where median DBP ≥SBP 
were deleted. The most recent daily median SBP and DBP 
among all measurements for a person during the baseline 
data collection period was considered the baseline blood 

pressure (BP). All daily values were retained to assess BP 
variability and outcomes.

Height, weight and BMI
All heights and weights per person were extracted ±5 
years of the index date for the discovery cohort and ±3 
years of the index date for the validation cohort. Using 
a published method as a guide,15 heights <111.8 cm 
or >228.6 cm and weights <24.9 kg or >453.6 kg were 
excluded. For those with more than one height, any 
height values that met both of the two following condi-
tions were excluded: (1) the absolute difference between 
that particular height and average height was greater than 
the SD and (2) the SD was >2.5% of the average height. 
For those with more than one weight, any weight that met 
one of the two following conditions was excluded: (1) the 
range was >22.7 kg and the absolute difference between 
that specific weight and average weight was >70% of the 
range or (2) the SD was >20% of the average weight and 
the absolute difference between that particular weight 
and average weight was greater than the SD. Heights and 
weights during the baseline period were retained and 
all possible BMI combinations were calculated (weight 
(kg)/height (m2)). The median BMI was calculated and 
considered the baseline BMI. BMI values <12 or >70 kg/
m2 were excluded.

Smoking and tobacco use status
All prior smoking responses through the index date per 
person were ascertained. First, the most recent response 
per person was identified. If current smoker was indi-
cated then the baseline smoking status was set to current 
user. Likewise, if the most recent self-report listed former 
smoker, then the baseline smoking status was set to 
former smoker. Finally, if self-report indicated never/
not currently, then all prior responses were reviewed. If 
former smoker was indicated, then smoking status was set 
accordingly. Otherwise, smoking status was listed as never 
smoker. The same algorithm was used for tobacco use 
status.

Figure 1  Framework for building electronic health records based risk scores for incident disease. EHR, electronic health 
record.
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Diagnoses
All International Classification of Diseases, Ninth Revi-
sion (ICD-9) and Tenth Revision (ICD-10) diagnosis 
codes during the baseline period were identified and 
extracted from the REP electronic indexes. Diagnoses 
were classified according to the Clinical Classifications 
Software (CCS), developed at the Agency for Health-
care Research and Quality.16 CCS is a tool for clustering 
patient diagnoses and procedures into a manageable 
number of clinically meaningful categories. Additionally, 
we used the list of 20 chronic conditions recommended 
by the US Department of Health and Human Services for 
studying multimorbidity, as defined by ICD-9 and ICD-10 
codes.17 18

Procedures
Procedure history was defined by identifying and 
extracting all CurrentProcedural Terminology (CPT) and 
ICD-9 and ICD-10 procedure codes during the baseline 
period. Procedures were classified according to the CCS, 
as described above.

Gynecological surgeries
Gynecologic surgeries often predate EHR systems or 
occurred at another medical centre, thus we applied 
NLP techniques to extract them from the medical history 
sections of the clinical narratives of the Mayo Clinic EHR. 
A rule-based algorithm collects these concepts to classify 
the status of the gynaecological surgery per each patient 
as six mutually exclusive categories: ‘no surgery’, ‘bilateral 
oophorectomy only’, ‘hysterectomy and bilateral oopho-
rectomy’, ‘unilateral oophorectomy only’, ‘hysterectomy 
and unilateral oophorectomy’ and ‘hysterectomy only’. 
An expansion of this process to the Olmsted Medical 
Center EHR is planned.

Female reproductive factors
For the women in the discovery cohort, data were 
extracted from the following Mayo Clinic Rochester 
sources: Breast Diagnostic and Cancer Clinic Question-
naire from 2005, Mammography Questionnaire from 
2003 to 2005, Mammography database from 2004 to 2005 
and the Current Visit Information form from 2001 to 
2005. For women in the validation cohort, information 
in these sources, when available, will be extracted prior to 
index date and will be augmented with NLP.

Age at menarche
The minimum age of menarche and the most recently 
reported age of menarche was determined. For the 
women in whom the minimum does not equal the most 
recently reported age at menarche, the median of all 
reports (rounded down to a whole number) was used.

Age at birth of first child
The minimum age at birth of first child and the most 
recently reported age at birth of first child was deter-
mined. For the women in whom the minimum does not 
equal the most recently reported age at birth of first 

child, the median of all reports (rounded down to a 
whole number) was used.

Number of pregnancies and number of live births
The maximum reported number of pregnancies and 
the most recently reported number of pregnancies were 
determined. For the women in whom the maximum does 
not equal the most recently reported number of pregnan-
cies, the median of all reported number of pregnancies 
(rounded up to a whole number) was used.

Similarly, the maximum reported number of live births 
and the most recently reported number of live births 
were determined. For the women in whom the maximum 
does not equal the most recently reported number of live 
births, the median of all reported number of live births 
(rounded up to a whole number) was used.

Ever breastfed
If a woman ever previously reported breastfeeding her 
child, then breastfeeding status was set to yes. Otherwise, 
if all prior reports of breastfeeding were no, then breast-
feeding status was set to no.

Menopausal status
If a woman ever previously reported menopause, then 
menopausal status was set to yes. Otherwise, if all prior 
reports of menopause were no, then menopausal status 
was set to no.

Between-field checks/corrections were performed. For 
women who reported an age at birth of their first child, but 
number of pregnancies=0, both fields were set to missing. 
For women who reported 0 pregnancies and >0 live births 
both fields were set to missing. For women who reported 
breastfeeding, but number of pregnancies=0, both fields 
were set to missing.

Preterm birth and pregnancy complications
Preterm birth and pregnancy complications including 
gestational diabetes, gestational hypertension, 
preeclampsia and eclampsia are identified by diagnoses 
codes.

ECG
All Mayo Clinic ECG quantitative data and narrative and 
impressions were extracted during the baseline period. 
Quantitative variables collected include heart rate, P 
wave, PR interval, QRS interval, QT interval, QT calcu-
lated (Bazett) and QT calculated (Fridericia). In addi-
tion, raw wave forms for all ECGs are available.

Echocardiography
Echocardiography data were retrieved through the Mayo 
Clinic Echocardiography database during the baseline 
period. Methods from prior work were used.19 Ejection 
fraction, interventricular septum thickness end diastole, 
left atrial (LA) volume end systole, LA volume index 
end systole, left ventricular (LV) internal dimension end 
diastole, LV internal dimension end systole, mitral valve 
systolic effective regurgitant orifice, LV mass and LV mass 
index values were averaged when multiple measurements 
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were performed. E/A and E/e′ were calculated using the 
corresponding values. The most severe descriptor word 
(severe, moderate–severe, moderate, mild–moderate, 
mild, trivial or none) was used to define aortic regurgita-
tion, aortic stenosis, mitral regurgitation, mitral stenosis, 
pulmonary regurgitation, pulmonary stenosis, tricuspid 
regurgitation and tricuspid stenosis. ECG rhythms 
including atrial fibrillation, atrial flutter and sinus rhythm 
were ascertained from the echocardiogram. LV size 
descriptor other than normal (ie, borderline, left, mild, 
mild–moderate, moderate, moderate–severe or severe) 
was classified as enlarged. Non-missing values for LV 
filling pressure were considered increased. LV diastolic 
dysfunction category (normal, grade 1, grade 1A, grade 
2, grade 3, grade 3–4 and grade 4) was collected. Finally, 
LV wall motion score index was ascertained and when 
‘no’ was indicated the score was set to 1 (normal, ie, no 
regional wall motion abnormalities).

Prescription medications
All prescriptions during the baseline period were electron-
ically ascertained. Medications were organised according 
to the National Drug File Reference Terminology (NDF-
RT) classifications. For each NDF-RT class, a variable was 
created to indicate whether each person had received a 
prescription for that class in the 1 year prior to index.

Laboratory values
All laboratory values were extracted from the electronic 
laboratory system that started in 1992. Laboratory tests 
were mapped to Logical Observation Identifiers Names 
and Codes (LOINC), which is the most widely used 
classification system for laboratory tests. Tests are often 
reported in more than 1 unit of measure and LOINC 
provides a unique code for each.20

Qualitative test results were harmonised such that they 
conformed to a uniform set of unique outcomes. For 
example, there are 51 unique tests for ABO blood type 
and Rh factor available in REP within the time period 
with different textural representations of the same result 
(eg, B POS, B POSTIVE, B, POS, POSITIVE). During 
harmonisation two variables were created, ABO Type 
(possible values of A, B, AB and O) and Rh Type (possible 
values of negative or positive).

Results such as ‘not performed’, ‘invalid results’, 
‘unable to calculate’, etc. were dropped. The midpoint 
value was retained for all results reported as a range (eg, 
0–2=1).

Patient provided information
PPI from Current Visit Information forms, which patients 
are asked to complete annually at Mayo Clinic, was 
extracted for the discovery cohort. Sociodemographic 
data were retrieved including: educational attainment, 
employment status, relationship status and with whom 
the patient currently lives. Functional status data were 
also retrieved including: does the patient have difficulty 
eating, dressing, using the toilet, bathing or getting in 

and out of bed; does the patient have difficulty climbing 
two flights of stairs, does he/she have home care assis-
tance available if needed, is he/she breathing device 
dependent, is he/she mobility device dependent and 
does the patient use dentures or hearing aids. The most 
recent response during the baseline period for each item 
was retained for baseline.

A modified Katz Index21 was calculated with the 
following activities of daily living (ADLs): eating, dressing, 
using the toilet, bathing or getting in and out of bed. 
Patients received one point for each ADL that they could 
perform without difficulty; thus scores could range from 
0 (low independence) to 5 (high independence).

Family history of disease
All family history content was retrieved from the ‘family 
history’ section of unstructured clinical notes. An NLP 
pipeline (MedTagger) was used to extract mentions of 
family members.22 Disease mentions were extracted using 
MetaMap API which used Unified Medical Language 
System (UMLS) dictionary 2018AA.23 24 UMLS concepts 
were further mapped to CCS codes. Relationships 
between family member and disease were extracted using 
combined semantical rules and distance-based rules.

Biologic specimens
There are two sources of stored biological specimens on 
a subset of the discovery and validation cohorts. First, 
the Mayo Clinic Biobank is an institutional resource 
comprised of over 56 000 volunteers who donated biolog-
ical specimens, and provided risk factor data, access 
to EHR data, and consent to participate in additional 
studies.25 Biological samples collected on each partici-
pant include DNA (median 183 µg), 4 mL serum, 12 mL 
plasma and an aliquot of frozen white blood cells. The 
second source of biological samples is the Cardiovascular 
Disease Repository (CaDRe). CaDRe is a collection of 
samples (ie, serum, plasma, DNA, buffy coat) collected 
historically and prospectively from patients with myocar-
dial infarction (MI), coronary artery bypass graft (CABG) 
surgery, percutaneous coronary interventions (PCI), 
heart failure and atrial fibrillation in the Olmsted County 
population.26–30 Currently, approximately 13 000 persons 
in the discovery cohort and approximately 9000 partic-
ipants from the validation cohort are participants in at 
least one of the above mentioned studies.

Genomic data
In 2019, Mayo Clinic formalised a partnership with 
Regeneron Pharmaceuticals called Project Generation. 
As part of this collaboration, exome sequencing and 
genome-wide association data are being generated for 
all participants of the Mayo Clinic Biobank and CaDRe, 
which includes approximately 13 000 persons from the 
discovery cohort and 9000 participants from the vali-
dation cohort. Although we do not have these data for 
everyone in the cohorts, the genomic data available can 
be used for ancillary studies.
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Table 1  Baseline characteristics for the discovery cohort

Discovery cohort: Olmsted County

Overall
n=76 255

Female
n=40 463

Male
n=35 792 P value

Demographics

Female 40 463 (53)

Age on index date*, median (IQR) 49 (40, 61) 50 (40, 62) 49 (40, 60) <0.001

Race <0.001

 � American Indian 191 (0.3) 99 (0.2) 92 (0.3)

 � Asian 2914 (3.8) 1572 (3.9) 1342 (3.7)

 � Black 2257 (3.0) 1113 (2.8) 1144 (3.2)

 � White 67 372 (88) 36 033 (89) 31 339 (88)

 � Hawaiian/Pacific Islander 117 (0.2) 60 (0.1) 57 (0.2)

 � Other/multiracial 2153 (2.8) 1091 (2.7) 1062 (3.0)

 � Unknown 1251 (1.6) 495 (1.2) 756 (2.1)

Hispanic ethnicity 2860 (3.8) 1364 (3.4) 1496 (4.2) <0.001

Clinical characteristics

BMI, median (IQR) 28 (24, 32) 27 (23, 32) 28 (26, 32) <0.001

 � Unknown 17 172 (23) 6594 (16) 10 578 (30)

Smoking status <0.001

 � Unknown 24 630 (32) 11 316 (28) 13 314 (37)

 � Never 31 690 (42) 19 088 (47) 12 602 (35)

 � Ever 19 935 (26) 10 059 (25) 9876 (28)

Systolic BP†, median (IQR) 122 (110, 133) 120 (110, 132) 124 (114, 135) <0.001

 � Unknown 7658 (10) 3446 (9) 4212 (12)

Diastolic BP†, median (IQR) 72 (66, 80) 70 (64, 80) 76 (68, 82) <0.001

 � Unknown 7658 (10) 3446 (9) 4212 (12)

Heart rate†, median (IQR) 72 (66, 80) 74 (68, 80) 72 (64, 80) <0.001

 � Unknown 8946 (12) 4094 (10) 4852 (14)

Clinical conditions‡

Hypertension 21 766 (29) 11 623 (29) 10 143 (28) 0.239

Hyperlipidaemia 25 307 (33) 12 580 (31) 12 727 (36) <0.001

Coronary artery disease 7969 (11) 3274 (8) 4695 (13) <0.001

Cardiac arrhythmias 11 926 (16) 6343 (16) 5583 (16) 0.769

Heart failure 2308 (3.0) 1233 (3.1) 1075 (3.0) 0.725

Diabetes 9230 (12) 4616 (11) 4614 (13) <0.001

Stroke 3004 (3.9) 1577 (3.9) 1427 (4.0) 0.526

COPD 8235 (11) 4731 (12) 3504 (9.8) <0.001

Chronic kidney disease 3174 (4.2) 1556 (3.8) 1618 (4.5) <0.001

Arthritis 15 285 (20) 9269 (23) 6016 (17) <0.001

Osteoporosis 4030 (5.3) 3512 (8.7) 518 (1.5) <0.001

Asthma 5838 (7.7) 3838 (9.5) 2000 (5.6) <0.001

Cancer 10 497 (14) 6245 (15) 4252 (12) <0.001

Depression 13 299 (17) 9009 (22) 4290 (12) <0.001

Anxiety 7771 (10) 5084 (13) 2687 (7.5) <0.001

Dementia 1958 (2.6) 1181 (2.9) 777 (2.2) <0.001

Substance abuse 3137 (4.1) 1317 (3.3) 1820 (5.1) <0.001

Continued
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Follow-up and outcomes
Patients are followed after their index date to assess 
disease and ageing-related outcomes. Below are details of 
specific outcomes that we have collected thus far.

Myocardial infarction
MIs collected for a long-standing surveillance study were 
used for this project.27 Residents admitted to Olmsted 
County hospitals with a troponin T level of 0.03 ng/mL 
or higher were identified.27 MIs were validated using 
standard epidemiologic criteria which integrate cardiac 
pain, ECG changes and elevated biomarkers.31 The pres-
ence or absence of a change (rise or fall) between any 
two troponin T measurements was defined by a differ-
ence of at least 0.05 ng/mL, which is greater than the 
level of imprecision of the assay at all concentrations.32 
Circumstances that might invalidate biomarker values 
were recorded.33

Up to three ECGs per episode were coded using 
the Minnesota Code Modular ECG Analysis System.34 
According to the algorithm, MIs were classified as defi-
nite, probable, suspect or no infarction.31 35 Only incident 
(first-ever) cases were included in the cohort.

PCI and CABG surgery
Data were extracted from the Mayo Clinic Coronary 
Artery Percutaneous Intervention (PCI) registry. Because 
Mayo Clinic is the sole provider of coronary angiography 
in Olmsted County, a complete retrieval is possible via 
the database. By contrast, CPT codes were used to iden-
tify PCI in the validation cohort. For both cohorts, CABG 
surgery was identified using CPT codes.

Cardiovascular death
Minnesota death certificate and National Death Index 
Plus data were ascertained. CVD death is defined as 
underlying cause of death code ICD-9 390–459 and 
ICD-10 I00–I99.36

Stroke
A stroke algorithm was trained on an atrial fibrillation 
(AF) cohort.26 First occurrence of ischaemic strokes, tran-
sient ischaemic attack and haemorrhagic strokes after 
incident AF from 1 January 2000 through 31 March 2015 
were identified using diagnostic codes and were validated 

by trained nurse abstractors who manually reviewed the 
clinical notes. The algorithm includes diagnosis and 
procedure codes electronically extracted via the REP 
indexes and stroke-related keywords. The algorithm was 
trained using random forest models, and the resulting 
algorithm involved different weight (importance) on 
different features (ICD, CPT and keywords). The algo-
rithm identifies stroke incidence dates with a precision of 
0.900, recall of 0.918 and F-score of 0.909 in the general 
population.37

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of this study.

FINDINGS TO DATE
We identified 76 255 individuals (median age 49; 53% 
women) 30 years of age or older, residing in Olmsted 
County on 1 January 2006 (table  1) for the discovery 
cohort. A total of 9 644 221 laboratory results; 9 513 840 
diagnosis codes; 10 924 291 service/procedure codes; 
1 277 231 outpatient prescriptions; 966 136 heart rate 
measurements and 1 159 836 BP measurements were 
retrieved during the baseline time period. Seventy-one 
thousand two hundred and twenty-two (93%) patients 
had at least one clinical contact during the baseline 
period. The five most prevalent conditions in this cohort 
overall were hyperlipidaemia, hypertension, arthritis, 
depression and cardiac arrhythmias (table 1).

Women were slightly older than men (50 vs 49 years 
old) and were less likely to have a diagnosis of hyper-
lipidaemia, coronary artery disease, diabetes, chronic 
kidney disease and substance abuse (table 1). Conversely, 
women were more likely to be diagnosed with chronic 
obstructive pulmonary disease (COPD), arthritis, oste-
oporosis, asthma, cancer, depression, anxiety, dementia 
and schizophrenia.

In preliminary analyses, individuals in the discovery 
cohort without CVD (n=70 826) were followed from 
index date through 30 September 2017 for CVD-related 
outcomes: 1353 MIs, 1476 PCIs, 602 CABG, 912 strokes 
and 1770 CVD-related deaths occurred.

Discovery cohort: Olmsted County

Overall
n=76 255

Female
n=40 463

Male
n=35 792 P value

Schizophrenia 1293 (1.7) 748 (1.8) 545 (1.5) <0.001

Results are presented as n (%) unless otherwise noted.
*Index date is 1 January 2006.
†Closest measurement within 5 years prior to index date.
‡Conditions were ascertained using ICD codes recommended by the US Department of Health and Human Services, with the exception of 
anxiety which was defined by CCS category, using electronic medical history from 2001 to index date.
BMI, body mass index; BP, blood pressure; COPD, chronic obstructive pulmonary disease; ICD, International Classification of Diseases.

Table 1  Continued
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Table 2  Baseline characteristics for the validation cohort

Validation cohort: 26-county region

Overall
n=333 460

Female
n=173 840

Male
n=159 620 P value

Demographics

Female 173 840 (52)

Age on index date*, median (IQR) 54 (43, 67) 55 (43, 68) 54 (43, 66) <0.001

Race <0.001

 � American Indian 636 (0.2) 372 (0.2) 264 (0.2)

 � Asian 2846 (0.9) 1711 (1.0) 1135 (0.7)

 � Black 3421 (1.0) 1402 (0.8) 2019 (1.3)

 � White 313 873 (94) 164 452 (95) 149 421 (94)

 � Hawaiian/Pacific Islander 303 (0.1) 144 (0.1) 159 (0.1)

 � Other/multiracial 4917 (1.5) 2427 (1.4) 2490 (1.6)

 � Unknown 7464 (2.2) 3332 (1.9) 4132 (2.6)

Hispanic ethnicity 9359 (2.8) 4623 (2.7) 4736 (3.0) <0.001

Clinical characteristics

BMI, median (IQR) 29 (25, 34) 29 (25, 34) 30 (27, 33) <0.001

 � Unknown 104 805 (31) 46 712 (27) 58 093 (36)

Smoking status <0.001

 � Unknown 58 312 (18) 25 612 (15) 32 700 (21)

 � Never 141 207 (42) 84 155 (48) 57 052 (36)

 � Ever 133 941 (40) 64 073 (37) 69 868 (44)

Systolic BP†, median (IQR) 123 (112, 134) 122 (110, 132) 125 (116, 136) <0.001

 � Unknown 56 419 (17) 26 362 (15) 30 057 (19)

Diastolic BP†, median (IQR) 74 (67, 80) 72 (65, 80) 76 (70, 82) <0.001

 � Unknown 56 419 (17) 26 362 (15) 30 057 (19)

Heart rate†, median (IQR) 72 (65, 80) 73 (66, 81) 72 (64, 80) <0.001

 � Unknown 59 643 (18) 28 223 (16) 31 420 (20)

Clinical conditions‡

Hypertension 110 847 (33) 57 060 (33) 53 787 (34) <0.001

Hyperlipidaemia 116 189 (35) 58 574 (34) 57 615 (36) <0.001

Coronary artery disease 31 054 (9.3) 12 023 (6.9) 19 031 (12) <0.001

Cardiac arrhythmias 51 065 (15) 25 947 (15) 25 118 (16) <0.001

Heart failure 12 726 (3.8) 6378 (3.7) 6348 (4.0) <0.001

Diabetes 59 706 (18) 29 343 (17) 30 363 (19) <0.001

Stroke 13 766 (4.1) 6956 (4.0) 6810 (4.3) <0.001

COPD 32 862 (9.9) 18 331 (11) 14 531 (9) <0.001

Chronic kidney disease 21 429 (6.4) 10 455 (6.0) 10 974 (6.9) <0.001

Arthritis 62 727 (19) 36 606 (21) 26 121 (16) <0.001

Osteoporosis 14 216 (4.3) 12 459 (7.2) 1757 (1.1) <0.001

Asthma 19 591 (5.9) 12 723 (7.3) 6868 (4.3) <0.001

Cancer 39 254 (12) 21 784 (13) 17 470 (11) <0.001

Depression 53 327 (16) 35 849 (21) 17 478 (11) <0.001

Anxiety 38 396 (12) 25 567 (15) 12 829 (8.0) <0.001

Dementia 9440 (2.8) 5675 (3.3) 3765 (2.4) <0.001

Substance abuse 13 127 (3.9) 4985 (2.9) 8142 (5.1) <0.001

Continued
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We identified 333 460 individuals 30 years of age or 
older residing in the 26-county region of southern Minne-
sota and western Wisconsin (median age 54; 52% women; 
table 2) on 1 January 2013. To date, this validation cohort 
includes a total of 48 587 189 laboratory results; 19 926 
750 diagnosis codes; 24 843 462 services/procedures; 7 
083 721 outpatient prescriptions; 10 527 444 heart rate 
measurements and 7 356 344 BPs during the baseline 
time period. A total of 303 479 (91%) patients had at least 
one clinical contact during the baseline period. Overall, 
the five most prevalent conditions were hyperlipidaemia, 
hypertension, arthritis, diabetes and depression (table 2).

Similar to the discovery cohort, women were slightly 
older than men (55 vs 54 years old). Women were less 
likely to have a diagnosis of hypertension, hyperlipi-
daemia, coronary artery disease, cardiac arrhythmias, 
heart failure, diabetes, stroke, chronic kidney disease and 
substance abuse, and were more likely to be diagnosed 
with COPD, arthritis, osteoporosis, asthma, cancer, depres-
sion, anxiety, dementia and schizophrenia (table 2).

STRENGTHS AND LIMITATIONS
By leveraging harmonised and processed EHR data for 
clinical and translational research, our methods have 
several strengths. We are capitalising on the untapped 
depth and breadth of clinical data available in modern 
EHR systems in order to comprehensively identify risk 
factors of diseases, thus overcoming the inherent limita-
tion of relying on a relatively small number of risk factors 
as is common in prospective research cohorts. We are 
using a foundational model that goes beyond traditional 
risk factors to include reproductive factors, age at onset 
of risk factors and a broad spectrum of clinical tests and 
diagnoses. Importantly, we have also created an indepen-
dent validation cohort of patients from a largely rural area 
in which to assess the generalisability and transportability 
of our findings and models from the discovery cohort. 
Furthermore, in a large subset of patients, we have biolog-
ical samples and genomic data. Thus, by developing and 
extending EHR algorithms for population research, 
these cohorts include a wide-range of sex-specific and 
other important risk factors or phenotypes occurring 
throughout the lifespan. Furthermore, we are identifying 

barriers and determining best practices for implementing 
study results from one type of medical practice to another.

Future use of innovative machine learning methods, 
such as gradient boosting machine and deep learning, 
will allow us to address several important and challenging 
questions associated with the use of EHR data such as 
how to efficiently (1) deal with missing values, (2) assess 
and use a large number of variables without over-fitting, 
(3) learn from non-linear relationships in the data and 
(4) design time-to-event models. In a community EHR 
environment, missing values will be frequent and will, in 
many cases, be informative. For example, the fact that a 
particular test was not ordered can itself be predictive. 
Traditional modelling approaches, such as linear or Cox 
regression, do not explicitly handle missing data, and this 
is one reason that risk modelling has traditionally been 
confined to prospective research cohorts.

The biggest limitation in utilisation of these techniques 
is the ability to develop accurate and transportable 
EHR phenotype algorithms for female-specific variables 
that are difficult to phenotype (eg, adverse pregnancy 
outcomes and gynaecological surgeries). Likewise, there 
can be challenges with determining the correct combina-
tion of gynaecological surgeries (eg, unilateral/bilateral 
oophorectomy with/without hysterectomy) and timing 
in regards to hormone therapy. By contrast, we do not 
foresee issues related to identifying male-specific factors, 
because these conditions are diagnosis based and thus 
available in the EHR. Finally, we did not collect informa-
tion regarding usage of over-the-counter medications or 
supplements and multi-vitamins.

There are some additional limitations for the valida-
tion cohort in the 26 counties of southern Minnesota and 
western Wisconsin. Preliminary information indicates 
that EHR data will be more limited for this population. 
In particular, PPI, including family history of disease and 
difficulty climbing stairs is not routinely electronically 
available. In addition, because the EHR data are only 
available from 2010 forward, historic data on reproduc-
tive and gynecologic factors are more limited. However, 
this real world validation step will assess the performance 
of the phenotype algorithms to determine risk factor 
status as well as the prediction models including such 

Validation cohort: 26-county region

Overall
n=333 460

Female
n=173 840

Male
n=159 620 P value

Schizophrenia 6432 (1.9) 3439 (2.0) 2993 (1.9) 0.031

Results are presented as n (%) unless otherwise noted.
*Index date is 1 January 2013.
†Closest measurement within 3 years prior to index date.
‡Conditions were ascertained using ICD codes recommended by the US Department of Health and Human services, with the exception of 
anxiety which was defined by CCS category, using electronic medical history from 2010 to index date.
BMI, body mass index; BP, blood pressure; COPD, chronic obstructive pulmonary disease; ICD, International Classification of Diseases.

Table 2  Continued
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information when available. If inclusion of historic health 
information significantly improves the models, we will 
have evidence that such information should be routinely 
collected during healthcare visits to adequately assess 
disease risk. In the future, collection of historic health 
information may then be incorporated as part of clinical 
practice to improve disease risk assessment. Furthermore, 
some healthcare encounters were not captured that 
occurred outside of the REP. Although coverage varies 
by county, the REP captures approximately 100% of the 
Olmsted County population compared to the US Census, 
whereas coverage of the 26-county population is approx-
imately 60%.11

Finally, the availability of biological samples and 
genome-wide and exome sequence information on a 
large sample of cohort participants is a strength. However, 
those with biologic samples and genomic information 
were not selected from the population randomly; there-
fore, they are not representative of the discovery or vali-
dation cohort.

CONCLUSION
With detailed and rich EHR data and using innovative 
machine learning methods, the population-based cohorts 
described herein can be used for a wide-range of studies, 
including but not limited to studies of novel disease asso-
ciations, defining clusters of disease or creating risk scores 
for disease prediction.
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