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Abstract

Non-communicable diseases, including cardiovascular diseases (CVDs), are increasing

in African populations. High serum low density lipoprotein cholesterol (LDL-cholesterol) lev-

els are a known risk factor for CVDs in European populations, but the link remains poorly

understood among Africans. This study investigated the associations between serum

LDL-cholesterol levels and selected variants in the low density lipoprotein receptor (LDLR),

apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9) and low

density lipoprotein receptor adaptor protein 1 (LDLRAP1) genes in some selected African

populations. Nineteen SNPs were selected from publicly available African whole genome

sequence data based on functional prediction and allele frequency. SNPs were genotyped

in 1000 participants from the AWI-Gen, study selected from the extremes of LDL-cholesterol

level distribution (500 with LDL-cholesterol>3.5 mmol/L and 500 with LDL-cholesterol<1.1

mmol/L). The minor alleles at five of the six associated SNPs were significantly associated

(P<0.05) with lower LDL-cholesterol levels: LDLRAP1 rs12071264 (OR 0.56, 95% CI: 0.39–

0.75, P = 2.73x10-4) and rs35910270 (OR 0.78, 95% CI: 0.64–0.94, P = 0.008); APOB

rs6752026 (OR 0. 55, 95% CI: 0.41–0.72, P = 2.82x10-5); LDLR: rs72568855 (OR 0.47,

95% CI: 0.27–0.82, P = 0.008); and PCSK9 rs45613943 (OR = 0.72, 95% CI: 0.58–0.88,

P = 0.001). The minor allele of the sixth variant was associated with higher LDL-cholesterol

levels: APOB rs679899 (OR 1.41, 95% CI: 1.06–1.86, P = 0.016). A replication analysis in

the Africa America Diabetes Mellitus (AADM) study found the PCSK9 variant to be signifi-

cantly associated with low LDL-cholesterol levels (Beta = -0.10). Since Africans generally

have lower LDL-cholesterol levels, these LDL-cholesterol associated variants may be

involved in adaptation due to unique gene-environment interactions. In conclusion, using a

limited number of potentially functional variants in four genes, we identified significant asso-

ciations with lower LDL-cholesterol levels in sub-Saharan Africans.
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Introduction

The incidence of non-communicable diseases (NCDs) is increasing in Africa [1] and in 2016,

34% of all deaths in Africa were attributed to NCDs [2]. The most prevalent group of NCDs is

cardiovascular disease (CVD) for which the common risk factors include dyslipidaemia, diabe-

tes, hypertension and obesity, in combination with smoking, excessive alcohol use and low

socioeconomic status [3–5]. High levels of LDL-cholesterol have also been known to be a

major contributing factor to the development of CVD.

Investigating genetic associations with LDL-cholesterol levels among sub-Saharan Africans

is the focus of this study. LDL-cholesterol levels have a multifactorial aetiology, where environ-

mental factors and variants in many different genes contribute to determining levels of LDL-

cholesterol [6,7]. We aimed at selecting variants potentially associated with LDL-cholesterol

levels. We did this by identifying common functional variants in genes associated with the

monogenic form of high LDL-cholesterol levels–familial hypercholesterolaemia (FH). FH, an

autosomal dominant trait, is one of the most common single gene disorders, with a worldwide

prevalence of about 1 in 200–250 [8], and is often caused by deleterious variants in LDLR,

APOB, PCSK9 or LDLRAP1 [9]. The genetic contribution to LDL-cholesterol levels has not

been extensively investigated in African populations and variants in these four genes could

potentially influence LDL-cholesterol levels in African populations. Using these genes as

potential candidates, we investigated genetic associations with LDL-cholesterol levels as a com-

plex multifactorial trait in African populations. We did this by using an extreme phenotype

categorical study design. We compared a group of individuals with high levels of LDL-choles-

terol to a group of individuals with low levels of LDL-cholesterol.

Several genome-wide association studies (GWASs) have been performed to identify variants

associated with LDL-cholesterol levels [10–17]. However, most of these studies were conducted

in European populations with a limited number in African Americans. A meta-analysis of

>100,000 European individuals found 22 loci associated with LDL-cholesterol levels including

LDLR, APOB, PCSK9 and LDLRAP1 [18]. Studies in African Americans have replicated some

of these associations, and in some cases, significantly narrowed down the size of the associated

regions, due to generally lower linkage disequilibrium in African populations [19–25]. How-

ever, African specific variants that alter LDL-cholesterol levels have not been fully investigated.

Africa is generally a genetic data-scarce region; therefore, large studies on the genetic aetiol-

ogy of LDL-cholesterol level variation in African populations are few. The genes chosen for

this study were based on data from previous associations in European populations and we gen-

otyped selected variants. Ideally, in an African setting, sequence based-approaches are prefera-

ble as they have the potential to identify novel African genetic contributions to the variation in

lipid levels.

The aim of this study was to investigate whether selected genetic variants in genes previ-

ously associated with LDL-cholesterol levels show association in African populations. We

identified five variants associated with low LDL-cholesterol levels and one variant associated

with high LDL-cholesterol levels. The African American Diabetes Mellitus (AADM) study was

used as a replication cohort [26,27]. Given the clinical significance of the high LDL-cholesterol

phenotype, this study provides information relevant to an African setting.

Methods

Participants

Participants came from six sites in four African countries: Kenya, South Africa, Ghana and

Burkina Faso. They were selected from the H3Africa AWI-Gen Collaborative Center (Africa,
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Wits-INDEPTH Partnership for GENomic studies), an established project investigating geno-

mic and environmental factors that influence cardio-metabolic disease risk in rural and urban

Africans [28]. From ~10,000 AWI-Gen participants, 500 participants with high fasting LDL-

cholesterol levels (> 3.5 mmol/L) and 500 participants with low LDL-cholesterol levels (< 1.1

mmol/L) were selected to represent the “cases” and “controls”, respectively. The thresholds

were set based on the distribution of LDL-cholesterol levels in the AWI-Gen cohort. The ratio-

nale was that because all individuals are born with an LDL-cholesterol level of approximately

1.1 mmol/L, [29] a value lower than this suggests a genetic aetiology. A recent meta-analysis

on African data used a cut-off of 3.3 mmol/L for high LDL-cholesterol [30], therefore, the high

cut-off of> 3.5 mmol/L was appropriate for our study. The age range in our study was

between 35 and 80 years. Participants were excluded if they had diabetes, a BMI >35, had

problematic alcohol use or were on medication for lipidaemia. The AWI-Gen study was

approved by the Human Research Ethics Committee (HREC) (Medical) of the University of

the Witwatersrand (Wits), in accordance with the Declaration of Helsinki principles (protocol

number M121029), renewed in 2017 (protocol number M170880). This study was approved as

an MSc research project by the HREC (Medical) (protocol number M160833).

The data collection for the AWI-Gen study is described by Ali, et al., 2018 [31]. Briefly,

serum LDL-cholesterol and glucose were analysed with a Randox Daytona Plus Clinical

Chemistry analyser (Crumlin, Northern Ireland) using colorimetric assays. The coefficient of

variation of the laboratory measurement for lipids and glucose was less than 1.5% and 2.3%,

respectively. Body Mass Index (BMI, kg/m2) was calculated from height and weight measure-

ments. Classification of diabetes was guided by the standards set by the American Diabetes

Association [32]. It was defined as the presence of one or more of the following conditions:

previous diagnosis by a health care provider (which excluded gestational diabetes), taking

medication for the condition, or a fasting blood glucose level of� 7.0 mmol/L. Alcohol con-

sumption was categorised into: never consumed; current non-problematic consumer; current

problematic consumer; former consumer. Problematic drinking was determined according to

the CAGE questionnaire [33], where four questions related to potential problematic alcohol

consumption were asked, and categorised as problematic if the participant answered “yes” to

at least two of them.

Candidate gene and variant selection

Variants in LDLR, APOB, PCSK9 and LDLRAP1 were identified using publicly available whole

genome sequence (WGS) data from African participants in the 1000 Genomes Project (KGP)

and the African Genome Variation Project (AGVP). The variants were selected on the basis of

in silico functional prediction and allele frequency in African populations and genotyped in a

group of 1000 AWI-Gen participants, half with low and half with high LDL-cholesterol levels.

The variants were tested for association in a case:control study design with high (cases) com-

pared to low (controls) LDL-cholesterol levels, correcting for multiple testing and considering

potential confounders.

The four genes are known to be associated with monogenic FH, and in some cases also with

multifactorial LDL-cholesterol levels. Variants in these genes were extracted in VCF file format

from WGS data of African population samples available from KGP and the AGVP. A region

including the genomic sequence of each gene, plus a 1000bp flanking region on either side,

was screened for variants. A total of 975 individuals from eight African populations were

included in the investigation: 655 WGS from KGP and 320 WGS from AGVP.

A total of 3541 variants were identified. The variants were functionally annotated using

CADD [34] and Ensembl’s VEP [35] to identify potentially deleterious variants. Sequences
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from KGP and AGVP were mapped to GRCh37, therefore VEP was used on Ensembl’s archive

site for GRCh37. Variants with a CADD score >10, SIFT score <0.05 or PolyPhen score >0.5

were selected as potentially deleterious.

To increase the power of the association analysis, only variants that were observed in at

least six of the eight populations were chosen. Furthermore, the variants were filtered in two

stages. Firstly, variants with at least one deleterious score, and being either a missense, start/

stop, gain/loss, exonic or regulatory variant, were selected. Secondly, variants with a minor

allele frequency (MAF) in African populations (according to dbSNP) of between 10% and 45%

were selected to boost the power of the analysis. Linkage disequilibrium (LD) was assessed for

the selected variants and no pairs were in strong LD (Haploview, r2>0.4) [36].

Genotyping

The Agena Bioscience MassARRAY genotyping platform was used to genotype 19 selected SNPs.

This service was provided by Inqaba Biotech in Pretoria, South Africa. The DNA used for the gen-

otyping was obtained from the Biobank based at the Sydney Brenner Institute for Molecular Bio-

science (SBIMB), Johannesburg, South Africa. The DNA concentration for each of the 1000

samples was normalised to ~30 ng/μl and ~10 μl DNA was provided. The MassARRAY system

software was used to test whether variants of interest are likely to be successfully genotyped.

Data analysis

PLINK 1.9 [37] was used. The genotype data was separated into cases (high LDL-cholesterol

levels) and controls (low LDL-cholesterol levels) so that logistic regression could be carried

out. Quality control was performed and samples with>17/19 missing SNP data were excluded

from further analysis. SNP variants with >104/998 (>10%) missingness, Hardy-Weinberg

equilibrium (HWE) P<0.005, differential missingness <1x10-5 and MAF <0.01 were excluded

from further analysis. Quality control measures were derived from Marees et al., (2018) [38]

with slight modifications to fit this small dataset.

Association analysis

We used logistic regression analysis using 14 SNPs in the four genes of interest. Associations

were corrected for multiple testing using the Benjamini-Hochberg method. All associations

with P<0.05 after adjustment were considered significant. The odds ratios (OR) and 95% confi-

dence intervals (CI) were calculated using the major allele (A2) as a reference for all associa-

tions. The logistic regression analysis was adjusted for variables that were identified as potential

covariates, namely: sex, BMI, fasting glucose levels and geographical origin of participants.

Polygenic risk score (PRS)

A simple additive PRS for lower LDL-cholesterol was calculated using six variants (P<0.05)

that were significant after adjusting for covariates (Fig 3A). A frequency plot with the PRS for

cases and controls was generated. A t-test was completed to test for significance between cases

and controls. A plot showing the linear correlation of the PRS against the mean of LDL-choles-

terol level per risk score was generated (Fig 3B).

Replication study

Replication analysis of the six variants associated with LDL-cholesterol was performed in the

AADM study. This ongoing genetic epidemiology study of diabetes and related traits has been

described previously [26,27]. Briefly, individuals attending medical clinics or referred for
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clinical suspicion of diabetes to university medical centres in urban sites in Nigeria (Enugu,

Lagos, and Ibadan), Ghana (Accra and Kumasi), and Kenya (Eldoret) were recruited. Within

the AADM study population, 50.2% were found to have Type 2 Diabetes. Genotyping was con-

ducted using two different GWAS arrays: Affymetrix Axiom1 PANAFR SNP array and the

Illumina Consortium Multi-Ethnic Global Array (MEGA). Quality control was conducted sep-

arately for each of the resulting datasets. After technical quality control, sample-level genotype

call rate was at least 0.95 for all participants. Each SNP dataset was filtered for missingness,

HWE and allele frequency. SNPs passing the following filters were retained: missingness

<0.05, HWE P>1 × 10−6 and MAF >0.01. SNPs that passed quality control were used as the

basis for imputation. Imputation of all samples was done with the African Genome Resources

Haplotype Reference Panel using the Sanger Imputation Server [39]. Analysis was conducted

using a linear mixed model of the inverse normal transformations of the age-, age squared-,

and sex-adjusted residuals. From prior work [40], the first three principal components (PCs)

of the genotypes were found to be statistically significant and were included in the model,

along with adjustment for BMI. The model included a genetic relationship matrix to account

for the random effect of relatedness, as related individuals were included in AADM. Models

were run using EPACTS [41]. Statistical significance was declared at P<0.01 (0.05/5 [variants

available in AADM]) with consistent direction of effect.

Statistics

A Chi-squared test was used to determine whether there was a significant difference between

males and females with regard to LDL-cholesterol levels. The variables age, BMI, fasting glucose

levels and LDL-cholesterol levels were all tested for normality. None of the variables fit a normal

distribution, and therefore a Mann-Whitney U test was used to determine whether there was a sig-

nificant difference between the cases and controls. STATA was used for these statistical tests [42].

Results

There are more females in the low LDL-cholesterol group, and the high LDL-cholesterol

group was characterised by a higher BMI and higher fasting glucose levels (Table 1).

The distribution of the LDL-cholesterol values in the group with low LDL-cholesterol ranged

from 0.4–1.2 mmol/L. The high LDL-cholesterol group had LDL-cholesterol levels ranging from

3.7–14.2 mmol/L. Two individuals were excluded from the analyses due to very high fasting LDL-

cholesterol levels of 14.2 mmol/L and 8.23 mmol/L as they may have a monogenic FH aetiology.

Variant filtering and QC

In total, 29 variants were selected for genotyping, but only 19 remained after assay design for

final genotyping. Of these, five variants failed quality control parameters (four variants due to

Table 1. Phenotype characterisation of 1000 AWI-Gen participants and 4116 AADM participants.

AWI-Gen Replication cohort: AADM

Phenotype High LDL-cholesterol (n = 500) Low LDL-cholesterol (n = 500) P value (n = 4116)

Sex (%F) 49.40% 60.80% 3x10-4 59.8%

Age (years) median (IQR) 51(45.00–56.00) 50(45.00–55.00) 0.19 51.00(42.00–60.00)

BMI (kg/m2) median (IQR) 25.94(18.22–29.51) 20.73(19.04–23.27) <1x 25.90(22.55–29.71)

Fasting serum glucose (mmol/L) median (IQR) 5.08(4.96–5.53) 4.60(4.19–5.05) <1x10-4 7.31(4.61–8.56)

LDL-cholesterol (mmol/L) median (IQR) 4.21(3.93–4.61) 0.90(0.71–1.01) NA 3.23(2.53–4.09)

IQR = Interquartile range

https://doi.org/10.1371/journal.pone.0229098.t001
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high missingness, one variant not in HWE), leaving 14 variants to be analysed (see Table 2 for

more information). Seven samples were removed (five due to high missingness and two as

they were high LDL-cholesterol outliers who could potentially have monogenic FH), leaving

993 samples to be analysed.

Some missense variants had no SIFT or PolyPhen2 scores in the databases we used, since

they were not annotated at the time the search was performed.

Association analysis

An allelic association (Table 3) found six significantly associated loci after correcting for multi-

ple testing (P<0.05). The minor alleles of five variants were associated with low LDL-choles-

terol levels and the minor allele of only one variant was associated with high LDL-cholesterol

levels. After adjusting for covariates (sex, BMI, fasting glucose and geographic region), logistic

regression (Table 4) revealed five variants that were significantly associated with low LDL-cho-

lesterol levels: APOB rs6752026 (OR: 0.55) and LDLRAP1 rs12071264 (OR: 0.54) and

rs35910270 (OR: 0.78), PCSK9 rs45613943 (OR: 0.72), LDLR rs72658855 (OR: 0.47). Only one

variant was significantly associated with increased levels of LDL-cholesterol: APOB rs679899

(OR: 1.41). A forest plot was generated using the 14 variants from Table 4 (Fig 1).

Fig 2 shows the association of the genotypes for six variants significantly associated with

low and high LDL-cholesterol levels after adjusting for covariates. For four variants (Fig 2A–

2D), the minor allele contributes to lower LDL-cholesterol levels in these populations. There is

a decrease in LDL-cholesterol when the minor allele is present (in both the heterozygous and

homozygous genotype) for these four variants. This suggests that these alleles may have a gain

of function LDL-cholesterol lowering mode of action. The minor allele of the fifth variant

Table 2. Functional annotation scores and minor allele frequencies for 14 SNP variants.

Low Density Lipoprotein Receptor (LDLR)

Genomic location rs number PolyPhen2 score SIFT score CADD score African MAF Global MAF Type of variant

19:11238239 rs2569540 Probably damaging (0.96) Deleterious (0) 1.20 C = 0.42 C = 0.32 missense

19:11242133 rs3826810 - - 4.198 A = 0.12 A = 0.08 missense

19:11210921 rs72658855 - - 15.14 T = 0.04 T = 0.01 synonymous

19:11226800 rs5929 - - 12.1 T = 0.12 T = 0.12 synonymous

19:11230881 rs5925 - - 0.51 C = 0.15 C = 0.34 synonymous

Apolipoprotein B (APOB)

Genomic location rs number PolyPhen2 score SIFT score CADD score African MAF Global MAF Type of variant

2:21229860 rs12720855 possibly damaging (0.64) - 23.60 G = 0.08 G = 0.02 missense

2:21250914 rs679899 possibly damaging (0.64) Tolerated (0.12) 26.60 A = 0.13 A = 0.49 missense

2:21260934 rs6752026 probably damaging (0.92) Deleterious (0) 25.30 A = 0.11 A = 0.03 missense

2:21245367 rs3791981 - - 2.20 G = 0.43 G = 0.20 regulatory region

Proprotein convertase subtilisin/kexin type 9 (PCSK9)

Genomic location rs number PolyPhen2 score SIFT score CADD score African MAF Global MAF Type of variant

1:55518370 rs7552471 - - 20.40 T = 0.08 T = 0.02 synonymous

1:55509872 rs4927193 - - 3.89 C = 0.22 C = 0.15 downstream gene

1:55518622 rs45613943 - - 3.55 C = 0.29 C = 0.12 regulatory region

Low Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1)

Genomic location rs number PolyPhen2 score SIFT score CADD score African MAF Global MAF Type of variant

1:25889539 rs12071264 - - 4.70 G = 0.14 G = 0.04 intronic

1:25893927 rs35910270 - - 4.73 Del = 0.42 Del = 0.49 frameshift

MAF = minor allele frequency, Del = deletion,— = no result available

https://doi.org/10.1371/journal.pone.0229098.t002
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(rs35910270) (Fig 2E) shows that there is a decrease in LDL-cholesterol levels only when the

homozygous minor allele genotype is present. This suggests a loss of function, recessive mode

of action. The major allele is associated with high LDL-cholesterol levels for the five variants.

The minor allele of the final variant (rs679899) (Fig 2F) shows that the minor allele is associ-

ated with high LDL-cholesterol levels.

In the PRS, “risk” is depicted by lower LDL-cholesterol (Fig 3A). Therefore, the curve of the

controls (low LDL-cholesterol) is shifted to the right (higher risk score for low LDL-choles-

terol), as expected. The two groups are significantly different from each other (P = 0.001). Fig

3B shows the correlation of the PRS with LDL-cholesterol levels. It is apparent that individuals

with a greater number of LDL-cholesterol reducing alleles have lower LDL-cholesterol levels.

Alleles individually have a small effect on the phenotype, but when considering alleles across

all five loci, the additive effect is clearly observed.

Replication of associated variants in an independent African study

We evaluated our associated variants in an independent sample of West and East Africans

drawn from the AADM study (participant characteristics: Table 1). One of the variants,

Table 3. Allelic association of 14 variants with and without adjustment for multiple testing in 993 individuals.

Gene SNP Minor allele (A1) Frequency in cases Frequency in controls OR 95% CI Unadjusted P value Adjusted P value

APOB rs6752026 A 0.10 0.17 0.56 0.43–0.73 1x10-4 2x10-4

PCSK9 rs45613943 C 0.24 0.32 0.67 0.55–0.82 1x10-4 5x10-4

LDLRAP1 rs12071264 G 0.07 0.11 0.56 0.40–0.76 2x10-4 0.001

APOB rs679899 A 0.15 0.10 1.56 1.19–2.04 0.001 0.01

LDLR rs72658855 T 0.02 0.04 0.48 0.28–0.82 0.01 0.02

LDLRAP1 rs35910270 del 0.37 0.43 0.80 0.67–0.96 0.01 0.04

LDLR rs3826810 A 0.09 0.12 0.73 0.55–0.97 0.03 0.06

LDLR rs5929 T 0.10 0.13 0.75 0.57–0.99 0.04 0.07

LDLR rs5925 C 0.16 0.14 1.20 0.94–1.54 0.15 0.23

APOB rs3791981 G 0.46 0.49 0.90 0.75–1.07 0.24 0.34

APOB rs12720855 G 0.07 0.08 0.87 0.62–1.21 0.41 0.52

PCSK9 rs7552471 T 0.09 0.08 1.08 0.79–1.48 0.64 0.75

PCSK9 rs4927193 C 0.24 0.24 1.02 0.83–1.26 0.84 0.85

LDLR rs2569540 G 0.43 0.43 0.98 0.82–1.17 0.85 0.85

OR = odds ratio, 95% CI = 95% confidence interval

https://doi.org/10.1371/journal.pone.0229098.t003

Table 4. Significant associations with LDL-cholesterol levels in the AWI-Gen cohort and replication in the AADM study.

AWI-Gen participants AADM participants

Gene Chr SNP A1 N OR 95% CI P value1 Frequency Beta SE P value2

APOB 2 rs6752026 A 993 0.5 0.41–0.73 2.82x10-5 0.15 -0.06 0.032 0.08

LDLRAP1 1 rs12071264 G 993 0.54 0.39–0.76 2.73x10-4 0.10 0.02 0.039 0.67

PCSK9 1 rs45613943 C 992 0.72 0.58–0.88 0.001 0.30 -0.10 0.025 <9x10-5

LDLR 19 rs72658855 T 993 0.47 0.27–0.82 0.008 0.05 0.0019 0.053 0.97

LDLRAP1 1 rs35910270 G 993 0.78 0.64–0.94 0.008 - - - -

APOB 2 rs679899 A 992 1.41 1.06–1.86 0.016 0.11 0.06 0.036 0.092

A1 = minor allele, N = no. of individuals genotyped, OR = odds ratio, 95% CI = 95% confidence interval, SE = standard error,
1 Adjusted for multiple testing and covariates (sex, BMI, fasting glucose levels and geographic region). Statistical significance set at P<0.05,
2 Adjusted for covariates (three PCs, BMI and relationship matrix). Statistical significance set at P<0.01 (P<0.05/number of variants tested).

https://doi.org/10.1371/journal.pone.0229098.t004
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rs35910270 (LDLRAP1), did not pass quality control filters in the replication dataset and was

not included in the replication analysis. PCSK9 variant rs45613943 was associated with lower

LDL-cholesterol in the AADM data (P<9x10-5; Table 4). The association of both APOB vari-

ants was directionally consistent with the main findings but did not reach statistical signifi-

cance (rs6752026 P = 0.08; rs679899 P = 0.09; statistical significance set at P<0.01). There was

no association between rs12071264 or rs72658855 with LDL-cholesterol in the AADM study.

Discussion

The aim of this study was to examine potentially functional variants in four genes for associa-

tion with LDL-cholesterol levels in black African populations. To increase the power to detect

associations we selected participants at the extremes of the LDL-cholesterol distribution with

high and low levels. LDL-cholesterol levels are influenced by many genetic variants at different

loci and by environmental factors, and lipid levels have an estimated heritability ranging

between 40 and 60% [43]. GWAS studies of very large sample sizes have generally explained

only 10–12% of the variability in LDL-cholesterol levels [18]. Some of the missing heritability

could be explained by gene-environment interactions and gene-gene interactions [44].

Mutations in the genes investigated also contribute to monogenic dyslipidaemias. Deleteri-

ous mutations in LDLR are the most common cause of FH [8,45,46]; loss of function variants

in LDLRAP1 have been documented to cause high LDL-cholesterol levels with a recessive

form of inheritance (38); variants in APOB have been known to cause both low and high LDL-

cholesterol levels [16,47–49]; and loss of function variants that cause low LDL-cholesterol have

been identified in PCSK9 [50–52]. In this study, two LDLRAP1 variants were associated with

low LDL-cholesterol levels. LDLRAP1 rs12071264 is located in intron 5, close to a splice site

[53], and could affect transcription. This variant is absent in European populations. LDLRAP1
rs35910270 is in the 3’UTR and is common in both European (47%) and African (42%)

populations.

Two variants in APOB were associated with LDL-cholesterol levels. rs6752026, a missense

variant in exon 5, was associated with lower LDL-cholesterol levels. The proline to serine

change is predicted to be deleterious by both SIFT and PolyPhen, however, it has not been

Fig 1. Logistic regression of the 14 selected gene variants associated with LDL-cholesterol levels. The plot shows

the odds ratio (OR) for variants after adjusting for covariates (sex and geographic region). Bars represent 95%

confidence interval (CI). When OR<1, the minor alleles are associated with low LDL-cholesterol levels. Only one

variant is significantly associated with high LDL-cholesterol levels (rs679899) with a significant OR>1.

https://doi.org/10.1371/journal.pone.0229098.g001
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previously associated with LDL-cholesterol levels. This variant occurs at very low frequencies

in European populations (~0.1%) but is common in Africans (~11%). The second, rs679899, is

an alanine to valine missense variant associated with higher LDL-cholesterol levels. It is com-

mon in European populations (86%), but less common in African populations (13%). The evi-

dence for the deleterious nature of the variant is conflicting with PolyPhen predicting it to be

possibly damaging, while SIFT predicts it to be tolerated. One variant in PCSK9, rs45613943,

was associated with low LDL-cholesterol levels and was also significantly associated with low

LDL-cholesterol levels in an African replication cohort (Beta:-0.10, P<9x10-5), strengthening

its association with low LDL-cholesterol levels across several African populations. The variant

allele occurs at low frequencies in European populations (5%) but is more common in Africa

(~29%). This is likely to be a loss of function variant, as loss of function of the PCSK9 enzyme

increases the number of LDL receptors returning to the surface of the cell, but further func-

tional studies would be required to assess the effect of the variant on the function of the pro-

tein. Interestingly, one variant in LDLR, rs72568855, was associated with low LDL-cholesterol

levels and this variant has not been reported in European populations.

Associations with four of the variants would not have been detected in studies with partici-

pants from Europe as they appear to be African-specific or extremely rare in Europeans. In all

Fig 2. Genotypes relative to LDL-cholesterol distribution for 6 variants significantly associated with LDL-

cholesterol levels after logistic regression. The 993 AWI-Gen individuals with low and high LDL-cholesterol are

included in the plots. A-D: APOB rs6752026, LDLRAP1 rs12071264, PCSK9 rs45613943 and LDLR rs72658855 show

how LDL-cholesterol levels decrease with presence of the minor allele. E: LDLRAP1 shows how LDL-cholesterol levels

decrease only when both minor alleles are present (deletion). F: APOB rs679899 shows an increase of LDL-cholesterol

levels with the presence of the minor allele.

https://doi.org/10.1371/journal.pone.0229098.g002
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cases, the rare allele was associated with lower LDL-cholesterol. This may suggest that the alle-

lic variants, excluding rs45613943, have a gain of function impact, or are in close LD with

functional variants that contribute to decreased LDL-cholesterol levels in Africans. The PCSK9
variant, rs45613943, is a regulatory variant. This may decrease transcription, resulting in less

production of protein and an increased turnover of the LDL receptors, thereby reducing the

serum levels of LDL-cholesterol. The APOB rs679899 rare allele was the only variant that was

significantly associated with high LDL-cholesterol levels in this study.

Participants from East, West and South Africa have an LDL-cholesterol distribution favour-

ing lower LDL-cholesterol levels and interestingly, the rare alleles at five loci (Fig 2A–2E)

showed association with low LDL-cholesterol levels. Only one variant was associated with high

LDL-cholesterol levels (Fig 2F). The PRS shows a modest, but significant (P = 0.001) shift

between individuals with high and low LDL-cholesterol levels and a PRS is likely to improve

with more markers from a GWAS analysis of the full AWI-Gen cohort.

Fig 3. Correlation of the polygenic risk score (PRS) with LDL-cholesterol levels in 993 individuals. Six LDL-

cholesterol associated variants (P<0.05) after adjustment for covariates. Cases include individuals with high LDL-

cholesterol levels, and controls with low LDL-cholesterol levels. A: PRS calculated using six variants. Risk score refers

to the number of lipid lowering alleles. Plot shows the frequency of cases and controls for each score. The curve of the

controls is shifted to the right, indicating that in controls the LDL-cholesterol levels decreases with the addition of

alleles associated with lower LDL-cholesterol levels (either common or minor allele). B: Plot of risk score against mean

LDL-cholesterol level per risk score. It is apparent that with the addition of each allele associated with lower LDL-

cholesterol levels (common or minor allele), the mean LDL-cholesterol level of the participants decreased.

https://doi.org/10.1371/journal.pone.0229098.g003
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The LDL-cholesterol distribution in African populations is generally considered to be

lower, compared to non-African populations; therefore, it is counter intuitive that the com-

mon alleles at the five associated variants would associate with higher LDL-cholesterol levels in

Africans. For five of the six significantly associated variants identified in this study, the major

alleles were associated with higher LDL-cholesterol levels. Although this may suggest that the

normal distribution of LDL-cholesterol levels in African populations would be expected to be

higher, the rare alleles in rs6752026, rs12071264, rs35910270 and rs72658855 may have some

gain of function effect that associates them with lower LDL-cholesterol levels.

In addition, gene-environment interactions could play a role, and low-fat diets and high

physical activity could also contribute to lower LDL-cholesterol levels in African populations.

However, as African populations become more urbanised, a more western lifestyle will follow,

which could increase LDL-cholesterol, especially in those with a genetic predisposition for

high LDL-cholesterol levels [54].

Detecting hyperlipidaemia early in individuals and administering treatment and lifestyle

changes can reduce the number of CVD related events, and subsequently reduce the health

burden among Africans [55]. Precision public health is using data to implement intervention

strategies that will most efficiently benefit the majority of individuals in a population [56].

Using population specific genetic variants to predict LDL-cholesterol levels will only be effec-

tive if they have good predictive potential and the assays are affordable. At present, a serum

cholesterol test remains a better and more cost-effective measure of LDL-cholesterol levels.

Intervention strategies, such as lifestyle changes and appropriate prescription of medication

for high LDL-cholesterol that is effective for the population in question, could be implemented

for a better outcome.

Limitations & future research

Even though the AWI-Gen participants were all African, they were multi-ethnic with an

uneven distribution across geographic regions in West, East and South Africa. This could have

caused a bias due to population sub-structure, despite adjusting for study site (as proxy for eth-

nicity) in the logistic regression analysis. Nonetheless, since lipid data on African populations

are limited, this study serves as a starting point for subsequent research endeavours on under-

standing genetic associations with LDL-cholesterol levels in African populations.

Due to funding limitations, only a small number of variants were tested per gene. Ideally, a

more representative set of markers to capture all the haplotype blocks across each gene (to

account for lower linkage disequilibrium in African populations) would have provided a more

accurate indication of the association of variants in these genes with LDL-cholesterol levels. A

GWAS analysis for LDL-cholesterol in the AWI-Gen study is in progress.

This study used a basic logistic regression approach to analysing variants, unlike the linear

mixed model used by the replication study. Glucose levels were not adjusted for in the replica-

tion study.

Conclusion

In selected African populations in four sub-Saharan African countries, we investigated the

association of variants in four genes (LDLR, APOB, PCSK9 and LDLRAP1) known to be

involved in lipid metabolism. The study identified five variants associated with low LDL-cho-

lesterol levels and one variant associated with high LDL-cholesterol levels. Using a different

cohort from West Africa, we replicated the association of PCSK9 rs45613943C with low LDL-

cholesterol. These data suggest allelic association differences with LDL-cholesterol levels across

African populations, which may be influenced by gene-environment interactions.
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