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ABSTRACT Differences in phenotype among genetically identical individuals exposed to the same
environmental condition are often noted in genetic studies. Despite this commonplace observation, little
is known about the causes of this variability, which has been termed microenvironmental plasticity. One
possibility is that stochastic or technical sources of variance produce these differences. A second possibility
is that this variation has a genetic component. We have explored gene expression robustness in the
transcriptomes of 730 individual Drosophila melanogaster of 16 fixed genotypes, nine of which are infected
with Wolbachia. Three replicates of flies were grown, controlling for food, day/night cycles, humidity,
temperature, sex, mating status, social exposure, and circadian timing of RNA extraction. Despite the
use of inbred genotypes, and carefully controlled experimental conditions, thousands of genes were dif-
ferentially expressed, revealing a unique and dynamic transcriptional signature for each individual fly. We
found that 23% of the transcriptome was differentially expressed among individuals, and that the variability
in gene expression among individuals is influenced by genotype. This transcriptional variation originated
from specific gene pathways, suggesting a plastic response to the microenvironment; but there was also
evidence of gene expression differences due to stochastic fluctuations. These observations reveal previ-
ously unappreciated genetic sources of variability in gene expression among individuals, which has impli-
cations for complex trait genetics and precision medicine.
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In many species, there are instances in which individuals of identical
genotype have different phenotypes. Human diseases such as cancer
(Lichtenstein et al. 2000), Type I and Type II diabetes (Kaprio et al.
1992; Hyttinen et al. 2003), multiple sclerosis (Willer et al. 2003),
Alzheimer’s disease (Pedersen et al. 2004), Parkinson’s disease
(Tanner et al. 1999), narcolepsy (Pollmacher et al. 1990), and insomnia
(Watson et al. 2006) can be discordant between a monozygotic twin

and its sibling. This discordance among genetically identical individuals
is an example of phenotypic plasticity, which is a change of phenotype
in response to environmental changes (Callahan et al. 1997). For some
diseases, evidence implicates environmental factors unique to each in-
dividual in a twin pair, rather than environmental factors common to
both twins, as a possible source of the discordance (Kaprio et al. 1992;
Lichtenstein et al. 2000; Hyttinen et al. 2003; Watson et al. 2006).
Environmental factors unique to an individual within an otherwise
common environment can be defined as microenvironmental effects
(Hill and Mulder 2010). Breeding programs involving economically
important animals and plants have reported that microenviron-
mental effects are under partial genetic control. Genetic variation
in the microenvironmental variability of a wide variety of traits has
been documented, such as litter size in sheep, pigs, mice, and rabbits
(SanCristobal-Gaudy et al. 2001; Sorensen and Waagepetersen 2003;
Gutierrez et al. 2006; Ibanez-Escriche et al. 2008b; Yang et al. 2011);
body weight measures in snails, chickens, mice, and rabbits (Ros et al.
2004; Gutierrez et al. 2006; Rowe et al. 2006; Garreau et al. 2008;
Ibanez-Escriche et al. 2008a); and grain yield in maize (Yang et al.
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2012). Furthermore, studies have demonstrated that gene expression
variability among humans has a genetic basis (Li et al. 2010; Mar et al.
2011; Hulse and Cai 2013). One difficulty with outbred populations is
that nonadditive genetic variance and environmental variance are con-
founded, making computation of the relative contributions of either
component difficult (Hill and Mulder 2010). In contrast, variability in
phenotypes among genetically identical individuals within a common
environment can be considered a measure of phenotypic plasticity in
response to microenvironmental changes (Morgante et al. 2015). Re-
cent work has therefore employed inbred (or isogenic) lines in model
organisms in order to measure microenvironmental plasticity directly,
and to understand its underlying genetic basis. Microenvironmental
plasticity in phenotypes is common among inbred model organisms.
For example, individual plants exposed to the same environmental
conditions respond differently in their morphology and fitness traits
within recombinant inbred lines of Arabidopsis thaliana (Hall et al.
2007; Sangster et al. 2008) and maize (Ordas et al. 2008). Moreover,
isogenic strains of yeast exhibit variability in gene expression (Blake
et al. 2006; Ansel et al. 2008), and studies using Drosophila mela-
nogaster have identified phenotypic differences among genetically
identical flies for wing shape (Whitlock and Fowler 1999); for ster-
nopleural and abdominal bristle number (Mackay and Lyman
2005); for sleep and activity measures (Harbison et al. 2013); for
chill coma, startle response, and starvation resistance (Morgante
et al. 2015); for locomotor handedness (Ayroles et al. 2015); and
for food intake (Garlapow et al. 2015). Genomic polymorphisms
associated with within-genotype variability and microenvironmen-
tal plasticity have been identified for some traits (Mackay and Lyman
2005; Hall et al. 2007; Ansel et al. 2008; Ordas et al. 2008; Sangster et al.
2008; Harbison et al. 2013; Ayroles et al. 2015; Garlapow et al. 2015;
Morgante et al. 2015), but they do not indicate how phenotypic differ-
ences between individuals of identical genotype in common environ-
mental conditions might arise. One possibility is that within-genotype,
within-environment differences develop from individualized gene
expression profiles.

Several studies support thenotion that differences in gene expression
explainmicroenvironmental phenotypic plasticity. Gene expression has
been measured in lymphoblastoid cell lines derived from monozygotic
twins discordant for rheumatoid arthritis (Haas et al. 2006), schizo-
phrenia (Kakiuchi et al. 2008), and bipolar disorder (Kakiuchi et al.
2003; Matigian et al. 2007); from monocytes and skin fibroblasts of
monozygotic twins discordant for Type I diabetes (Beyan et al. 2010;
Caramori et al. 2012); and from fat cells of monozygotic twins discor-
dant for obesity (Pietilainen et al. 2008). Differences in the expression of
key genes and genetic pathways relevant to disease were found between
discordant twins. Further, studies measuring chromatin marks, which
can activate or repress transcription, report that despite common en-
vironmental influences, differences in the epigenetic milieu are present
in young monozygotic twins, and they only increase over time (Fraga
et al. 2005). In addition, an experiment examining the trade-off be-
tween pooling RNA samples to save costs and the ability to identify
differentially expressed genes in rats revealed that pooling samples
may obscure the variation in gene expression among individuals
(Kendziorski et al. 2005). This work implies that fluctuations in gene
expression have the capacity to alter phenotypes in genetically identical
individuals, and may contribute to the etiology of disease. Two diffi-
culties with these studies is the lack of control over environmental
exposures, and, of course, within-genotype sample size is limited in
twin studies. This is not an issue for Drosophila experiments, in which
identical genotypes can be grown in abundance under restricted envi-
ronmental conditions.

At present, the number of transcripts, and the extent to which they
differ in abundance among genetically identical metazoans reared in
identical environmental conditions, is not known. Is the transcriptome
robust to microenvironmental perturbations, or is it plastic (Gibson
2008)? Are expression differences among genetically identical individ-
uals heritable? Differences in gene expression among genetically iden-
tical individuals, if present, could be due to individual responses to
microenvironmental perturbations, or they could be due to stochastic
factors originating at the cellular level. To answer these questions, we
measured gene expression in individual flies in a highly replicated and
environmentally controlled study. Our objectives were to determine
whether there are gene expression differences among identical individ-
uals in a common environment, and to determine whether these gene
expression differences originate from defined biological responses to
the environment, indicating a genetic origin, or whether they reflect
stochastic cellular processes. To fulfill these objectives, we sequenced
mRNA from individual flies from 16 Drosophila Genetic Reference
Panel (DGRP) genotypes, which are inbred lines derived from wild-
caught flies, nine of which are infected withWolbachia (Mackay et al.
2012; Huang et al. 2014). We performed RNA-Seq on three biological
replicates of the experiment while maintaining the same environmental
conditions.We used eight flies for each genotype, environment, and sex
condition, which after quality control procedures resulted in sequence
data for 730 individual flies.

Our analyses reveal that gene expression exhibitsmicroenvironmen-
tal plasticity.Analysis ofmeangeneexpression suggested that 23%of the
transcriptome fluctuates among individual flies of identical genotype
within a common environment, that the transcripts fluctuating among
individuals were moderately heritable, and that the transcripts origi-
nated from specific biological processes rather than stochastic or
technical effects. We quantified microenvironmental plasticity in gene
expression as the variation in gene expression among individuals within
genotype, replicate, and sex, and found that it was heritable for 7.3% of
the transcriptome.Microenvironmentalplasticity ingeneexpressiondid
not alwaysmap to specific biological processes, had low heritability, and
may be partially stochastic in origin. Thus, certain categories of genes
respond to microenvironmental perturbations, while others are quite
robust. These findings reinforce the need to consider the influence of
environmental plasticity on the genetic basis of complex traits and
disease; the analysis of a trait is relatively straightforward if it is
influenced by genes with robust expression across individuals, but far
more challenging if it is influenced by genes that are plastic.

MATERIALS AND METHODS

Drosophila lines and culturing
We chose the following 16 lines of the DGRP (Mackay et al. 2012;
Huang et al. 2014) at random for this experiment, after excluding
five slow-growing lines: DGRP-93, DGRP-229, DGRP-320, DGRP-
352,DGRP-370,DGRP-563,DGRP-630,DGRP-703,DGRP-761,DGRP-
787, DGRP-790, DGRP-804, DGRP-812, DGRP-822, DGRP-850, and
DGRP-900. We maintained strictly controlled replicate environments
by using the following procedure. We seeded cultures with five males
and five females of each line on standard Drosophila medium (http://
flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm) in
numerical genotype order on a single shelf in one incubatormaintained
at 25�, 60% humidity, and a 12:12-hr light:dark cycle. We collected
virgin males and females from the parental cultures, and maintained
them at 20 to a same-sex vial for 4 d at the same location in the
incubator to control for potential effects of mating status (Isaac et al.
2010) and social exposure (Ganguly-Fitzgerald et al. 2006). Three
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separate biological replicates of the experiment were performed. At the
end of the 4-d period, eight flies of each genotype/sex/replicate were
anesthetized and frozen on dry ice beginning at 1:00 PM in randomized
genotype order in Axygen 96 Deep-well plates (Corning, Corning, NY)
containing 200 ml of 1.0 mm glass beads. Replicate environments
were stratified across plates. Additional details concerning our exper-
imental approach can be found in (Lin et al. 2016) and in the Gene
Expression Omnibus (GEO) entry (GSE60314) (see “DGRP_Number,”
“Sex,” Environment,” “Fly_Number,” and “Fly_Plate_Location” in the
GSE60314_GEO_run_summary.xlsx file, GEO entry GSE60314, for
the order of genotypes, sexes, and replicate environments).

Total RNA extraction, mRNA isolation, library
preparation, and sequencing
We extracted the total RNA of each fly using an RNeasy 96 Plate kit
(Qiagen, Valencia, CA). We then added 96 ERCC spike-in standards
(External RNA Controls Consortium, SRM2374, beta version, pools
78A/78B) to each total RNA sample before proceeding with library
preparation. We prepared 300–350 bp stranded PolyA libraries
for each fly following the method of Wang et al. (2011), with
modifications to the procedure as detailed in Lin et al. (2016) in a
96-well plate format. Using equal amounts of each library, we
pooled libraries in groups of 24 for sequencing in plate order (see
the “Sequence_Run_ID” for the 4-letter multiplex pool identifier in
the GSE60314_GEO_run_summary.xlsx file, GEO entry GSE60314).
Each library in the pool had a unique index, or “bar code”, sequence
added. We sequenced the libraries on a HiSeq2000 (Illumina, San
Diego, CA) in 76-bp, single-end sequencing reactions. We mapped
those reads that passed Chastity base-calling filters (score . 0.6)
(CASAVA 1.8.2, Illumina, San Diego, CA).

Sequence mapping and alignment
We mapped sequence reads to release 6 version 01 of the D. mela-
nogaster reference genome (FlyBase file: dmel-all-chromosome-r6.01.
fasta), with sequence-corrected ERCC sequences [ERCC_reference.fa,
see (Jiang et al. 2011)] added. We used TopHat2 (v2.0.10) with non-
default parameters “-g 1–library-type fr-firststrand” (Kim et al. 2013).
We mapped pre-miRNAs, pseudogenes, mRNAs, ncRNAs, rRNAs,
snoRNAs, snRNAs, tRNAs, genes, coding sequences, and exons. We
used HTSeq (Anders et al. 2015) to count the number of reads per gene
using the option “–stranded=reverse -i gene_id -t exon” (Lin et al. 2016).

Sequence quality control
We assessed the quality of the sequence data with a series of checking
procedures; the methods and calculations used are provided in greater
detail in Lin et al. (2016), and in the GEO entry (GSE60314). Briefly, we
first verified that the sequence data for each fly had the expected index or
bar code, and kept data for flies with 95% or greater of the expected index
in the analysis. We selected 118 flies at random, and prepared duplicate
libraries for them (Lin et al. 2016).We verified that the technical variance
due to library preparation was low as compared to the biological variance
(Lin et al. 2016). As the DGRP is fully sequenced (Mackay et al. 2012;
Huang et al. 2014), we compared the published sequence of each line to
each fly sequence in order to verify the genotype of each fly.We required
our sequence data to map back to the expected DGRP genotype with 5%
or less mismatch (Lin et al. 2016). We also verified the sex of each fly by
correlating each fly’s sequence with a reference standard of the same sex,
and contrasting it with the opposite sex (Lin et al. 2016). These checks
resulted in the retention of sequence data for 730 samples. Additional
information can be found in the summary table in the GEO entry

GSE60314 (GSE60314_GEO_run_summary.txt). The table includes
information concerning the location of each fly in each 96-well plate;
RNA quantities; library plate locations and quantities; the index se-
quences used to identify the sequence of each individual fly in each
sequence pool, sequence run parameters, machine, lane, and flow cell
IDs, and numbers of mapped reads.

Differential gene expression analysis and clustering
Out of 17,023 annotated genes in the D. melanogaster genome,
we had read counts above zero for 16,623 genes. The remaining
400 annotated genes had zero read counts for all flies, so we elim-
inated these genes from each dataset. We normalized the read count
data using the DESeq normalization method (Anders and Huber
2010). We derived an empirical low expression threshold, 3.486
DESeq-normalized read counts, from the overlap of the distribution
of intergenic and genic read counts as detailed in Lin et al. (2016).
We eliminated genes from the dataset that had read counts below
this threshold for all flies. This ended up being 949 genes, leaving
15,674 expressed genes. We used Levene’s test, and the Brown-
Forsythe test, to calculate the heterogeneity of variance across
genotype, sex, and replicate. The results of these tests suggested ex-
tensive heterogeneity of variance. To determine which genes were
differentially expressed across the main factors of Genotype, Sex,
and Replicate, and their interactions, we assumed that the number
of read counts for gene i in sample k can be modeled by a negative
binomial distribution, where

xik � NB
�
mik;s

2
ik

�

where mik is the mean and sik
2 is the variance. The mean is given by

EðxikÞ ¼ mik

and the variance can be written in terms of the mean:

s2
ik ¼ mik þ um2

ik

where u is a dispersion parameter that indicates how much the var-
iance exceeds the mean (Anders and Huber 2010).

We then tested each gene for differential gene expression across the
main factors of Genotype, Sex, and Replicate, and their interactions,
using the following generalized linear model, assuming a negative
binomial distribution:

logðmikÞ ¼ b0 þ Sþ Gþ Rþ G·Rþ S ·Gþ S·Rþ S ·G·R

where S is sex, G is DGRP genotype, and R is the replicate environ-
ment. We tested each term in the model using a full and a reduced
model as shown below:

Model   1:logðmikÞ ¼ b0 þ Sþ Gþ R

Model   2ðaÞ:logðmikÞ ¼ b0 þ Sþ Gþ Rþ G·R

Model   2ðbÞ:logðmikÞ ¼ b0 þ Sþ Gþ Rþ G ·Rþ G · S

Model   2:logðmikÞ ¼ b0 þ Sþ Gþ Rþ G ·Rþ G · Sþ R · S

To test the main effect of sex, genotype, and replicate, we used
Model 1 as the full model, and calculated the likelihood ratio be-
tween Model 1 and a reduced Model 1 with each of the main
effects removed in turn. We tested the two-way interaction terms
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G · R, G · S, and R · S using the same approach. We applied
Model 2(b) and 2(a) to find genes with a significant G · S in-
teraction, for example; Model 2(b) was the full model, while
Model 2(a) was the reduced model. To test the significance of
the three-way interaction term S · G · R, we again used the
same approach, where Model 2 was the reduced model. The likeli-
hood ratio statistic comparing any of the two models is simply the
difference between the deviances of the full model and the reduced
model. We implemented this analysis using the DESeq package
(Anders and Huber 2010), and limma-voom, using the “voom-
WithQualityWeights” function to account for heteroscedasticity
across samples (Law et al. 2014). We applied a false-discovery
rate (FDR) threshold of , 0.05 to correct for multiple tests
(Benjamini and Hochberg 1995). The overlap of differentially
expressed genes between the two programs was high, and the
numbers of differentially expressed genes were very large using
limma-voom; thus, we chose the DESeq analysis as it was more
conservative. Finally, in order to determine whether there was any
confounding between genotype and potential sources of technical
variation, such as plate and multiplex library pool, we analyzed a
model that considered these effects as covariates: log(mik) = b0 +
Plate + Pool + S + G + R + G · R + S · G + S · R + S ·
G · R. We calculated the microenvironmental plasticity of gene ex-
pression as the coefficient of environmental variation (CVE) using the
equation 100�s/m where s is the SD of DESeq-normalized read
counts within each gene for each genotype/sex/replicate, and m is
the mean (Mackay and Lyman 2005; Morgante et al. 2015);
this measure has previously been used to represent variation in
gene expression (Ansel et al. 2008). We analyzed the resulting
expression CVE as a trait using the following ANOVA model:
Y = m + S + G + G · S + e, where S and G are as defined
above, and e is error. As the model was applied to each gene sepa-
rately, we used an FDR threshold of , 0.05 to correct for multiple
testing. We used Modulated Modularity Clustering (MMC) (Stone
and Ayroles 2009) to cluster significantly differentially expressed
genes. We used Gene Ontology (GO) (Ashburner et al. 2000;
Thomas et al. 2003) to examine the clusters for significant biological
process categories. Gene lists were compared using the entire Dro-
sophila genome as a background. Enrichment of genes within a GO
category was deemed significant if the Bonferroni-adjusted P-value
was , 0.05. We estimated broad-sense heritability (H2) for gene
expression as H2 = (sG + sGR + sGS + sGRS)/(sG + sGR + sGS

+ sGRS + se), where sG is the variance component among geno-
types, sGR is the genotype-by-replicate variance component, sGS is
the genotype-by-sex variance component, sGRS is the genotype-

by-replicate-by-sex variance component, and se is the sum of all
other sources of variation. H2 for gene expression CVE was estimated
asH2 = (sG + sGS)/(sG + sGS + se). We estimated the effects of
Wolbachia pipientis infection by classifying each DGRP line as in-
fected or uninfected as previously published (Huang et al. 2014), and
calculating the following general linearized model for each gene:
log(mik) = b0 + I, where I is infection status. Additionally, for
each gene, we correlated the SD in gene expression per line with
reported percentages of residual heterozygosity per line in the
DGRP (Huang et al. 2014), and with total rRNA levels using the
Spearman correlation method.

Data availability
AllRNA-Seqdata fromthis study are available from theNationalCenter
for Biotechnology Information (NCBI) GEO under the accession num-
ber GSE60314.

RESULTS
Wesequenced poly-A selectedRNAfrom768 individualflies in order to
systematically explore the relationship between magnitude and vari-
ability in gene expression among individuals (Figure 1). We used flies
from 16 DGRP lines chosen at random for the study. Flies of each
genotype were cultured as three biological replicates; the environmental
conditions for each replicate were carefully controlled and designed to
be equivalent (Materials and Methods). In order to explore gene ex-
pression differences among individual flies, we sequenced eight males
and eight females for each DGRP line/replicate condition. After apply-
ing our quality control standards to the data (Lin et al. 2016), sequences
from 730 flies remained. We used a generalized linear model to exam-
ine differences among genotypes, replicates, sexes, and their interac-
tions, using read counts per gene as a proxy for gene expression [(Lin
et al. 2016) andMaterials and Methods]. Large numbers of genes were
differentially expressed among experimental factors using the DESeq
analysis (Table 1; Supplemental Material, Table S1), even at very low
FDRs (Table 1 and Table S2). The limma-voom analysis identified very
large numbers of differentially expressed genes for each factor at an
FDR of 0.05. The overlap was relatively high between the two methods,
ranging from 62.8% for the main effect of replicate environment to
99.6% for the interaction effect of genotype, replicate, and sex (Table
S3). The addition of plate and multiplex library pool effects to the
model did not appreciably affect genes identified as differentially
expressed among genotypes, though it did affect genes differentially
expressed in replicate environments; differentially expressed genes for
factors containing genotype overlapped by $ 92% (Table S4). Below,

Figure 1 Experimental design.
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we address the relationship between the mean and variance of gene
expression among each of the experimental factors (genotype, replicate,
sex, and their interactions) in turn.

Gene expression differences among individual flies
Flies of identical genotype and sex grown under replicated conditions
should show the lowest differential expression. However, differences in
gene expression were common. Three lines of evidence suggested that
differences ingeneexpression in individualflieswerepresent.First,3654of
15,674 detected transcripts were differentially expressed across genotype,
replicate, and sex (Table 1 and Table S1). This observation implied that
replicates of identical genotype and sex had mean gene expression dif-
ferences. Second, 3415 of these 3654 genes had significant heterogeneity
of variance within genotype, replicate, and sex by Brown-Forsythe’s test
(FDR , 0.05), and 3610 had significant heterogeneity of variance by
Levene’s test (FDR , 0.05) (Table S5). We inferred from these results
that differences in gene expression among individuals within a genotype/
replicate/sex condition were present. Third, we previously demonstrated
that differences in gene expression between duplicate libraries prepared
for 118 of the flies used in this study originated from biological differ-
ences, and the differences due to technical factors were small (Lin et al.
2016). Thus, individual flies of identical genotype reared and maintained
in a common environment had differential gene expression, and the
source of these differences was biological, not technical, variation. Gene
expression differences among individuals tended to be male-biased (Fig-
ure 2A); 3254 genes (89.1%) showed male-biased expression, in contrast
to 6967 (61.8%) of the remaining genes in the transcriptome with male-
biased expression (Fisher’s exact test, P , 0.0001). A representative
example is shown for ninaC, a gene with functions in phototransduction
(Montell and Rubin 1988) that may be downstream of dsx in the sex
differentiation pathway (Goldman and Arbeitman 2007). Clear differ-
ences in the expression of this gene in individuals of identical genotype,
sex, and replicate can be seen in the sizes of the box plots (Figure 2B).

A small fraction of genes differentially expressed among individuals,
68 genes in total, may have originated from differential responses toW.
pipientis infection known to segregate among lines of the DGRP
(Huang et al. 2014). Among these 68 genes were three amylase genes
(Amy-d,Amy-p, andAmyrel), but we observed no additional functional
patterns (Table S6). Furthermore, lines of the DGRPwere developed by
inbreeding wild-caught flies; this manipulation makes most of the ge-
nome homozygous, but some regions will remain heterozygous within
a line. Heterozygosity in the line could segregate into three separate
genotypes among individual flies, which could in turn result in gene
expression differences among individuals. We therefore correlated the
SD of expression per line with the percentage of heterozygosity in the
DGRP that remained after the inbreeding procedure (Huang et al.
2014), with the null hypothesis that the correlations are zero as the flies
are largely homozygous. We found that 133 genes were significantly

correlated with heterozygosity (Table S7). In addition, we noted 89
histone-encoding genes, which are not polyadenylated (Marzluff
2005) and two nonprotein-coding genes that were correlated with
total rRNA levels (Table S8); individual expression differences in these
two classes of genes are unlikely to have biological meaning, as they
track polyA+ isolation efficacy. Thus, known historical pathogen ex-
posure and genomic sequence features of the DGRP could explain part,
but far from all, of the individual differences in gene expression that
we observed. Like ninaC, the bulk of the genes showing differential
expression among individual flies had functions in physiological re-
sponses to the environment or roles in behavior, as detailed below.

If gene expression is plastic, that is, it is responsive to environmental
perturbations (Debat and David 2001), then the genes that differ among
individuals should encode coherent functions operating in pathways that
interact with the environment. On the other hand, if the differences in
gene expression among individuals are stochastic fluctuations, then these
genes will not cluster into known relationships. We looked for relation-
ships among the genes differentially expressed among individuals using
MMC (Stone andAyroles 2009) coupledwithGO (Ashburner et al. 2000;
Thomas et al. 2003) analysis to identify groups (or modules) of genes
with over-represented biological process categories (Bonferroni-
corrected P , 0.05). The genes clustered into eight separate modules
with diverse roles (Figure 2C, Table S8, and Table S9). Module 1 was
enriched for genes involved in mesoderm development, including the
development ofmuscles and reproductive organs;Modules 5 and 6were
also enriched for genes implicated in muscle development. Most of the
genes (3074) clustered into Module 2, which, along with Module 7, was
enriched for genes with functions in reproduction, including female re-
ceptivity, copulation, and insemination. Genes with reproduction-related
functions in Module 2 included those encoding 17 accessory gland pro-
teins/peptides, two chorion proteins, all three ejaculatory bulb proteins,
five male sterile genes, 15 male-specific transcripts, 22 seminal fluid
proteins, four vitelline membrane proteins, Mst89B, ovo, quick-to-court,
and Sex Peptide. Modules 3 and 8 were enriched for genes implicated in
synaptic transmission, ion transport, and neural development, as well as
genes involved in regulating mating, locomotion, sleep, and chemotaxis
behaviors. Examples include bruchpilot, couch potato, ether a go-go, fruit-
less, Hyperkinetic, Resistant to dieldrin, Shaker, and slowpoke. Module 4
was enriched for cell communication and signaling, exocytosis, and the
response to light and other stimuli. Broad-sense heritability (H2) mea-
sures how much variation in gene expression is due to genotype. H2

estimates for genes differentially expressed among individuals ranged
from 0 to 0.912 with a mean of 0.310 6 0.15 SD, indicating that there
is a genetic basis for at least some of the individualized expression profiles
(Figure 2D and Table S1). The predicted coregulated networks (Harbison
et al. 2009) that we identified implicate physiological processes and be-
haviors interacting with the environment, and suggest that differences in

n Table 1 Numbers of genes with differential expression and differential CVE

Factor Differentially Expressed Genesa,b Genes with Differential CVE
b,c Overlap

Genotype (G) 10,401(66.4) 1212(7.3) 1135
Replicate (R) 9607(61.3) N/A N/A
Sex (S) 14,883(94.9) 13,225(79.6) 12,738
G · R 3463(22.1) N/A N/A
G · S 7148(45.6) 266(1.6) 246
R · S 2646(16.9) N/A N/A
G · R · S 3654(23.1) N/A N/A
a
Numbers of genes that were significantly differentially expressed at an FDR , 0.05.

b
Numbers in parentheses indicate the percentage of the total number of expressed genes (15,674).

c
Numbers of genes with differential CVE at an FDR , 0.05.
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Figure 2 Genes differentially expressed among individual flies. (A) Heat map showing the relative expression levels (DESeq-normalized read
counts/maximum DESeq-normalized read counts) of every detected gene in the genome, by genotype, replicate environment, and sex. The top
section of the plot shows the genes with significant differential expression, while the bottom shows the nonsignificant genes. The genes are
ordered from top to bottom by increasing variability as measured by dispersion (Materials and Methods). Females are plotted on the left-hand
side; males are plotted on the right. Genotypes are ordered numerically with each replicate (i.e., DGRP-229 Replicate 1, DGRP-229 Replicate 2,
and DGRP-229 Replicate 3). (B) Representative box plot showing the variation among genotype, replicate, and sex in ninaC. Red boxes indicate
Replicate 1; orange boxes indicate Replicate 2; and pink boxes indicate Replicate 3. (C) MMC of genes differentially expressed among indi-
vidual flies. The red-white-blue color scale indicates the correlation among genes. Clusters of genes (modules) are ordered from the highest
connectivity on the upper left to the lowest connectivity on the lower right. The extent of each module is marked with a color bar. The table to the
side lists some of the biological processes over-represented in each module; for the complete list of biological processes, see Table S9. (D)
Distribution of broad-sense heritability (H2) for genes differentially expressed among individuals.
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gene expression among individual flies aremore likely related to extrinsic
regulatory factors rather than intrinsic stochastic events such as tran-
scriptional noise.

Microenvironmental plasticity in gene expression
We next asked whether the gene expression differences among indi-
vidual flies were genetically based or stochastic. We used the coefficient
of environmental variation (CVE,Materials and Methods), to quantify
the expression differences among individuals as the microenvironmen-
tal plasticity in gene expression (Mackay and Lyman 2005; Morgante
et al. 2015). A total of 1212 genes had CVE values that varied signifi-
cantly with DGRP genotype, indicating that microenvironmental plas-
ticity in gene expression has a genetic basis (Figure 3A, Table 1, and
Table S10; see Figure S2A for the relationship between dispersion
across genotypes irrespective of mean expression), while 264 genes
had genetic differences in CVE that were sex-specific. Differential
CVE values between males and females were also observed (Figure
S1C and Figure S2B). Thus, microenvironmental plasticity in gene
expression depended upon underlying genotype and on sex.

Broad-sense H2 estimates of CVE ranged from 0 to 0.988, with a
mean of 0.177 6 0.36 SD. Unlike the moderate heritabilities in gene
expression observed for genes differentially expressed among individ-
uals (Figure 2D), heritabilities for microenvironmental plasticity were
often near zero; 1004 genes had very low H2 (contrast Figure 2D with
Figure 3B). The 258 genes with high H2 included immune response
genes (Attacin-D, Cecropin C, Defensin), genes encoding cuticular pro-
teins, doublesex-Mab related 93B, and doublesex cognate 73A. To ex-
plore overall patterns of function, the genes were clustered into
genotype and genotype-by-sex modules (Figure 3, C and D, Table
S11, and Table S12). Microenvironmental plasticity genes with
among-genotype differences clustered into eight modules. Modules 1,
3, and 7 were enriched for genes involved in digestion and proteolysis,
cuticle development, and detection of chemical and biotic stimuli, re-
spectively (Table S13). Module 8 was enriched for genes with very
broad roles in cellular and metabolic processes, as well as reproduction.
The remaining modules were not enriched for genes in any particular
biological process, nor were any of the six modules calculated for genes
significant among genotype and sex. Interestingly, one-quarter to one-
third of these genes were nonprotein-coding (Figure 3E).

Thirty-fiveof thenonprotein-codinggeneswerecorrelatedwith total
rRNA abundance, which indicates a stochastic or technical origin.
Furthermore, 138 of the microenvironmental plasticity genes were
potentially impacted by Wolbachia infection status (Table S6), and
62 by residual heterozygosity (Table S7). Unlike the genes differentially
expressed among individuals, microenvironmental plasticity genes do
not group into many over-represented biological process categories.
Incomplete functional annotation is one potential reason for this, but
an alternative explanation is that plasticity in gene expression is par-
tially influenced by stochastic processes, as the very low broad-sense
heritabilities for CVE imply. Thus, while social interactions and indi-
vidual responses to the environment shape the expression of some
genes, stochastic processes influence others.

Interactions between genes and replicate environment
Aclassicdebate inbiology iswhethergeneticor environmental influences
have a greater impact on organismal phenotypes. Considerable evidence
suggests that genes may interact with the environment (reviewed in
Scheiner 1993; for examples, see Han et al. 2011; Mahlios et al. 2013),
and that the interaction can manifest itself in effects on gene expression
(Idaghdour et al. 2010; Buil et al. 2015). Despite the restrictions we

implemented to control replicate environments, we detected the differ-
ential expression of 3463 (22%) genes across genotype and replicate
environment (Table 1, G · R). These differences were exemplified by
gene expression of Shaker (Figure 4, A and B), a gene encoding a
potassium ion channel required for neurotransmission (Salkoff et al.
1992) that has functions in sleep (Cirelli et al. 2005). To determine if
genes with significant genotype-by-replicate-environment interactions
might have features in common, we again used MMC and GO analysis
(Bonferroni-corrected P , 0.05) (Figure 4C). This analysis grouped
variably expressed genes into eight coexpressed modules (Table S14
and Table S15). Modules 1, 2, 5, and 6 were enriched for genes involved
in developmental processes, with many developmental processes over-
represented inModule 1,muscle development inModules 2 and 6, and
neural development in Module 5. Genes involved in behavioral re-
sponses to the environment such as reproductive behavior, phototrans-
duction, learning and memory, and chemotaxis were enriched in
Modules 3, 4, and 5, respectively. Modules 4 and 7 were enriched for
cell communication, synaptic transmission, and ion transport. Mod-
ule 8 was not enriched for any biological process. Thus, genes involved
in mediating the response to environmental stimuli responded to fluc-
tuations in each replicate environment.

Genetic differences in transcript abundance
Weexpected that genotype, withmultiple differences in gene regulators,
enhancers, and silencers, would profoundly influence gene expression,
as demonstrated previously in pools of individual flies (Jin et al. 2001;
Harbison et al. 2005;Wayne et al. 2007; Ayroles et al. 2009; Huang et al.
2015). Indeed, most of the 15,674 annotated transcripts we detected
were differentially expressed among the DGRP genotypes (Table 1 and
Table S1); 10,401 (66.4% of detected genes; FDR , 0.05) of the tran-
scripts had genetic differences, and 7148 (45.6%) of genetically variable
transcripts were also expressed in a sexually dimorphic manner. To
determine whether variability was related to expression levels, we or-
dered the mean expression for each genotype by increasing variability,
which revealed that highly expressed genes showed less variable expres-
sion, and genes with low expression weremore variable (Figure 5A); the
pattern was similar for the sexually dimorphic transcripts (Figure 5B).
For many of these genes (5755), the difference between the lowest- and
highest-expressed genotype was twofold or greater, but among the
remaining genes (4646), the differences among lines were more subtle.
Each genotype had variably expressed genes with both high and low
gene expression, indicating that there was not a general effect on bat-
teries of genes within a particular genotype or sex (Figure 5, A and B).

Variability can be observed in representative box plots showing the
differences across DGRP genotypes for the gene Calreticulin (Figure
5C), which affects olfaction, startle response, and sleep (Stoltzfus et al.
2003; Sambandan et al. 2006; Harbison and Sehgal 2008; Yamamoto
et al. 2008). Our results, which compare gene expression differences
among individual flies, strongly support previous work demonstrating
that sex and genotype are major contributors to expression differences.

Latent plasticity in transcript abundance across
replicate environments
The experimental conditions were carefully controlled across replicates
(see Materials and Methods); so gene expression changes among repli-
cates should theoretically be zero. However, most of the detected tran-
scripts were differentially expressed among replicate environments,
indicating hidden or latent plasticity in gene expression; 9607 (61.3%,
FDR , 0.05) genes had differentially expressed transcripts (Table 1
and Table S1). Thus, 61.3% of the transcriptome was sensitive to subtle
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Figure 3 Microenvironmental plasticity genes. (A) Representative bar graph of the CVE for Cytochrome P450-6a8 across genotypes. The
colors of the bars indicate the replicates as in Figure 2. (B) Distribution of broad-sense heritability for transcripts exhibiting genetic
variation in microenvironmental plasticity. (C, D) MMC modules of genes differentially variable among (C) genotypes and (D) genotype-
by-sex. The color scale and cluster orientation is the same as in Figure 2. (E) Bar graph showing the percentage of protein-coding vs.
nonprotein-coding genes for genes with significant mean differential expression, and those with differential microenvironmental plas-
ticity (CVE). Blue, protein-coding genes. Yellow, nonprotein-coding genes. Red, other/unknown.
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Figure 4 Genes with significant genotype-by-replicate environment interactions. (A) Heat map showing the relative expression levels
(defined in Figure 2) of every detected gene in the genome by genotype and replicate. Genes are ordered from lowest to highest
variability. (B) Representative boxplot showing the variation among genotype and replicate in Shaker. Box colors as in Figure 2. (C)
MMC modules for genes with significant genotype-by-replicate environment interactions. The color scale and cluster orientation are as
in Figure 2.
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environmental differences among identically reared cultures, while
the remaining 38.7% of transcripts were robust to these fluctuations;
2646 (16.9%) were also sexually dimorphic in expression (Table 1).
Transcriptional differences among replicates, like those across geno-
types, were more subtle than those among individuals. Only 634 of
the genes had differences that were twofold or greater, and many of
the twofold or greater differences (325) were due to the average gene
expression in one replicate being near zero. Unlike the differential ex-
pression across genotypes, there was little relationship among the mag-
nitude of expression and the variability; highly expressed genes were
equally likely to have high or low levels of variability (Figure 6, A and B).
An example of differences across replicates can be observed in a plot of
gene expression in Tenascin-major (Ten-m) (Figure 6D)—a gene with
roles in eye morphogenesis, photoreceptor development, and synaptic
growth (Kinel-Tahan et al. 2007; Mosca et al. 2012). The differences
observed in Ten-m and the other differentially expressed genes across
replicates suggest that latent plasticity in the transcriptome may exist
whether environmental conditions are systematically altered or not.

Sexual dimorphism in the transcriptome
As expected from previous studies of gene expression using pools of
individuals, we observed massive differences in gene expression due

to sex (Table 1 and Table S1) (Jin et al. 2001; Arbeitman et al. 2002;
Parisi et al. 2003; Ranz et al. 2003; Harbison et al. 2005; Wayne et al.
2007; Zhang et al. 2007; Ayroles et al. 2009; Huylmans and Parsch
2014; Huang et al. 2015). Of the 15,674 genes detected in the ex-
periment, 14,883, or 95%, were differentially expressed between
males and females (FDR , 0.05). Many of these differences are
likely to be due to differences in gene expression between reproduc-
tive tissues (Parisi et al. 2003). And 75% of genes with sex-biased
expression had twofold or greater expression differences between males
and females.We observedmoremale-biased (10,208 genes) than female-
biased expression (Figure 6C). Some genes were nearly sex-specific in
expression; 5447 of the transcripts that were differentially expressed
betweenmales and females had read counts below theminimal threshold
of expression in females on average, suggesting male-specific expression,
while 2194 genes had read counts below the minimum in males on
average, indicating female-specific expression. Interestingly, however,
variability in gene expression was higher in females than in males
(Figure S1). Strong sex dimorphism can be seen, for example, in the gene
sallimus (Figure 6E)—a gene with functions in muscle development
and locomotion (Hakeda et al. 2000). Expression levels were much
higher in males than in females for this gene. In summary, virtually

Figure 5 Genes differentially expressed across genotypes. Heat map showing the relative expression levels (defined in Figure 2) of every
detected gene in the genome by (A) genotype and (B) genotype-by-sex. The orientation of the genes as in Figure 2. (C) Representative box
plot showing the variation among genotype in Phosphoglucose isomerase.
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every gene in the genome had significant differential expression
between males and females.

DISCUSSION
Herewehave shownthatdifferences ingeneexpressionamonggenetically
identical individuals originate from responses to microenvironmental
perturbations, and from stochastic factors originating at the cellular level.
We found that 23% of the transcripts from individual flies of identical
genotype reared in a common environment have differential expression.
Gene expression differences among genetically identical individuals were
quite common, and occurred despite the control of experimental condi-
tions that affect gene expression, suchas temperature, humidity, light:dark
cycle, mating status, and social exposure. Why would there be so many
genes differentially expressed among genetically identical individuals?
One possibility may be differences in tissue size among individuals. For
example, we observed differences in large numbers of reproduction-
related genes, which suggests that there may be individual differences
inreproductive tissuesizesamongfliesofagivensexandgenotype.Tissue-

specific differences could be mitigated in future experiments using body
size orweight as a covariate.However,manyof the geneswedetectedwere
involved in the behavioral response to external stimuli not known to vary
with body size. These genes are aligned with adaptive responses as they
have known functions in many aspects of behavior, such as locomotion,
courtship, chemosensation, and sleep. This observation supports an
adaptive vs. a stochastic model of gene expression control. In contrast,
microenvironmental plasticity as measured by the coefficient of environ-
mental variation (CVE) exhibits both adaptive and stochastic character-
istics. Importantly, microenvironmental plasticity was influenced by
genotype, and in some cases influenced by both genotype and sex. Genes
with differential CVE did not share a coherent pattern of biological func-
tion, which indicates that there may be subtle stochastic factors that
influence expression. Alternatively, the fact that these genes are under
genetic control and could be clustered together by expression variation
implies that there may be functionally relevant biological processes that
have not yet been thoroughly annotated. A third possibility is that genes
with differential CVE values may be linked to individual differences that

Figure 6 Genes differentially expressed among
replicates and sexes. Heat map showing the relative
expression levels (defined in Figure 2) of every de-
tected gene in the genome by (A) replicate, (B) rep-
licate-by-sex, and (C) sex. The orientation of the
genes as in Figure 2. (D) Representative box plot
showing the variation among environments in Tenas-
cin major. Box colors as in Figure 2. (E) Representa-
tive box plot showing the variation among sexes in
sallimus.
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are likely present, but that we did not control for, such as amount and
timing of food intake, infection status, and larval density, though the
number of genes falling into ontology categories known to impact these
uncontrolled differences was low. Interestingly, we noted that some of
these genes (27.6%) were nonprotein-coding RNAs, which are under
increasing scrutiny as subtle regulators of protein-coding gene expres-
sion. In support of this idea, variation in nonprotein-coding RNA ex-
pression is observed among single cells (Shalek et al. 2013). In addition,
cell-to-cell variability seems to be driven by external factors that are more
global in nature (Raser and O’Shea 2005; Chang et al. 2008), as we also
observed in individual flies. We suggest that the variability in expression
of a subset of genes is an individualized response to subtle environmental
differences, such as social organization or infection, and is under genetic
control; the remaining variability is due to stochastic influences.

Our results indicate that two-thirds of the transcriptome varied
among replicates, thus exhibitingphenotypic plasticity. This result differs
from previous experiments (Sambandan et al. 2008; Zhou et al. 2012)
measuring differential gene expression among applied environmental
conditions in subsets of the DGRP. Only 20 genes changed in response
to three different diets fed to larvae, despite the profound effects these
diets had on olfactory avoidance behavior in the resulting adult flies
(Sambandan et al. 2008). Furthermore, just 15% of the transcriptome
was phenotypically plastic when 19 different environmental conditions
were compared to a control environment (Zhou et al. 2012). The envi-
ronmental conditions included strong treatments such as starvation,
heat shock, and chill coma, and drugs such as fluoxetine, menadione,
and nicotine (Zhou et al. 2012). This phenomenon is not confined to
DGRP genotypes, as low numbers of transcripts responded to drug,
temperature, and heavy metal treatments in other genotypes as well
(Brown et al. 2014). The lower numbers of differentially expressed genes
may be due to dissimilarities in experimental design and statistical
power between these experiments and ours. A more intriguing possibil-
ity is that strong applied environmental treatments may activate gene
expression in a few key pathways relative to the control environment,
while, among untreated animals compared in replicate environmental
conditions, the ability to perturb gene expression is maintained in a
labile state, ready to respond to strong environmental changes should
they arise. The relatively low magnitude differences we observed among
replicates support this notion. Thus, gene expression exhibits canaliza-
tion (Waddington 1959) only under strong environmental conditions.

When we rank order gene expression by variance in the differentially
expressedgenes ineach factorcategory,weobservedthatgeneswithlower
expression were among the most variably expressed due to genotype.
Thus, within a genotype, noise abatement may be variable. However,
therewasnorelationshipbetweenexpression levelandvariancedue tosex
or replicate. It is well established that there are genes with highly sex-
biased expression, but the variability in sex-biased responses within a sex
has not beenwell studied, as pools offlies have usually been analyzed.We
found greater expression variance in females. These results indicate that
gene expression in females is either more responsive to random envi-
ronmental and genotypic fluctuations than in males, if expression
variance is adaptive, or that female gene expression is less robust than
that of males. Given that females tend to be more resistant to many
stresses (Matzkin et al. 2007; Mackay et al. 2012; Weber et al. 2012),
there may be greater adaptive expression in females, even as expression
inmales is more variable across species, particularly for genes withmale-
biased expression (Zhang et al. 2007). Thus, evolution would appear to
favor divergence in male gene expression between species, and more
uniformity in male expression within species. Alternatively, differential
variability between the sexes within a D. melanogaster may reflect dif-
ferences in the relative contributions of additive vs. nonadditive or

epistatic variance in males and females, which in turn affect the speed
with which sexually dimorphic genes can adapt (Wayne et al. 2007).

Lack of “reproducibility” is often equated with error, but biological
materials are inherently variable. Although low-level gene expression is
difficult to accurately measure due to the sampling inherent in RNA-Seq
measurements (McIntyre et al. 2011), we had superior statistical power to
detect even low magnitude variance in gene expression (Lin et al. 2016).
In addition, we applied stringent low-expression cutoffs based on an
evaluation of expression in intergenic regions (Zhang et al. 2010; Lin
et al. 2016). Duplicate libraries prepared for 118 flies indicated that the
technical effects were very small relative to the biological effects (Lin et al.
2016). In addition, residual heterozygosity in chromosomal inversions
does not appear to be a factor, in agreement with a recent assessment of
gene expression in pooled flies of the DGRP (Huang et al. 2015). Thus,
the biological sources of gene expression differences among individuals
are much greater than these potential technical sources.

These findings have implications for our understanding of complex
traits and disease. To the extent that gene expression influences quan-
titative traits, interindividual variability in gene expression in identical
individuals interferes with our ability to link genotype with phenotype.
While environmental factors specific to an individual might contribute
to complex trait variation and the etiology of disease, efforts to find gene
expression-based biomarkers might prove more successful if they were
focused on genes that are robust across environments and over time.
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