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Abstract: The arsenic acid-resistant (ArsR) family transcriptional regulators are widely distributed in
microorganisms, including in the facultative intracellular pathogen Brucella spp. ArsR proteins are
implicated in numerous biological processes. However, the specific roles of ArsR family members in
Brucella remain obscure. Here, we show that ArsR6 (BSS2_RS07325) is required for Brucella survival
both under heat, oxidative, and osmotic stress and in a murine infection model in vivo. RNA-seq and
ChIP-seq reveal that 34 potential target genes for ArsR6 protein were identified, among which eight
genes were up-regulated and 26 genes were down-regulated, including outer membrane protein
25D (Omp25D). ArsR6 autoregulates its own expression to maintain bacterial intracellular Cu/Ni
homeostasis to benefit bacterial survival in hostile environments. Moreover, ArsR6 also regulates
the production of virulence factor Omp25D, which is important for the survival of Brucella under
stress conditions. Significantly, Omp25D deletion strain attenuated in a murine infection model
in vivo. Altogether, our findings reveal a unique mechanism in which the ArsR family member
ArsR6 autoregulates its expression and also modulates Omp25D expression to maintain metal ion
homeostasis and virulence in Brucella.

Keywords: Brucella; ArsR; Omp25D; metal ion homeostasis; virulence

1. Introduction

Brucella is a facultative intracellular pathogen that is the causative agent of the impor-
tant zoonotic infection brucellosis that induces a chronic, debilitating condition in humans
and reproductive system disease in animals [1–4]. The arsenic acid-resistant (ArsR) family
is distributed widely in prokaryotes, including Brucella, and regulates target gene expres-
sion at the transcriptional level [5,6]. The main function of ArsR family transcriptional
regulators is as metalloregulatory proteins that induce metal ion uptake, efflux, seques-
tration, and detoxification to maintain intracellular metal ion homeostasis under extreme
environmental conditions [5–7]. However, host cells may capitalize on both the toxicity
and essentiality of metal ions to defend against intracellular pathogens [8]. In response,
pathogens possess a variety of strategies to circumvent the ability of the host to restrict
the use of metal ions, including free metal ion acquisition systems and metalloregulatory
proteins [8,9]. Brucella has six ArsR family members, three of which are encoded by chro-
mosome I and three of which are encoded by chromosome II [10]. However, the specific
roles of ArsR family members in Brucella survival under heavy metal ions conditions and
during intracellular infection remain unknown.

In addition to maintaining metal ion homeostasis, numerous studies have shown that
ArsR family members are involved in diverse biological processes [6]. SdpR, CyeR, and
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SoxR are typical representative members of the ArsR family and mediate the response
to hostile environments [6,11]. However, it is unknown whether ArsR family members
in Brucella are involved in stress responses. In addition, certain ArsR family members
influence bacterial virulence by regulating target gene expression. Mutation of certain
transcriptional regulators, including ArsR family members, attenuates the virulence of
Brucella in mice [10]. However, the mechanisms by which these ArsR mutants are impaired
in intracellular survival remain unclear.

The aim of this work was to reveal Brucella BSS2_RS07325 (ArsR6) functions during
infection. Here, we explored the role of ArsR family members ArsR6 in Brucella survival
in vitro and in persistence of infection in vivo. We found that ArsR6 is a classical metal-
loregulatory protein that autoregulates its own expression and virulence factor Omp25D
expression to enhance Brucella survival. These results lay the foundation for exploring the
pathogenic mechanisms of Brucella.

2. Results
2.1. ArsR6 Is Required for Brucella Survival in a Mouse Model of Infection

An ArsR6 deletion strain and complemented strain were obtained successfully by PCR
analysis (data not displayed) and RT-PCR analysis (Figure S1A,B). The growth curve of ∆arsR6
was similar to that of the wild-type (WT) strain in TSB, indicating that the ArsR6 deletion had
no effect on Brucella growth in these conditions (Figure S1C). The survival rate of ∆arsR6 was
decreased in heat, oxidative, and osmotic stress conditions compared to the WT strain, but was
restored partly or fully in C∆arsR6 (Figure 1A). These data indicate that ArsR6 is required for
the response to acid, oxidative, and osmotic stress conditions in Brucella.
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Figure 1. Brucella transcriptional regulator ArsR6 is required for bacterial survival during stress conditions and in mice. 
(A) The survival of bacteria under stress conditions. The WT, ΔarsR6, and CΔarsR6 strains were cultivated at pH 5.5 or 50 
°C or were treated with polymyxin (10 μg/mL), H2O2 (0.5 mM), or sorbitol (0.5 M). Data represent mean and standard 
deviation of N = 3 (independent biological replicates). The asterisks indicate significant differences (** p < 0.01) based on 
two-way ANOVA followed by Tukey’s post hoc test of honestly significant differences (two-tailed). (B) Spleen weights 
were measured at 1, 2, and 4 weeks post-infection. The control represents uninfected BALB/c female mice injected with 
PBS. Data represent mean and standard deviation of N = 5 (independent biological replicates). The asterisks indicate sig-
nificant differences (** p < 0.01) based on two-way ANOVA followed by Tukey’s post hoc test of honestly significant 
differences (two-tailed). (C) The bacterial load was measured in homogenates at 1, 2, and 4 weeks post-infection. Data 
represent mean and standard deviation of N = 5 (independent biological replicates). The asterisks indicate significant 
differences (* p < 0.05) based on two-way ANOVA followed by Tukey’s post hoc test of honestly significant differences 
(two-tailed). (D) Representative micrographs of the spleen histopathology at 2 weeks post-infection. Arrows, macro-
phages; WP, white pulp; RP, red pulp; square, magnification box. 

2.2. Identification of ArsR6 Target Genes by RNA-Seq and ChIP–Seq Analyses 
ArsR family members are involved in numerous biological processes, including 

metal ion homeostasis, the response to stress conditions, primary and secondary metabo-
lism, and virulence [6,12–14]. Samples were evaluated using MDS analysis, which indi-
cated that each groups’ samples had high data reproducibility (Figure 2A). The expression 
of 438 genes (13.9% of the total genes) was significantly different between WT and ΔarsR6 
strains, with 158 genes enhanced and 280 genes repressed by ArsR6 (Figure 2B,C). These 
results revealed that ArsR6 exerts a global effect on gene expression in Brucella. The DEGs 
were analyzed further using KEGG and GO pathway enrichment analysis, which demon-
strated that ArsR6 is involved in assorted biological processes in Brucella (Figure 2D,E). 
Analogously, we found that many DEGs were involved in amino acid, energy, and lipid 
metabolism, which indicated that ArsR6 can directly or indirectly regulate diverse metab-
olism-related genes. 

Figure 1. Brucella transcriptional regulator ArsR6 is required for bacterial survival during stress conditions and in mice.
(A) The survival of bacteria under stress conditions. The WT, ∆arsR6, and C∆arsR6 strains were cultivated at pH 5.5 or
50 ◦C or were treated with polymyxin (10 µg/mL), H2O2 (0.5 mM), or sorbitol (0.5 M). Data represent mean and standard
deviation of N = 3 (independent biological replicates). The asterisks indicate significant differences (** p < 0.01) based on
two-way ANOVA followed by Tukey’s post hoc test of honestly significant differences (two-tailed). (B) Spleen weights were
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measured at 1, 2, and 4 weeks post-infection. The control represents uninfected BALB/c female mice injected with PBS.
Data represent mean and standard deviation of N = 5 (independent biological replicates). The asterisks indicate significant
differences (** p < 0.01) based on two-way ANOVA followed by Tukey’s post hoc test of honestly significant differences
(two-tailed). (C) The bacterial load was measured in homogenates at 1, 2, and 4 weeks post-infection. Data represent
mean and standard deviation of N = 5 (independent biological replicates). The asterisks indicate significant differences
(* p < 0.05) based on two-way ANOVA followed by Tukey’s post hoc test of honestly significant differences (two-tailed).
(D) Representative micrographs of the spleen histopathology at 2 weeks post-infection. Arrows, macrophages; WP, white
pulp; RP, red pulp; square, magnification box.

Next, we assessed ∆arsR6 intracellular survival in RAW264.7 macrophages. However,
no significant difference was observed between the WT- and ∆arsR6-infected groups
(Figure S1D). The virulence characteristics of the ∆arsR6 were assessed in a murine infection
model. The spleen weight decreased at a higher rate than in mice infected with the wild-
type strain at 2 weeks post-infection in ∆arsR6-infected mice (Figure 1B). Furthermore,
the bacterial load in the spleen was decreased significantly at 2 weeks post-infection in
∆arsR6-infected mice compared to WT strain-infected mice (Figure 1C). Spleens from mice
that were infected with the WT strain exhibited a significant increase in the white-to-red
pulp ratio due to white pulp expansion and macrophages’ increase at 1 and 2 weeks
post-infection (Figure 1D and Figure S1E). In contrast, infection with ∆arsR6 impacted
the pathological characteristics of the spleen less severely with a modest decrease in the
white-to-red pulp ratio and slight white pulp expansion at 2 weeks post-infection (Figure
1D). Altogether, these results showed that ArsR6 is required to maintain virulence in a
mouse model of infection and demonstrate that ArsR6 plays an important role in Brucella
survival both in vivo and in vitro.

2.2. Identification of ArsR6 Target Genes by RNA-Seq and ChIP–Seq Analyses

ArsR family members are involved in numerous biological processes, including metal
ion homeostasis, the response to stress conditions, primary and secondary metabolism, and
virulence [6,12–14]. Samples were evaluated using MDS analysis, which indicated that each
groups’ samples had high data reproducibility (Figure 2A). The expression of 438 genes (13.9%
of the total genes) was significantly different between WT and ∆arsR6 strains, with 158 genes
enhanced and 280 genes repressed by ArsR6 (Figure 2B,C). These results revealed that ArsR6
exerts a global effect on gene expression in Brucella. The DEGs were analyzed further using
KEGG and GO pathway enrichment analysis, which demonstrated that ArsR6 is involved
in assorted biological processes in Brucella (Figure 2D,E). Analogously, we found that many
DEGs were involved in amino acid, energy, and lipid metabolism, which indicated that ArsR6
can directly or indirectly regulate diverse metabolism-related genes.

As the gene expression profile of ArsR6 was revealed by RNA-seq, we next performed
a genome-wide screen for ArsR6 binding sites using chromatin immunoprecipitation
(ChIP). The growth conditions were chosen to match those utilized in the RNA-seq analysis.
Chromatin-bound ArsR6 was crosslinked and the DNA was sheared to approximately
100–500 bp (Figure 3A). Nonspecific nucleic acids and proteins were removed and the
purified DNA was analyzed by immunoprecipitation (Figure 3B). There are 344 binding
sites for ArsR6 on chromosome I and 109 binding sites on chromosome II (Figure 3C). These
sites were particularly enriched near to transcription start sites (Figure 3D). Examination
of the Chip-seq data using KEGG and GO pathways’ enrichment analyses revealed that
peak-associated genes are involved in various processes, including ABC transporters, two-
component systems, metabolism, and outer membrane organization (Figure S2). Altogether,
these results showed that ArsR6 has multiple binding sites on chromosome and may
regulate the expression of a large number of genes.
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Figure 2. Expression of DEGs between the WT strain and ΔArsR6. (A) Similarities visualized among samples using MDS 
analysis. Blue, WT strain; red, ΔarsR6. (B) Histogram illustrating the number of DEGs and none-regulated genes between 
the WT and ΔarsR6 strains. (C) Scatter plot of co-expressed genes between the WT and ΔarsR6 strains. Red, blue, and gray 
denote upregulated, downregulated, and none-regulated genes, respectively, in ΔarsR6 compared with the WT strain 
based on the following criteria: log2 (fold change) ≥ 1 and adjusted p value ≤ 0.05. KEGG (D) and GO (E) pathways enrich 
analysis of DEGs. The enrichment factor represents the ratio of DEGs annotated in this pathway term to all DEGs’ numbers 
annotated with this pathway term. A higher enrichment factor indicates a greater degree of pathway enrichment. The Q 
value represents the corrected p value and ranges from 0 to 1, and a lower value indicates greater pathway enrichment. 
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Figure 2. Expression of DEGs between the WT strain and ∆ArsR6. (A) Similarities visualized among samples using MDS
analysis. Blue, WT strain; red, ∆arsR6. (B) Histogram illustrating the number of DEGs and none-regulated genes between
the WT and ∆arsR6 strains. (C) Scatter plot of co-expressed genes between the WT and ∆arsR6 strains. Red, blue, and gray
denote upregulated, downregulated, and none-regulated genes, respectively, in ∆arsR6 compared with the WT strain based
on the following criteria: log2 (fold change) ≥ 1 and adjusted p value ≤ 0.05. KEGG (D) and GO (E) pathways enrich
analysis of DEGs. The enrichment factor represents the ratio of DEGs annotated in this pathway term to all DEGs’ numbers
annotated with this pathway term. A higher enrichment factor indicates a greater degree of pathway enrichment. The Q
value represents the corrected p value and ranges from 0 to 1, and a lower value indicates greater pathway enrichment.

The data from the RNA-seq and ChIP-seq were analyzed further to evaluate the
genes that potentially are directly regulated by ArsR6. The set of peak-associated genes
was filtered using the list of DEGs as determined by RNA-seq. We found that 34 DEGs
were identified in the ChIP-seq data, among which eight genes were up-regulated and 26
genes were down-regulated, suggesting that these loci were controlled directedly by ArsR6
(Figure 3E). A heat map of the 34 DEGs was generated to visualize the DEGs (Figure 3F).
The promoters of the remaining 150 up-regulated genes and 254 down-regulated genes
were not bound by ArsR6, which suggested that these genes were regulated indirectly by
ArsR6. Further exploration of the function of the genes that are regulated directly by ArsR6
is necessary to elucidate the effect of ArsR6 on the Brucella virulence.
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ment size after ultrasonication. M, marker. The sample was sonicated on ice by applying 10 bursts 
of 10 s at 50% amplitude to shear the DNA to fragments of approximately 250-bp base pairs. (B) Co-
immunoprecipitation of ArsR6 followed by Western blot detection. Input: DNA fragment control 
group without antibody precipitation. IP: sample treatment group with antibody co-immunopre-
cipitation. IgG: antibody heavy chain control group. (C) ArsR6 ChIP-seq enrichment profiles in Bru-
cella chromosomes. (D) Density plot of ArsR6 ChIP-Seq reads at 4-kb genomic regions centered at 

Figure 3. Analysis of ArsR3 target genes by ChIP-seq. (A) PCR identification of sample DNA
fragment size after ultrasonication. M, marker. The sample was sonicated on ice by applying 10
bursts of 10 s at 50% amplitude to shear the DNA to fragments of approximately 250-bp base pairs.
(B) Co-immunoprecipitation of ArsR6 followed by Western blot detection. Input: DNA fragment
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control group without antibody precipitation. IP: sample treatment group with antibody co-
immunoprecipitation. IgG: antibody heavy chain control group. (C) ArsR6 ChIP-seq enrichment
profiles in Brucella chromosomes. (D) Density plot of ArsR6 ChIP-Seq reads at 4-kb genomic regions
centered at peak summits (signal intensity represents normalized tag count). (E) Venn diagram de-
picting the number of unique DEGs correlated with ArsR6 binding following nearest gene annotation.
(F) Heat map showing the expression levels of 34 DEGs correlated with ArsR6 binding following
nearest gene annotation.

2.3. Transcriptional Autoregulatory Properties of ArsR6

We found that ArsR6 was significantly enriched at the cognate promoter region in
ChIP-seq (Figure 4A), which suggests that ArsR6 auto-regulates its expression. His-tagged
ArsR6 and the free His-tag were purified (Figure S3A,B) and EMSA assays were performed
to analyze further the interaction between ArsR6 and its promoter. During purification, we
found ArsR6 forms dimers in vitro and in vivo (Figure 3B and Figure S3C). The labelled
probe in EMSA comprised 250 bp upstream of the arsR6 start codon and included the
promoter region. An increasing protein–DNA complex was observed with increasing con-
centrations of ArsR6, but not with the free His-tag (Figure 4B). In competition assay with a
fixed concentration of ArsR6 and increasing concentrations of unlabeled DNA, the intensity
of the protein–DNA complex gradually decreased and free DNA was gradually increased
correspondingly (Figure 4C). DNaseI footprinting assays were performed to analyze fur-
ther ArsR6 binding to the cognate promoter region. When increasing concentrations of
ArsR6 were co-incubated with the promoter region fragment, a zone of clear protection
was observed on the coding strand (Figure 4D). EMSA assays with a mutated probe were
performed to assess the significance of the protected region for specific recognition by
ArsR6. We observed that the intensity of the protein–DNA complex gradually increased
with increasing concentrations of the protein with the wild-type promoter region, but that
the complex was not observed with the mutated probe (Figure 4E). Reporter assays with
an ArsR6-lacZ transcriptional fusion were conducted to determine the effect of ArsR6 on
expression from the arsR6 promoter. The arsR6-lacZ plasmid was constructed and trans-
formed into the WT and ∆arsR6 strains. Compared to the WT strain, the beta-galactosidase
activity was increased in ∆arsR6 (Figure 4F), indicating that ArsR6 autorepresses the activ-
ity of its cognate promoter at the transcriptional level. Taken together, our results showed
that ArsR6 specifically binds the region upstream of arsR6 to inhibit ArsR6 expression
under standard conditions.

2.4. ArsR6 Is a Metalloregulatory Protein

We found in RNA-seq data that several DEGs, such as a putative Ni/Co exporter
(BSS2_RS10485) and a Cu-processing system ATP-binding protein (BSS2_RS11310), are
involved in metal ion transport (Figure 5A). To examine further the RNA-seq results,
RT-PCR was performed using the mRNA libraries constructed for RNA-seq. The RT-
PCR results were largely consistent with those obtained from the RNA-seq data, which
confirmed the validity of the RNA-seq results (Figure 5B). Significantly, the expression of
ArsR6 was enhanced significantly under several metal ion stresses (Figure 5C).

Several studies have shown that the DNA binding activity of ArsR family members is
inhibited by the presence of metal ion [7,15–17]. Therefore, we examined next the effect of
metal ions on the binding of ArsR6 to the cognate promoter region. When Ni (II), Cd (II),
or Cu (II) was co-incubated with the probe fragment that contained the arsR6 promoter
region and increasing concentrations of ArsR6, protein–DNA complex formation was
disrupted (Figure 5D). However, this phenomenon was not observed with the addition
of Zn (II), Co (II), Mn (II), or As (II) (Figure 5D). The results indicate that Ni (II), Cd
(II), and Cu (II) specifically impair the DNA-binding ability of ArsR6 and suggest that
ArsR6 may be a Ni/Cd/Cu-binding protein. We monitored ArsR6 binding to metal ion
by changes in the absorption spectrum in the ultraviolet region to determine whether
ArsR6 directly binds metal ion. The absorbance values were enhanced significantly with
increasing concentrations of Ni (II), Cd (II), or Cu (II) (Figure 5E), but not with the addition
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of Zn (II), Co (II), Mn (II), or As (II) (Figure S4). Thus, the results indicated that ArsR6
is a Ni/Cd/Cu-binding protein and the metal-bound state of the protein modulates its
DNA-binding properties.
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Figure 4. Transcriptional autoregulation of ArsR6. (A) The peak in the promoter region of arsR6 by ChIP-seq analysis. The
peak was generated using ArsR6 ChIP-seq data in the C∆arsR6 strain. (B) EMSA assays of ArsR6 binding to the arsR6
promoter. Biotin-labeled substrate was incubated with free His-tag (3 µg (+)) or different concentrations of His-tagged ArsR6
(0 (-), 1 (+), 2 (++), and 3 µg (+++)). Results are representative of at least three independent experiments. (C) Competition
assays. Unlabeled cold arsR6 promoter sequence was tested for competition with the biotin-labeled promoter. Unlabeled
cold arsR6 promoter sequence inhibits the binding of ArsR6 to the labeled promoter. Results are representative of at least
three independent experiments. -, No DNA or protein; +,++,+++,++++,+++++, add DNA or protein. (D) ArsR6 (2 µg)
binding to the promoter region of arsR6 by DNaseI footprinting. Nucleotide sequences protected by ArsR6 are marked
by the dotted line. (E) EMSA for the ability of ArsR6 to bind sequences protected in DNaseI footprinting. The WT and
mutated arsR6 promoter region probes are illustrated. Probes were co-incubated with ArsR6 (0, 1, 1.5, and 2 µg). Results are
representative of at least three independent experiments. (F) The effect of ArsR6 on expression of the cognate promoter was
detected by β-galactosidase assays using an arsR6-lacZ transcriptional fusion. Data represent mean and standard deviation
of N = 3 (independent biological replicates). The asterisks indicate significant differences (** p < 0.01) based on one-way
ANOVA followed by Tukey’s post hoc test of honestly significant differences (two-tailed).
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Ni (II), Cd (II), and Cu (II) were added. Results are representative of at least three independent experiments. (F) Copper
susceptibility of Brucella in vitro. Serial dilutions of log-phase cultures of the WT, ∆arsR6, and C∆arsR6 strains were spotted
on TSA plates with or without CuSO4 (2.5 mM). Results are representative of at least three independent experiments.
(G) Confocal microscopy analysis of the intracellular survival of the WT, ∆arsR6, and C∆arsR6 strains. Red, Brucella; blue,
cell nucleus. Results are representative of at least three independent experiments.
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To explore the relationship between ArsR6 and Cu toxicity, we assayed the copper
sensitivity of ArsR6 deletion strain by spotting 10-fold serial dilutions of cultures of the same
density on plates with copper. We found that the growth of ∆arsR6 was inhibited by adding
Cu (II) compared to WT strain, but fully restored in C∆arsR6 (Figure 5F). In addition, the
same phenomenon was observed by adding Ni (II). The CCK8 assay was used to detect the
cytotoxicity of Cu to RAW264.7 macrophages (Figure S5A,B). We observed that the survival of
∆arsR6 was decreased in RAW264.7 macrophages by adding Cu (II) compared to WT strain,
but fully restored in C∆arsR6 (Figure 5G and Figure S5C). Overall, the results demonstrate that
ArsR6 is involved in maintaining Cu/Ni homeostatic levels in Brucella.

2.5. The Omp25D Gene Is a Direct Target of Transcriptional Activation by ArsR6

We found that the promoter regions of several omp genes, including those for Omp25C,
Omp25D, BSS2_RS16720, and BSS2_RS15445, were enriched in ChIP-seq analysis. (Figure 6A
and Figure S6A). EMSA assays showed that ArsR6 binds the promoter regions for Omp25C,
BSS2_RS16720, and BSS2_RS15445, but the expression of these genes was not significantly
different in RNA-seq and RT-PCR experiments with WT, ∆arsR6, and C∆arsR6 strains
(Figure S6B,C). Only omp25D expression was altered significantly in RNA-seq data, which
suggested that this gene was a direct target for ArsR6. EMSA assays were performed to
analyze further the interaction of ArsR6 with the omp25D promoter. A 267-bp sequence
derived from the omp25D promoter region upstream of its start codon was employed.
Protein–DNA complex formation increased gradually with increasing concentrations of
ArsR6, which was not observed with the His-tag group (Figure 6B). Competition assays
were performed subsequently: Using a defined concentration of ArsR6, the protein-omp25D
promoter complex gradually decreased and free DNA gradually increased with the addition
of increasing concentrations of unlabelled DNA (Figure 6C), suggesting that ArsR6 directly
binds the omp25D promoter region. To examine further ArsR6 binding to the omp25D
promoter region, DNaseI footprinting assays were performed. The promoter region was
clearly protected on the coding strand when increasing concentrations of ArsR6 were co-
incubated with an omp25D fragment (Figure 6D). EMSA assays with a mutated probe were
performed to assess further the binding of ArsR6 to the omp25D promoter region. Protein–
DNA complex formation increased gradually with increasing concentrations of ArsR6 with
the wild-type probe, but the mutant probe was not recognized by ArsR6 (Figure 6E). We
also found that omp25D expression was decreased in RNA-seq data (Figure 6F), which was
consistent with RT-PCR results (Figure 6G). Overall, the results showed that ArsR6 binds
the omp25D promoter region to control omp25D expression.

2.6. Omp25D Contributes to Brucella Virulence

Omps in Brucella, including Omp25 and Omp31, are involved in cell envelope integrity
and virulence [18–21], but the significance of Omp25D is unknown. Deletion and comple-
mentary strains were constructed to assess the role of Omp25D in virulence (Figure S7A). The
growth pattern of ∆omp25D was similar to that of the WT strain in standard medium, indicat-
ing that Omp25D did not affect Brucella growth in normal medium (Figure S7B). However,
the survival rate of the ∆omp25D strain decreased under osmotic stress. This impairment was
reversed fully in C∆omp25D (Figure 7A). The results suggest that Omp25D may play a key
role role in maintaining cell envelope integrity during osmotic shock.

As virulence factors benefit the survival of Brucella in vitro and in vivo [22,23], we
probed the contribution of Omp25D to pathogenicity both in RAW264.7 macrophages and
in a mouse infection model. Omp25D did not affect the intracellular survival of Brucella
in RAW264.7 macrophages (Figure S7C). However, the spleen weight was decreased at
2 weeks post-infection in ∆omp25D-infected mice compared to those that were infected
with the WT strain (Figure 7B). The survival of ∆omp25D in the spleen was examined by
determining the colony-forming unit (CFU) number. The bacterial load in the spleen was
decreased significantly at 2 weeks post-infection in ∆omp25D-infected mice compared to
infection with WT strain (Figure 7C). In pathological analysis, the spleens infected with the
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WT strain exhibited a significant increase in the white-to-red pulp ratio due to white pulp
expansion and macrophage increase at 1 and 2 weeks post-infection, but this effect was fully
reversed at 4 weeks post-infection (Figure 7D and Figure S7D). In contrast, infection with
∆omp25D reduced the pathological characteristics of the spleen with a modest decrease
in the white-to-red pulp ratio and slight white pulp expansion at 2 weeks post-infection
compared to spleens from mice infected with WT strain (Figure 7D). Overall, the results
demonstrated that Omp25D is required to maintain bacterial virulence in a mouse model
of infection.
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Figure 6. Expression of omp25D is regulated by ArsR6. (A) ArsR6 is enriched in Omp25D promoter
regions in ChIP-seq analysis. (B) EMSA for binding of ArsR6 to the omp25D promoter region.
Biotin-labeled substrate was incubated with free His-tagged (3 µg (+)) or different concentrations
of His-tagged ArsR6 (0 (-), 1(+), 2(++), and 3 µg (+++)). Results are representative of at least three
independent experiments. (C) Competition assays. Unlabeled cold omp25D promoter region was
tested for competition with biotin-labeled omp25D promoter. Unlabeled cold omp25D promoter
region inhibits the binding of Omp25D to the labeled promoter. Results are representative of at least
three independent experiments. -, No DNA or protein; +,++,+++,++++,+++++, add DNA or protein.
(D) Analysis of ArsR6 bound to the promoter region of omp25D by DNaseI footprinting. Nucleotide
sequences protected by ArsR6 are marked by the dotted line. (E) EMSA for the ability of ArsR6 to
bind nucleotide sequences protected in DNaseI footprinting. The WT and mutated arsR6 promoter
region probes are illustrated. Probes were co-incubated with ArsR6 (0, 1, 2, and 3 µg). Results are
representative of at least three independent experiments. (F) Expression of omp25D in RNA-seq data.
(G) Expression of omp25D was detected by RT-PCR. Data represent mean and standard deviation
of N = 3 (independent biological replicates). Different small letters indicate significant differences
based on one-way ANOVA followed by Tukey’s post hoc test of honestly significant differences
(two-tailed).
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Figure 7. Omp25D is a Brucella virulence factor. (A) The survival of Brucella under osmotic stress
conditions. The WT, ∆omp25D, and C∆omp25D strains were cultivated at pH 5.5 or 50 ◦C or were
treated with polymyxin (10 µg/mL), H2O2 (0.5 mM), or sorbitol (0.5 M). Data represent mean and
standard deviation of N = 3 (independent biological replicates). The asterisks indicate significant
differences (* p < 0.05) based on two-way ANOVA followed by Tukey’s post hoc test of honestly sig-
nificant differences (two-tailed). (B) Spleen weights were measured at 1, 2, and 4 weeks post-infection.
The control represents uninfected BALB/c female mice injected with PBS. Data represent mean and
standard deviation of N = 5 (independent biological replicates). The asterisks indicate significant
differences (** p < 0.01) based on two-way ANOVA followed by Tukey’s post hoc test of honestly
significant differences (two-tailed). (C) The bacterial load was measured in homogenates at 1, 2, and
4 weeks post-infection. Data represent mean and standard deviation of N = 5 (independent biological
replicates). The asterisks indicate significant differences (* p < 0.05) based on two-way ANOVA
followed by Tukey’s post hoc test of honestly significant differences (two-tailed). (D) Representative
micrographs of spleen histopathology at 2 weeks post-infection. WP, white pulp; RP, red pulp; square,
magnification box.

3. Discussion

The ArsR family is distributed widely among microorganisms. Although involved in
diverse cellular events [15,24,25], the main function of ArsR proteins is as metal sensors
that maintain intracellular homeostasis [5,26,27]. In this study, we demonstrated that ArsR6
is required for survival of Brucella during heat, oxidative, and osmotic stresses, as well as
in a mouse infection model. RNA-seq and ChIP-seq revealed that multiple potential target
genes, including arsR6 and omp25D, were regulated by ArsR6. ArsR6 is a classical ArsR
homologue that autoregulates its expression at the transcriptional level during standard
growth conditions, but which also regulates other loci. ArsR6 disassociated from its
binding sites to enhance its own expression to maintain intracellular metal ion homeostasis
during heavy metal ion stress. These results are consistent with previous studies that
the classical function of ArsR regulators’ response is to maintain intracellular metal ion
homeostasis [6,15,25].

Although ArsR regulators are required for survival in extreme conditions, including
intracellular physiological fluctuations and heavy metal ion stress [5,6,28], only a mutant of
the ArsR homologue BME_RS02165 was attenuated in a mouse model of infection among
four ArsR family candidates that were examined in Brucella melitensis [10]. These results
are consistent with our findings that ArsR6 is required for Brucella survival during murine
infection in in a mouse model of infection. Thirty-four potential target genes of ArsR6
were identified in RNA-seq and ChIP-seq analysis, which suggests that ArsR6 may be a
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classical ArsR family transcriptional regulator that exerts an effect on a wide array of genes.
ArsR family members such as CyeR from Corynebacterium glutamicum and SoxR from E. coli
respond to oxidative stress [29,30]. Analogously, our data showed that Cu-Zn superoxide
dismutase SodC (BSS2_RS13300) is potential target genes for ArsR6 in Brucella. SodC is
required for Brucella abortus survival during oxidative stress, as well as the establishment
and maintenance of persistent infection [31]. These results correlated with the decreased
survival rate of the ArsR6 mutant of Brucella here during oxidative stress. We also found
that omp25D is a direct target gene of ArsR6 and that deletion of omp25D attenuated Brucella
in a mouse model of infection. Thus, ArsR6 directly regulates expression of the Omp25D
virulence factor to benefit Brucella survival. Brucella Omps play important roles in the
maintenance of cell envelope physiological function [32]. The decreased survival rate of
the Omp25D deletion strain may reflect the impairment of cell membrane physiological
function. The combination of the effects of ArsR6 on diverse loci may explain attenuation
of the ArsR6 deletion mutant in mice, although the molecular mechanism by which the
ArsR6 deletion strain is defective remains unclear. Nevertheless, it is apparent that ArsR6
is crucial to escape host killing during persistent infection by Brucella.

ArsR family members autoregulate their expression by binding to the cognate promot-
ers in standard growth conditions or at low concentration of metals but disassociate from
the binding sites to increase their own expression to sequester excess heavy metal ions
in extreme conditions [5,6]. In this study, we found that ArsR6 possesses self-inhibitory
properties similar to numerous ArsR family members [5,17,33]. The DEGs in RNA-seq
data were associated with metal ion transport, such as a Ni/Co exporter (BSS2_RS10485)
and a Cu-processing system ATP-binding protein (BSS2_RS11310), suggesting that ArsR6
is a metalloregulatory protein. Accordingly, we found that ArsR6 is a metal sensor. Low
concentrations of Cu are important as a cofactor of cytochrome c oxidase and Cu-Zn super-
oxide dismutase during bacterial growth, but excess Cu is toxic for many bacteria and the
host capitalizes on this toxicity to defend against bacterial invaders [8,9,34]. Growth of the
ArsR6 deletion strain was no different from the WT strain in standard conditions in vitro
but was inhibited by excess Cu compared to the parental strain. This phenomenon also
was observed in RAW264.7 macrophages. These findings show that ArsR6 is a classical
ArsR family member that is involved in maintaining cellular Cu homeostasis, which may
partly explain why the ArsR6 deletion strain is attenuated in mice.

As important components of the cell wall, Omps are highly conserved in Brucella and are
required for virulence, including Omp10, Omp19, Omp22, Omp25, and Omp31 [19,35,36]. The
deletion of the gene for Omp25D from rough Brucella ovis PA led to a significant reduction
in invasion and survival inside host cells as well as in spleen colonization in mice [19,37],
although no evidence supported a role for Omp25D in virulence in smooth strains. In this
study, we found that the absence of Omp25D did not affect bacterial survival in standard
conditions in vitro or in RAW 264.7 macrophages in vivo. This may reflect a compensatory
mechanism within group 3 Omps such that in the absence of Omp25C, Omp25D and
Omp3B increase Omp25B production [38]. A balance of the group 3 Omps seems to be
important for the integrity and physiological function of the cell envelope [37]. However,
we found that ∆omp25D is attenuated in mice, which suggests that the increase of Omp25B
is not sufficient to compensate for the absence of Omp25D during infection. Thus, we
revealed a novel regulatory mechanism in which ArsR6 regulates Omp25D production to
maintain the physiological status of the cell envelope.

In conclusion, our results revealed that ArsR6 is a novel virulence factor in Brucella. ArsR6
plays a critical role in avoiding host killing by autoregulating its expression to maintain metal
ion homeostasis and by enhancing Omp25D production to maintain the physiological function
of cell membranes. Our findings help expand the understanding of the mechanisms by which
bacterial pathogens escape host killing during the process of infection.
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4. Materials and Methods
4.1. Ethics Statement

All animal experiments were conducted in accordance with the “Guidelines on Ethical
Treatment of Experimental Animals” (2006) No. 398 from the Ministry of Science and
Technology, China. The sampling procedures used in the present study received prior
approval from the Experimental Animal Manage Committee of Northwest A&F University
with the approval license number 2018ZX04002032.

4.2. Bacterial Strains and Growth Conditions

Escherichia coli DH5α and BL21 (DE3) (TaKaRa, Dalian, China) were grown in liquid
Luria-Bertani (LB) medium at 37 ◦C for genetic manipulations and protein expression,
respectively. Brucella suis S2 (WT strain) (CVCC reference number CVCC70502) was
obtained from the Shaanxi Provincial Institute for Veterinary Drug Control (Xi’an, Shaanxi,
China). Antibiotics were used at the following concentrations (µg/mL) when required:
kanamycin, 50; ampicillin, 50; and gentamicin, 25 or 50. The arsR6 and omp25D gene
deletion strains (∆arsR6 and ∆omp25D, respectively) were acquired by allelic exchange, as
described previously [39]. The ∆arsR6 and ∆omp25D complementing strains (C∆arsR6 and
C∆omp25D) were acquired, as described previously [39]. All specific primers are listed in
Supplementary Table S1.

4.3. Stress Resistance Assays

The WT strain and its derivatives were cultured in tryptone soybean broth (TSB,
Sigma, St. Louis, MO, USA) at 37 ◦C with shaking to an optical density at 600 nm (OD600)
of ~0.6 and the number of bacterial colony-forming unit (CFUs) was determined by 10-
fold gradient dilution. The 105 CFUs of the WT strain and its derivatives were treated in
1 mL TSB for 1 h under the following conditions: pH 5.5, water bath at 42 ◦C, 10 µg/mL
polymyxin B, 0.5 Mm H2O2, and 0.5 M sorbitol. After being treated, the survival rate was
confirmed by 10-fold gradient dilution in PBS and plated onto tryptone soybean agar (TSA,
Sigma, St. Louis, MO, USA) for 72 h to determine.

4.4. Macrophage Infection

RAW264.7 macrophages (National Collection of Authenticated Cell Cultures) were
cultured at Roswell Park Memorial Institute (RPMI) 1640 (hyclone laboratories Inc., Logan,
UT, USA), supplemented with 10% fetal bovine serum (FBS; Gibco) at 37 ◦C with 5% CO2.
Briefly, RAW264.7 macrophages were seeded in 24-well plates at a density of 2 × 105

cells/well. Cells were infected with bacteria after 12 h at a multiplicity of infection of
100:1. After 1 h, the cells were washed three times and further incubated for 1 h with
cell culture medium containing gentamicin (50 µg/mL) to eliminate extracellular bacteria.
Cells then were cultured in cell culture medium containing gentamicin (25 µg/mL) to
avoid continuous infection. For CFU counting, RAW264.7 macrophages were washed three
times with PBS and lysed in PBS containing 0.5% Triton X-100 (0.5 mL) at each time point.
The lysates were diluted serially 10-fold and then cultured on TSA plates for 72 h at 37 ◦C.
The number of CFUs was determined. For immunofluorescence assays, RAW264.7 cells
infected with the WT strain and its derivatives were washed three times with PBS and fixed
with paraformaldehyde (4%) for 30 min at room temperature. Cells then were incubated
with PBS containing Triton X-100 (0.25%) at room temperature for 20 min and washed three
times with PBS. Goat anti-brucella polyclonal antibody (1:100 dilution, Noncommercial
antibody) and donkey anti-goat Alexa Fluor 555 antibody (1:500 dilution, Invitrogen Inc.,
Carlsbad, CA, USA) were used as the primary and secondary antibodies, respectively.
Subsequently, coverslips were mounted onto the glass slides and the cells were observed
under a microscope (Nikon, Tokyo, Japan).
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4.5. Real-Time PCR Analysis

The WT strain and its derivatives were cultured in TSB at 37 ◦C with shaking to
an OD600 of ~0.6 and were collected by centrifuge at 5000 rpm for 5 min. Total RNA
was extracted with TRIzol (Invitrogen Inc., Carlsbad, CA, USA). Reverse transcription of
RNA was performed using a RT Reagent kit (Vazyme Biotech Co., Ltd., Nanjing, China),
and RT-PCR was conducted using an SYBR Premix Ex Taq™ (Vazyme Biotech Co., Ltd.,
Nanjing, China) on the ABI 7500 system (Applied Biosystems, Waltham, MA, USA). In
addition, no-template control and no-reverse transcriptase control were performed in
RT-PCR. The analysis of the relative transcription levels used the 2−∆∆Ct method. Gene
quantitative expression was normalized to the 16S ribosomal RNA gene for Brucella. All
RT-PCR primers are listed in Supplementary Table S1.

4.6. Mouse Infection

All experiments were performed with 6- to 8-week-old BALB/c female mice (Experi-
mental Animal Center, Xi’an Jiaotong University, Shaanxi, China). The mice were infected
intraperitoneally with a total dose of approximately 107 CFUs of the WT strain and its deriva-
tives in PBS (200 µL). Groups of five mice per strain were sacrificed by cervical dislocation
at 1, 2, and 4 weeks post infections. Spleen tissues were weighed to evaluate splenomegaly.
Bacterial loads in the mice spleen were counted through homogenization in PBS, plating of
serial dilutions on TSA plates, and growth at 37 ◦C for 72 h. At the same time, spleens were
stained by hematoxylin-eosin (H & E) staining kit (Solarbio Life Science, Beijing, China) to
evaluate the pathological feature, according to the manufacturer’s protocols.

4.7. RNA-Sequencing Analysis

Total RNA was sequenced using the Illumina Hiseq 2500 sequencer (Illumina com-
pany, San Diego, CA, USA). The reference genome data were downloaded from the
NCBI database (NZ_CP006961/NZ_CP006962). Clean reads (remove low-quality reads
(Q20 < 20), reads containing poly-N sequences, and adaptor sequences by FASTX-Toolkit)
were aligned to the bacterial reference genome using HISAT40 software [40]. Principal
component analysis (PCA) of RNA-seq data was performed by R package ade4 [41]. The
relative transcript abundance was calculated as fragments in reads per kilobase of exon se-
quence per million mapped sequence reads (FPKM) using RESM software [42]. Only genes
that demonstrated the adjusted p value ≤ 0.05 and the absolute value of log2 ratio ≥ 1 were
identified as differentially expressed genes (DEGs). The DEGs’ Volcano plot was drawn by
R package ggplot2 [41]. DEGs were subjected to Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) Pathway enrichment analysis using the online gene func-
tion analysis website DAVID (https://david.ncifcrf.gov/ (accessed on 13 September 2020)).
All RNA-seq data were uploaded to Dryad (https://doi.org/10.5061/dryad.kkwh70s56
(accessed on 8 July 2021)).

4.8. Chromatin Immunoprecipitation Sequencing Analysis

Exponentially growing C∆arsR6 (OD600~0.6) were collected by centrifugation and
were fixed with sodium phosphate buffer (10 mM; pH 7.6) and formaldehyde (1%) for
10 min at room temperature followed by 30 min on ice. C∆arsR6 were collected and
resuspended in lysis buffer (1.1% TritonX-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0,
167 mM NaCl, protease inhibitors). The lysate was sonicated on ice by applying 10 bursts of
10 s at 50% amplitude to shear the DNA to fragments of approximately 250 base pairs. The
fragments were immunoprecipitated with anti-flag mouse monoclonal antibody (TransGen
Biotech, Beijing, China). Reverse crosslinking was conducted in 200 mM NaCl solution at
65 ◦C for 12 h and DNA was extracted and resuspended in elution buffer (1% SDS and
0.1M NaHCO3). ChIP DNA was assayed using Illumina HiSeq sequenator. All library
preparation and sequencing were performed using standard Illumina protocols. Sequence
reads were mapped to the B. suis S2 genome using MAQ [43]. Peak finding was performed
using MACS14 [44]. The DEGs’ Venn diagram was prepared using Microsoft PowerPoint
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2013. Cis-regulatory Element Annotation System (CEAS) was used to measure the average
ChIP enrichment signals in a region of ±2 kbp from the TSS of genes [45]. The DEGs’
heatmap was drawn by R package ggplot2 [41]. All ChIP-seq data were uploaded to Dryad
(https://doi.org/10.5061/dryad (accessed on 8 July 2021)).

4.9. Protein Expression and Purification

ArsR6 protein was purified, as described previously [46]. The arsR6 coding region
was amplified by PCR from WT strain genomic DNA using primers ArsR6 (ORF)-F and
ArsR6 (ORF)-R, and was cloned into the prokaryotic expression vector pET-32a using the
ClonExpress II One Step Cloning Kit (Vazyme Biotech Co., Ltd, Nanjing, China). Empty
plasmid pET-32a and recombinant vector pET-32a-ArsR6 were transformed separately into
E. coli BL21 (DE3). E. coli BL21 (DE3) carrying the relevant plasmid was cultured until
OD600 = 0.6, and isopropyl β-D-1-thiogalactopyranoside (0.5 mM) was added to induce
protein expression. Expression continued at 37 ◦C for 15 h. Subsequently, the induced cul-
ture was collected by centrifugation, resuspended in PBS, and lysed by sonication. Finally,
the supernatant was collected by centrifugation at 12,000 rpm for 30 min. Purification of
His-tagged ArsR6 and the free His-tag was performed with BeyoGold™ His-tag Purifica-
tion Resin (Beyotime, Shanghai, China) according to the manufacturer’s recommended
protocols. All primers are listed in Supplementary Table S1.

4.10. Electrophoretic Mobility Shift Assay

DNA probes were amplified by PCR using primers listed in Supplementary Table S1.
The probes were labeled by biotin using an EMSA probe biotin labeling kit (Beyotime,
Shanghai, China), according to the manufacturer’s recommended protocols. The labeled
probe was mixed with increasing concentrations of protein in gel-shift buffer (10 µL). After
incubation at room temperature for 20 min, the samples were analyzed by polyacrylamide
gel electrophoresis (5%) at 80 V for 40 min. DNA was detected using the chemiluminescent
biotin-labeled nucleic acid detection kit (Beyotime, Shanghai, China) according to the
manufacturer’s recommended protocols. The gel was scanned by a gel imaging system
(Bio-Rad, Hercules, CA, USA).

4.11. DNaseI Footprinting Assay

For preparation of fluorescent FAM-labeled probes, the ArsR6 and Omp25D promoter
regions were PCR amplified using primers ArsR6p-F and ArsR6p-R, and Omp25Dp-F
and Omp25Dp-R, respectively. The probes were labeled with FAM and purified by the
Wizard® SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA) and were
quantified with a NanoDrop 2000C (Thermo, Waltham, MA, USA). DNase I footprinting
assays were performed. For each assay, probes (250 ng) were incubated with increasing
concentrations of ArsR6 protein in a total volume of 40 µL. After incubation for 30 min
at 25 ◦C, DNase I (approximately 0.015 units in 10 µL; Promega, Madison, WI, USA) and
freshly prepared CaCl2 (100 nmol) were added and incubation was continued at 37 ◦C
for 1 min. The reaction was stopped by adding DNase I stop solution (140 µL of 200 mM
unbuffered sodium acetate, 30 mM EDTA, and 0.15% SDS). Samples were extracted, firstly,
with phenol/chloroform and then precipitated with ethanol. Pellets were dissolved in
MiniQ water (30 µL). The GeneScan-LIZ600 size standard (Applied Biosystems, Waltham,
MA, USA) was used to assess fragment sizes.

4.12. Western Blot

The bacterial lysate was generated using 5 × SDS-PAGE loading buffer. Proteins
were separated via 15% SDS-PAGE in Tris/glycine buffer and then transferred onto PVDF
membranes. The membranes were blocked with Tween-20 (0.5%) with 5–10% nonfat dry
skim milk powder for 2 h at room temperature. Membranes then were incubated with
the primary Flag antibody (Zhongshan Golden Bridge Biotechnology, Nanjing, China)
overnight at 4 ◦C and then with the HRP-conjugated goat anti-mouse secondary antibody
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(Zhongshan Golden Bridge Biotechnology, Nanjing, China). The blots were visualized
using the Gel Image System (Tannon, Biotech, Shanghai, China).

4.13. Cell Counting Kit-8 (CCK8) Assay

RAW264.7 macrophages were cultured in a 96-well plate at a density of 1000 cells/well.
After Cu treatment for 24 h, CCK-8 was added according to the manufacturer’s recom-
mended protocols (Dojindo, Kumamoto, Japan). Each well absorbance was read at 450 nm
with a fully automatic microplate reader (SpectraMAX 190, Silicon Valley, CA, USA).

4.14. Ultraviolet Light Analysis

The ArsR6 protein (0.5 mg/mL; 1.5 mL) was placed in a quartz cuvette (10 mm).
Different concentrations of Cu (II), Ni (II), Co (II), and Mn (II) were added. The absorptivity
spectra were detected using a spectrophotometer (Hitachi Limited, Tokyo, Japan).

4.15. β-Galactosidase Activity Assay

Three fragments were amplified by PCR using the primers pBBR1-F/pBBR1-R, A+

(LacZ)-F/A+ (LacZ)-R ArsR6p (LacZ)-F/ArsR6p (LacZ)-R, and LacZ-F/LacZ-R and linked
using the ClonExpress II One Step Cloning Kit (Vazyme Biotech Co., Ltd., Nanjing, China)
to construct the pBBR1-ArsRp-LacZ plasmid. This reporter plasmid was transformed
into the WT, ∆ArsR, and C∆ArsR strains. All strains were grown at 37 ◦C to an OD600
= 0.6. Bacterial suspensions containing equivalent numbers of cells were collected and
washed twice with cold PBS. Then, 600 µL of Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4,
10 mM KCl, 1 mM MgSO4, 59 mM β-mercaptoethanol, pH 7.5) were added to permeabilize
bacteria; 300 µL of resuspended cells were saved to determine the A600 values. SDS (0.1%)
and chloroform (100 µL) were added, and the samples were vortexed and incubated at
28 ◦C for 5 min. O-nitrophenyl-β-D-galactoside (200 µL of 4 mg/mL) was then added
and samples were incubated at room temperature for 5 min. Then, 1 M Na2CO3 (500 µL)
was added to end the reactions. Samples were centrifuged and the supernatants were
collected to determine OD420, OD550, and OD595 values. Miller units were calculated using
the formula: Miller units = 1000 × (OD420 − 1.75 × OD550)/T (min) × V (mL) × OD600.

4.16. Statistical Analysis

Statistical comparisons were performed using SPSS version 22 software. Graphpad
prime 8.0 software was used for drawing the map. The results were presented as the
means ± standard deviations (SDs). Further analyses were performed using unpaired,
two-tailed Student’s t test and one-way or two-way analysis of variance (ANOVA) followed
by Tukey’s post hoc test of honestly significant differences (two-tailed). Probability (p)
values < 0.05 were considered statistically significant.
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