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Temperature exerts a first-order control on microbial populations, which constantly
adjust the fluidity and permeability of their cell membrane lipids to minimize loss
of energy by ion diffusion across the membrane. Analytical advances in liquid
chromatography coupled to mass spectrometry have allowed the detection of a
stunning diversity of bacterial and archaeal lipids in extreme environments such as
hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we
investigated a thermal gradient from 18 to 101◦C across a marine sediment field and
tested the hypothesis that cell membrane lipids provide a major biochemical basis
for the bioenergetics of archaea and bacteria under heat stress. This paper features
a detailed lipidomics approach with the focus on membrane lipid structure-function.
Membrane lipids analyzed here include polar lipids of bacteria and polar and core
lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we
found that archaeal polar lipids generally dominate over bacterial lipids in deep layers
of the sediments influenced by hydrothermal fluids. A close examination of archaeal
and bacterial lipids revealed a membrane quandary: not only low permeability, but
also increased fluidity of membranes are required as a unified property of microbial
membranes for energy conservation under heat stress. For instance, bacterial fatty acids
were composed of longer chain lengths in concert with higher degree of unsaturation
while archaea modified their tetraethers by incorporation of additional methyl groups
at elevated sediment temperatures. It is possible that these configurations toward a
more fluidized membrane at elevated temperatures are counterbalanced by the high
abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce
membrane permeability through strong intermolecular hydrogen bonding. Our results
provide a new angle for interpreting membrane lipid structure-function enabling archaea
and bacteria to survive and grow in hydrothermal systems.

Keywords: membrane lipids, heat stress, bioenergetics, bacteria, archaea, shallow-water hydrothermal
sediments, membrane fluidity/permeability, adaptation
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INTRODUCTION

Temperature exerts a first-order control on microbial
populations, as cell physiology and biochemistry are adapted to
specific temperature ranges (Rothschild and Mancinelli, 2001;
Schrenk et al., 2008). For instance, archaea and bacteria that use
protons and/or sodium as coupling ions for bioenergetics may be
affected under elevated temperatures since the ion permeability
of biological membranes increases with temperature (e.g., van
de Vossenberg et al., 1995). In this respect, membrane lipid
composition plays a major role controlling the ion permeability
of cells. At least two mechanisms have been proposed to explain
the permeation of ions across lipid bilayers. The first involves a
solubility-diffusion model from which permeability coefficients
were calculated (Finkelstein, 1987). In many cases, however,
discrepancies between predicted and measured permeability
have raised questions about the validity of the solubility-diffusion
concept (van de Vossenberg et al., 1995; Paula et al., 1996).
An alternative mechanism has been proposed and concerns
the formation of transient water wires across the membrane.
These water wires can be formed spontaneously in membranes
creating a pathway for proton transport by a von Grotthuß-type
mechanism (Nagle and Morowitz, 1978; Deamer and Nichols,
1989; Paula et al., 1996; Haines, 2001). The extraordinary proton
conductance via the von Grotthuß mechanism can result in
futile ion cycling, i.e., inadvertent passage of ions across the
membrane (Konings et al., 1995; van de Vossenberg et al.,
1995, 1999; Valentine, 2007; Valentine and Valentine, 2009;
Yoshinaga et al., 2016). Thus environmental conditions, such
as temperature and pH, are expected to dictate cell membrane
lipid composition (e.g., fatty acid chain length, types of lipid
headgroups), which in turn controls the maintenance and
dissipation of ion gradients across biological membranes (i.e.,
cell bioenergetics).

Several studies have shown microbial lipid adaptation to heat
stress in cultured bacteria (e.g., Ray et al., 1971; Weerkamp
and Heinen, 1972; Rilfors et al., 1978; Hazel and Williams,
1990) and archaea (e.g., De Rosa et al., 1980; Sprott et al.,
1991; Uda et al., 2001; Matsuno et al., 2009). For instance, the
important pathogen Listeria monocytogenes is widely known as
a major foodborne disease threat. This bacterium dramatically
modifies its membrane fatty acids, including longer chain
fatty acids and switches from anteiso- to iso-fatty acids, when
transiting from a free-living life style on refrigerated food
(2–4◦C) to a human pathogenic state (37◦C) (Annous et al.,
1997). By investigating the polar lipids of the cultured archaeon
Thermoplasma acidophilum, Shimada et al. (2008) observed an
increase in glycolipids content with increasing temperature. This
result was attributed to more effective hydrogen bonds between
sugar headgroups of glycolipids compared to those between
glycophospho- and phospholipids (e.g., Curatolo, 1987; Baba
et al., 2001).

In addition to studies using cultured microorganisms, a
limited number of investigations have attempted to reconcile
microbial membrane adaptations and lipid distributions in
relation to elevated temperatures in natural settings. For instance,
variations in the degree of cyclization of glycerol-based tetraether

lipids are captured by the Ring-index, which has been applied
as a proxy for archaeal membrane lipid adaptation to heat
stress in terrestrial hot springs (Pearson et al., 2004, 2008;
Schouten et al., 2007; Boyd et al., 2013; Paraiso et al., 2013;
Wu et al., 2013; Jia et al., 2014). Supported by studies in pure
cultures of thermophiles (De Rosa et al., 1980; Uda et al.,
2001; Shimada et al., 2008; Boyd et al., 2011), the rationale
is that by increasing the number of rings, tetraethers are
packed more tightly, decreasing membrane permeability under
heat stress (Gliozzi et al., 1983; Gabriel and Chong, 2000;
Gliozzi et al., 2002). However, most of the studies in natural
settings have demonstrated that the Ring-index may not be
applicable as a universal proxy of archaeal membrane adaptation
to extreme temperature ranges. Since controversial results in
tetraether cyclization relative to pH were obtained in cultured
thermoacidophilic archaea (Shimada et al., 2008; Boyd et al.,
2011), a possible explanation for the deviation in the Ring-
index and temperature can be attributed to the considerably
large variation in pH and temperature at ecosystems such as hot
springs (e.g., Pearson et al., 2004, 2008; Schouten et al., 2007; Jia
et al., 2014).

In fact, environmental surveys attempting to probe membrane
lipid adaptation or lipid/DNA biomarker distribution in relation
to temperature have encountered difficulties in sampling across
a thermal gradient. This is the case for sulfide deposits or
black smoker chimneys in deep-sea hydrothermal vent systems.
Results from lipid biomarkers and DNA evidencing a dominance
of archaea vs. bacteria in the interior of chimney structures
(Hedrick et al., 1992; Kormas et al., 2006) may not exclusively
reflect thermal adaptation. The rationale is that the variation in
temperature from 2◦C (ambient seawater) to∼350◦C (chimney’s
interior) may occur in less than 5 cm toward the inside of
these structures (Tivey, 2007), so that interior samples are either
located at inhabitable temperature zones or may record the
result of seawater entrainment during sampling (Kormas et al.,
2006).

In this study, we have examined a thermal gradient across
a sediment field and conducted a lipidomics approach for
the analysis of microbial life. For this purpose, we used
a marine sediment field off the coast of Milos (Greece)
featuring a point source of extreme heat generating a thermal
gradient (ranging from 18 to 101◦C; Figure 1). This thermal
gradient provides ideal outdoor laboratory conditions to test
how temperature drives changes in membrane lipid molecular
architecture of archaea and bacteria for bioenergetic gains.
That is, although considerable changes in microbial community
composition are expected along this thermal gradient, we predict
that any given living cell must adjust its cell membranes to
in situ temperature conditions. We thus tested the concept
that membrane lipids dictate the thermodynamic ecology
of bacteria and archaea in stressful conditions (Valentine,
2007; Valentine and Valentine, 2009; Kellermann et al.,
2016a). The general strategy of this paper features a detailed
lipidomics approach with the focus on membrane lipid structure-
function based on experimental data from the literature
(e.g., pure culture experiments and/or molecular dynamics
simulations).
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MATERIALS AND METHODS

Study Area
As part of the Hellenic Arc, the Milos Island is one of the largest
hydrothermal systems in the Mediterranean Sea (Figure 1A).
Extensive submarine venting is reported to occur through the
sandy sediments from the intertidal zone until water depths
of more than 100 m, covering an area of more than 35 km2

(Dando et al., 1995a, 2000). Temperatures of these sediments
can be as high as 119◦C (Botz et al., 1996) and the pH in pore
waters slightly acidic (pH ∼5, Dando et al., 2000; Wenzhöfer
et al., 2000; Price et al., 2013a). The gasses of venting fluids are
characterized by high contribution of CO2 (55–92%), with others
such as CH4, H2S, and H2 representing usually less than 10%
each (Botz et al., 1996; Dando et al., 2000). In addition, venting
fluids contain elevated concentrations of ammonium and sulfide
(up to 1 mM), manganese (up to 0.4 mM) and arsenic in the
micromolar range (Fitzsimons et al., 1997; Dando et al., 2000;
Price et al., 2013a). Surface sediments of diffuse hydrothermal
venting are covered by yellow to orange patches and white mats,
which are derived from mineral deposits such as native sulfur,
arsenic sulfide and/or microbial mats (Dando et al., 1998, 2000;
Price et al., 2013a).

Most studies conducted in the shallow-water hydrothermal
sediments off Milos Island were performed at Palaeochori
Bay (e.g., Dando et al., 1995a,b, 1998; Brinkhoff et al., 1999;
Sievert et al., 1999, 2000b; Giovannelli et al., 2013). Located
approximately 500 m east of Palaeochori Bay (Figure 1A),
Spathi Bay also features hydrothermal activity, including free
gas emission into the water column, abundant orange to white
patches in surface sediments and similar pore water geochemistry
(Price et al., 2013a).

Sampling
Sediment samples were collected by SCUBA-divers in 10 m
water depth at Spathi Bay in May 2012. A permission for
sample holding and processing was granted by the General
Directorate of Antiquities and Cultural Heritage in Athens
(permit number: 88/1586). The sampling site consisted of
an area covered by several white patches. Before retrieving
the individual sediment cores, temperature was measured in
situ in 5 cm intervals by a handheld temperature-probe in
a custom-built underwater housing (Max-Planck-Institute for
Marine Microbiology in Bremen, Germany). In one of these
white patches (ca. 7 m × 4 m in size), four sediment cores
(up to 20 cm length), representing stations S2, S3, S4, and S5,
were retrieved along a transect with increasing temperatures. An
additional core was taken a few meters away from the white
patches, in an area presumably free of any major vent influence,
here named the reference site (S1). Sediment cores were sliced
into 2 cm sections and kept at −20◦C (49 samples in total for
lipid analysis). For in situ microsensor measurements Clark-
type oxygen (Revsbech and Ward, 1983), H2S (Jeroschewski
et al., 1996) and manufactured pH microelectrodes (MI-407;
Microelectrodes Inc., Bedford, NH, United States) together with
an external reference (MI-401; Microelectrodes Inc., Bedford,

NH, United States) were used and measurements were performed
in all stations except for S2 due to weather constraints. All
sensors were mounted on an autonomous profiling lander
(Gundersen and Jørgensen, 1990; Wenzhöfer and Glud, 2002)
deployed at the sediment-water interface. Depth profiles were
recorded with a spatial resolution of 100 µm, and sensors
were allowed to equilibrate at each depth for 5 s before the
signal was recorded. Triplicate readings were averaged from
each depth. Prior to each in situ measurement all microsensors
were calibrated. Oxygen microsensors were calibrated by a two-
point calibration, where the signal obtained in aerated seawater
represented the concentration of 100% air saturation and the
signal obtained in anoxic seawater (bubbled with N2 gas) was
taken as zero oxygen. For H2S measurements, a 4–5 point
calibration was performed in anoxic seawater of pH lower
than 2. Aliquots of Na2S (1 M) were added stepwise into
the calibration solution and the sensor signal was recorded.
Subsamples, taken after each aliquot’s addition, were fixed
in 2% zinc-acetate and stored at 4◦C. H2S concentration of
the subsamples was determined according to Cline (1969)
by using a spectrophotometer (UV-160A Spectrophotometer,
SHIMADZU GmbH, Düsseldorf, Germany). pH sensors were
2-point-calibrated using commercial buffer solutions (Mettler
Toledo A.G. Analytical, Schwerzenbach, Switzerland).

Temperature Modeling
In situ temperature measurements (every 5 cm) were used
as input for a thermal diffusivity model run in R v. 2.9.1
(R Development Core Team, 2009)1 using vegan (Oksanen
et al., 2011) and custom R scripts. For this model, we
assumed a thermal diffusivity of 3 × 10−7 m2 s−1 (for
sandy sediments) and steady flow velocity of 0.021 m h−1.
Temperature values for sediment sections of 100 µm were
determined. Temperature values for S2 were predicted based on
bottom water temperature and a single in situ value (∼40◦C)
obtained at 5 cm sediment depth. Fluid flow velocity and
diffusivity were modeled for S2 based on the values obtained
for the hydrothermal influenced sediments at stations S3 to S5
(Figure 1B).

Lipid Extraction
Lipids were extracted from 30 to 60 g of freeze-dried sediments
using a modified Bligh and Dyer method as in Sturt et al. (2004).
In brief, an internal standard 1,2-dihenarachidoyl-sn-glycero-3-
phosphocholine (C21:0/C21:0–PC, Avanti Lipids) and a mixture of
dichloromethane/methanol/buffer (DCM/MeOH/buffer, 1:2:0.8;
v/v/v) was added to the sediment and ultrasonicated for 10 min
in four steps. For the first two extraction steps a phosphate buffer
was used (pH 7.4), and, for the last two steps, a trichloroacetic
acid buffer (50 g/L, pH 2.0). After each ultrasonication, samples
were centrifuged and the supernatant collected in a separatory
funnel. For phase separation equal amounts of DCM and
deionized Milli-Q water were added to a final volume of 1:1:0.8
(MeOH/DCM/buffer, v/v/v). The organic phase was separated
and the remaining aqueous phase washed three times with DCM.

1http://www.R-project.org
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FIGURE 1 | The thermal gradient studied in sediments of Spathi Bay, Milos
Island, Greece. (A) As part of the Hellenic back-arc and fault (semi-circles and
triangles, respectively), Milos Island is one of the largest hydrothermal systems
of the Mediterranean Sea [modified after Giovannelli et al. (2013)]. The study
site Spathi Bay is located 500 m away from Palaeochori Bay, where most
geochemical and microbiological investigations from Milos Island have been
performed (see Main Text). (B) Modeled temperature profiles in sediments of
Spathi Bay calculated for every 100 µm from surface until 20 cm of sediment
depth (see Materials and Methods section). Prior to sampling, stations S1 to
S5 were selected based on temperatures recorded in situ at 5 cm sediment
depth. Station S1 represents the reference sediments with temperatures
below 20◦C, while hydrothermally influenced stations S2 to S5 are
characterized by a steep increase in temperature with depth.

Subsequently the DCM phase was washed three times with
deionized Milli-Q water, evaporated close to dryness under a
stream of nitrogen at 37◦C and stored at −20◦C as total lipid
extract (TLE) until further analysis.

Analyses and Quantification of Polar
Lipids
An aliquot of each TLE was analyzed for polar lipid
quantities on a Dionex Ultimate 3000 high performance
liquid chromatography (HPLC) system connected to a Bruker
maXis Ultra-High Resolution quadrupole time-of-flight tandem
mass spectrometer (qTOF-MS) equipped with an ESI ion source
(Bruker Daltonik, Bremen, Germany). Polar lipid analyses
by HPLC-MS were performed using three different methods:
normal and reverse phase following the protocol of Wörmer
et al. (2013) to quantify non-archaeal and archaeal polar lipids,
respectively; and reverse phase according to Zhu et al. (2013)
for ring, unsaturation, methylation indices for both core and

polar archaeal tetraethers. Detection of lipids was performed
in positive and/or negative ionization mode while scanning a
mass-to-charge (m/z) range from 150 to 2,000. MS2 scans were
obtained in data-dependent mode, for each MS full scan up
to three MS2 experiments were performed, targeting the most
abundant ions. Active exclusion limits the times a given ion
is selected for fragmentation (three times every 0.5 min) and
thus allowed to also obtain MS2 data of less abundant ions.
Lipid identification was achieved by monitoring exact masses
of possible parent ions (present as either H+, NH4

+, or Na+
adducts) in combination with characteristic fragmentation
patterns as outlined by Sturt et al. (2004) and Yoshinaga et al.
(2011). Polar lipid quantification was performed by comparison
of parent ion responses relative to known amounts of an internal
standard (i.e., C21:0/C21:0–PC) and normalized to gram of
dry sediment weight. Reported concentrations were corrected
for response factors using commercially available or purified
standards (see Supplementary Table S1). Additional analyses of
archaeal core tetraethers, which lack a polar headgroup, were
performed according to Becker et al. (2013).

Correlation Analysis
Given that the data points were not normally distributed,
we conducted a two-sided Spearman’s rank correlation test
for several archaeal and non-archaeal lipid parameters against
temperature. Spearman’s rank correlations were calculated using
the software of Wessa (2017). Parameters included the total
number of individual archaeal and non-archaeal polar lipids
from each sample, which was defined as lipid diversity. For
bacterial polar lipids, we calculated the averaged number
of unsaturation(s) and chain length of lipids from specific
compound classes (e.g., SQ, CL, and PC). That is, the number
of double bonds and chain length of each individual lipid
were multiplied by the relative abundance within a compound
class and summed up. For details in core and polar archaeal
tetraether indices calculation (number of cyclopentane rings,
degree of unsaturation and additional methyl groups) please see
the Supporting Information.

RESULTS

The Thermal Gradient in Sediments from
Spathi Bay
Figure 1B displays the modeled temperature profiles from
surface sediments until 20 cm sediment depth of stations S1–S5.
Temperature profiles from diffuse hydrothermal venting stations
showed a uniform trend of continuous and steep increasing
values within the first centimeters and a flattened slope at
greater depths. For instance, station S5 displayed the strongest
temperature gradient (1T > 80◦C from top to bottom) and
the highest temperature recorded in Spathi sediments (101◦C at
20 cm sediment depth). The temperature of the reference site
S1 was relatively constant throughout the core, increasing only
slightly from 18◦C at surface to 20◦C at 20 cm sediment depth.

This thermal gradient in Spathi sediments is generated by
the venting fluids as evidenced in the in situ profiles of pH and
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H2S recorded by microsensors (Supplementary Figure S1). As
a remarkable characteristic of the influence of venting fluids in
sediments with temperatures >20◦C, we observed a downcore
decrease in pH (from seawater pH of ∼8.4 to ∼5.5) and an
increase in H2S concentrations (up to ca. 2 mM; Supplementary
Figure S1). The investigated sediments displayed an abrupt
decrease in oxygen concentration to anoxic conditions within the
first millimeters (Supplementary Figure S1). Oxygen depletion
within the first cm of sediments was observed in all stations,
including S1, indicating that sediments analyzed in this study
were mostly associated with anoxic conditions.

Polar Lipid Distribution along a Thermal
Gradient in Marine Sediments
With some exceptions, total polar lipid content in the sediments
decreased downcore (Figure 2). Averaged concentrations of polar
lipids were highest at S2, S4, and S1 (>0.31 µg g−1), followed by
S5 and S3. The highest total polar lipid concentration of >1.1 µg
g−1 sediment was recorded at the surface layer of S4, whereas
the lowest concentration was detected at S3 (12–14 cm) with
0.025 µg g−1. While the relative abundance of non-archaeal lipids
was highest at the reference site (S1) and in surface layers from
hydrothermally influenced sediments (in general <12 cm), the
contribution of archaeal lipids increased with temperature of the
sediments (i.e., downcore and toward S5).

Archaeal Polar Lipid Distribution
Archaeal polar lipids were identified and quantified by high
performance liquid chromatography coupled with mass
spectrometry (HPLC-MS). Archaeal polar lipids consisted
exclusively of glycosidic head groups and were categorized
in six classes according to their isoprenoidal side chains
characteristics (see Supplementary Figure S2). Polar lipids
included a monoglycosyl archaeol (G-AR) as the only archaeal
diether and a variety of different glycerol-dibiphytanyl-
glycerol-tetraethers (GDGT) with monoglycosyl (G) and
minor contributions of diglycosyl (2G) headgroups. Notably,
archaeal polar lipids were dominated by tetraethers over
diethers (Figure 3A). Archaeal tetraethers included acyclic
to pentacyclic GDGT (GDGT-0 to -Cren, or caldarchaeol to
crenarchaeol), unsaturated tetraethers (Uns-GDGT, with up to
four double bonds), GDGT with a covalent bond linking the two
biphytanyl chains into an H-shaped structure (H-GDGT), and
presence of one to four additional methyl groups (nMe) in the
isoprenoidal side chains (both nMe-GDGT and H-nMe-GDGT).
H-GDGT and H-nMe-GDGT consisted of acyclic to tetracyclic
compounds.

Monoglycosidic AR and GDGT were the most widely
distributed archaeal polar lipids with highest contribution
between 40 and ∼90◦C (Figure 4A). With highest relative
abundance associated with temperatures above 50◦C, the
monoglycosidic H-GDGT, H-1Me- and H-2Me-GDGT were
also abundant archaeal lipids in the sediments of Spathi
Bay. Particularly interesting are the high contributions of
monoglycosidic H-2Me-GDGT in sediments above 80◦C. In
sediments with temperatures below 40◦C, other abundant

FIGURE 2 | Sediment profiles of concentration of total microbial polar lipids
(dots) and distribution of archaeal vs. non-archaeal lipids (horizontal bars) in
Spathi Bay. Samples were analyzed in 2 cm horizons from surface until 20 cm
of sediment depth. Adjacent vertical bars indicate the thermal gradient of each
station with upper, mid and bottom sediments temperatures in ◦C. n.d., no
data.
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FIGURE 3 | Sediment profiles displaying the abundance of polar lipid classes relative to total archaeal (A) and total non-archaeal (B) lipids. Note that this figure
should be interpreted together with the relative abundance of archaeal and bacterial polar lipids shown in Figure 2. Samples were analyzed in 2 cm horizons from
surface until 20 cm of sediment depth. Adjacent vertical bars indicate the thermal gradient of each station with upper, mid and bottom sediments temperatures in
◦C. n.d., no data. Abbreviations: monoglycosidic archaeol (AR); monoglycosidic unsaturated (Uns) acyclic glycerol-dibiphytanyl-glycerol-tetraethers (GDGT); mono-
and diglycosidic GDGT with 0 to 5 rings (0-Cren); mono- and di-glycosidic GDGT with up to 4 rings divided into mono- and di-methylated (nMe), H-shaped (H) and
H-nMe-GDGT with up to 4 methyl groups. Cren, crenarchaeol. For abbreviations of non-archaeal lipid classes please see Main Text. sP-Uk, unknown glycosylated
phosphatidyl sphingolipids.
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FIGURE 4 | Heat map distribution of archaeal (A) and non-archaeal (B) polar lipid classes in sediments of Spathi Bay. Green to dark purple scale (in %) refers to the
contribution of lipid classes relative to the total polar lipid concentration. ND, not detectable. Adjacent vertical bars indicate the thermal gradient in sediments ranging
from 18 to 101◦C. List of compounds in A (archaeal lipids): 1 (G-AR), 2 (G-GDGT), 3 (2G-GDGT), 4 (G-Uns-GDGT), 5 (G-Me-GDGT), 6 (G-2Me-GDGT), 7
(2G-Me-GDGT), 8 (2G-2Me-GDGT), 9 (G-H-GDGT), 10 (2G-H-GDGT), 11 (G-H-1Me-GDGT), 12 (G-H-2Me-GDGT), 13 (G-H-3Me-GDGT), 14 (G-H-4Me-GDGT), 15
(2G-H-1Me-GDGT), 16 (2G-H-2Me-GDGT), 17 (2G-H-3Me-GDGT). List of compounds in B (non-archaeal lipids): 1 (G), 2 (SQ), 3 (2G), 4 (BL), 5 (OL), 6 (PDME), 7
(PME), 8 (PE), 9 (PG), 10 (PC), 11 (CL), 12 (sPA), 13 (sP-Uk1), 14 (sP-Uk2), 15 (sP-Uk3), 16 (sP-Uk4), 17 (sPI), 18 (sPE), 19 (sPG). sP-Uk1–4: unknown glycosylated
phosphatidyl sphingolipids (see Supplementary Figure S3 for structure identification).

archaeal lipids included monoglycosidic Me-GDGTs and
diglycosidic forms of H-GDGT and H-nMe-GDGTs. In contrast
with these lipids, the distribution of unsaturated tetraethers
was mostly associated with sediments displaying temperatures
between 30 and 50◦C.

Non-archaeal Polar Lipid Distribution
Non-archaeal polar lipids can be divided into four major groups:
glycolipids, phospholipids, aminolipids, and sphingolipids
(Supplementary Figure S2). Glycolipids and phospholipids
were exclusively identified as diacylglycerol lipids (DAG),
i.e., the side chains were represented by two fatty acids.
A variety of phospholipids were detected in the sediments,
including phosphatidyl-ethanolamine, -N-methylethanolamine,
-N-dimethylethanolamine, -glycerol and -choline (PE, PME,
PDME, PG, and PC, respectively) and cardiolipin (CL). The
glycolipids were composed of sulfoquinovosyl (SQ), mono and

diglycosyl (G and 2G) headgroups, and aminolipids consisted
of ornithine and betaine lipids (OL and BL). The sphingolipids
were composed exclusively of phosphatidyl-based headgroups
such as ethanolamine (sPE), glycerol (sPG), phosphatidic acid
(sPA), and inositol (sPI), with the latter two headgroups not
observed among the DAG phospholipids (Figures 3B, 4B). Based
on HPLC-MS experiments in comparison with sphingomyelin,
we tentatively identified the side chains of these sphingolipids
with a terminal methyl group (Supplementary Figure S3) as
reported for Bacteroidetes and Sphingobacterium (Olsen and
Jantzen, 2001; Naka et al., 2003; An et al., 2011; Wieland Brown
et al., 2013).

A general trend of decreasing concentrations with increasing
temperature was observed for several DAG lipids including
glycolipids, BL, PDME, PME, PE, and PG (Figure 4B). In contrast
to this distribution, the sphingolipids were mostly associated with
sediment temperatures ranging from 30 to 80◦C. Among the
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FIGURE 5 | Analysis of molecular species of archaeal and non-archaeal lipids as a function of temperature. Spearman’s rank correlation coefficient values
corresponding to positive or negative correlation (see Materials and Methods and Supplementary Table S2) between lipid parameters and temperature are displayed
as circles, with colors indicating the level of significance (p < 0.001, p < 0.05, p < 0.01 or not significant, n.s.). Archaeal/Bacterial Lip Div, archaeal/bacterial lipid
diversity. Please see Supporting Information for details about lipid parameters used as input to the correlation analysis.

aminolipids, the highest contribution of OL occurred between 25
and 50◦C with peaks in concentration associated with sediments
as hot as 80◦C. Although displaying highest contribution in
sediments below 30◦C, PC together with CL were the major
DAG lipids in sediments with temperatures between 60 and
85◦C. In these relatively “hot” sediments, CL and PC displayed
contributions with percentages as high as the most abundant
archaeal lipids (Figure 4).

Molecular Species of Polar Lipids
Revealed Trends in Relation to Sediment
Temperature
In order to access the information encoded in the assemblage of
polar lipids, we examined a Spearman’s rank correlation between
several lipid indices and temperature (Figure 5, see Supporting

Information for detailed calculations of indices). As already
evidenced in Figure 4A, the percentage of H-GDGT (including
the H-nMe-GDGT) was positively correlated with temperature
(p-value: 2.37e-07). We also observed a positive correlation
between temperature and number of additional methyl groups
in tetraethers (MIX-index for H-GDGT/GDGT) and number of
cyclopentane rings in H-GDGT (Ring-index for both polar and
core lipids). Other parameters such as the Ring and Unsaturation
(Uns) indices for core and polar GDGT as well as MIX for core
H-GDGT were negatively correlated with temperature while the
weak negative correlation of the Ring index for polar GDGT
was not significant (p-value: 8.39e-02). Furthermore, our data
revealed that the diversity of archaeal lipids (estimated as the
number of individual lipids in a given sample) increased with
temperature whereas non-archaeal lipids displayed an opposing
trend (Figure 5). Interestingly, for most non-archaeal lipids we
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observed a significant positive correlation between temperatures
and degrees of unsaturation and chain length. Only a few DAG
lipid classes such as G, PME, and PDME displayed a significant
negative correlation between the Uns-index and temperature.
The exact calculated two-sided p-values and the individual values
of the Spearman’s rank correlation coefficient can be found in
Supplementary Table S2.

DISCUSSION

Environmental Setting and Potential
Sources of Polar Lipids in Sediments of
Spathi Bay
The studied sediments of Spathi Bay covered a broad temperature
range of 18–101◦C, at the high end approaching the currently
determined limit of life (∼120◦C; Kashefi and Lovley, 2003; Takai
et al., 2008). Temperature gradients were observed vertically
in downcore profiles as well as horizontally on the transect
from S1 to S5 (Figure 1). These conditions are also observed
at other sites of Milos Island, such as at Milos, Boudia, and
Palaeochori bays (Dando et al., 1995a; Fitzsimons et al., 1997;
Wenzhöfer et al., 2000; Aliani et al., 2004; Price et al., 2013a; Yücel
et al., 2013). Hydrothermally affected sediments off Milos Island
are characterized by steep geochemical gradients, and might
undergo daily fluctuations by waves, tides, and seismic events
that influence the intensity of discharged fluids (Aliani et al.,
2004; Yücel et al., 2013). Steep geochemical gradients included
not only suboxic to anoxic transition within the first millimeters,
but also lower pH and higher H2S concentrations toward
the source fluid, i.e., downcore (Supplementary Figure S1). In
addition to reporting the influence of source fluids, we suggest
that temperature is one of the key factors controlling microbial
populations in sediments of Spathi Bay, as it has been reported
for other hydrothermal environments (Schrenk et al., 2008; Boyd
et al., 2013; Cole et al., 2013; Sharp et al., 2014). Furthermore,
the highest concentrations of arsenic in the marine environment
have been reported for sediments off Milos (Price et al., 2013a),
indicating that source fluids are not only “hot,” but also toxic.
In order to cope with frequent changes in temperature, and
consequently in toxic conditions, bacteria and archaea inhabiting
these sediments must continuously adapt their cell membrane
lipid composition.

The identified glycosidic diethers and tetraethers are
widespread among archaea (e.g., Kates, 1993; Koga et al., 1993).
However, several of these lipid features are characteristic of
thermo- and/or hyperthermophilic archaea, which are known
to inhabit the sediments of Milos (e.g., Thermococcales,
Archaeoglobales, and Thermoprotei; Dando et al., 1998; Price
et al., 2013b). The “thermophilic” lipid features appeared
exclusively in tetraethers (see Supplementary Figure S2) and
included additional methylation(s) in isoprenoidal chains as
found in Methanothermobacter thermautotrophicus (Knappy
et al., 2009; Yoshinaga et al., 2015a) and Thermococcus
kodakarensis (Meador et al., 2014), H-shaped configuration as in
Methanothermus fervidus (Morii et al., 1998), Aciduliprofundum

boonei (Schouten et al., 2008), and Ignisphaera aggregans
(Knappy et al., 2011), or a combination of both as in
Methanopyrus kandleri (Liu et al., 2012). Thus far, these
modified tetraethers have only been detected as major archaeal
lipids at hydrothermally influenced systems such as deep-sea
vents and hot springs (e.g., Jaeschke et al., 2012; Lincoln et al.,
2013; Gibson et al., 2013; Schubotz et al., 2013; Reeves et al.,
2014b; Jia et al., 2014).

Archaeal polar lipids possess high preservation potential in
marine sediments (Schouten et al., 2010; Logemann et al.,
2011; Xie et al., 2013). In fact, several archaeal lipids that we
attribute to thermophilic and/or hyperthermophilic archaea (e.g.,
H-GDGT, H-nMe-GDGT) were also found in the reference core
S1 with temperatures below 20◦C (Figures 3A, 4A). Moreover,
regular GDGTs (i.e., 1&2G GDGT 0-Cren) that are dominant
archaeal polar lipids in non-hydrothermal marine sediments
(Lipp and Hinrichs, 2009; Schouten et al., 2013) were found
throughout the transect and at all depths. Although thermophilic
Thaumarchaeota may represent potential sources of GDGT-
Cren, these archaea have not been detected in 16S rRNA
gene libraries from Milos sediments (Dando et al., 1998; Price
et al., 2013b) and are not considered major players in marine
hydrothermal settings (de la Torre et al., 2008; Pitcher et al.,
2010; Sinninghe Damsté et al., 2012). We thus conclude that
archaeal polar lipids in the hydrothermally heated sediments of
Spathi Bay may partially reflect records of past communities –
both from in situ production (in the case of H-GDGT or H-nMe-
GDGT) and the water column (particularly the GDGT-Cren).
Such a preservation scenario for archaeal lipids has been also
reported for an inactive sulfide deposit in Manus Basin deep-sea
hydrothermal system (Reeves et al., 2014b).

There are at least two fundamental aspects that limit
eukaryotic life in the thermophilic sediments of Milos:
temperatures higher than 60◦C (e.g., Brock, 1967; Tansey and
Brock, 1972; Rothschild and Mancinelli, 2001) and predominance
of anoxic conditions after the first few millimeters in the
sediments (Supplementary Figure S1). Although abundantly
distributed in surface sediments of Milos, photosynthetic algae
and cyanobacteria are only expected at the sediment-water
interface and were reported from several studies as brownish
or green tinge on top of the sediments or on top of white mats,
which cover hydrothermally active sediments (Dando et al.,
1995b, 2000; Thiermann et al., 1997; Sartoni and De Biasi,
1999; Sievert et al., 2000a). Photosynthetic membranes of algae
and cyanobacteria are enriched in glycolipids such as G-, 2G-,
and SQ-DAG (e.g., Guschina and Harwood, 2006; Wada and
Murata, 2009). If photosynthetic organisms were major sources
of polar lipids in surface sediments one could expect drastic
changes in lipid composition from surface sediments to anoxic
sediments at the reference site S1. Nevertheless, the polar lipids
distribution at S1 was largely uniform throughout the sediment
core (Figure 3B). Although there exists the possibility that these
glycolipids represent fossil material, analysis of acyl chains of BL,
another well-known component of photosynthetic membranes
(Dembitsky, 1996; Kato et al., 1996), revealed the presence of
odd chain fatty acids (e.g., C15:0 and C17:0) typical of bacteria
(Schubotz et al., 2009).
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Among eukaryotes, nematodes and fungi are also potential
sources of phospholipids and sphingolipids in the anoxic
sediments of Milos, as they have been commonly found
associated with hydrothermal ecosystems (e.g., Dando et al.,
1995b; Thiermann et al., 1997; Le Calvez et al., 2009; Burgaud
et al., 2014; Portnova et al., 2014). Whereas phospholipids such
as PC and CL (Figure 3) are characteristic of mitochondria
(Horvath and Daum, 2013), eukaryotic membranes are enriched
in sugar-based ceramides and sphingomyelin (Hannun and
Obeid, 2008; Merrill, 2011). The latter lipids were not apparent
in our samples, instead sphingolipids in Milos sediments were
dominated by uncommon phosphate-based headgroups such as
PE, PG, and PI (Figure 3 and Supplementary Figure S3). Our
results thus suggest that bacteria rather than eukaryotes are likely
the major sources of non-archaeal polar lipids throughout the
sediments of Spathi Bay. Therefore the non-archaeal lipids are
referred as mostly bacterial in origin throughout the following
discussion.

The bacterial polar lipid distribution according to head groups
in surface sediments at S2 to S5 was generally comparable
to those at S1 (Figure 3B), indicating mesophilic bacteria as
likely sources of lipids. In contrast to S1, the hydrothermally
influenced sediments at S2 to S5 revealed significant downcore
shifts in polar lipid distribution, which we attribute to the
presence of thermophilic bacteria. Data on 16S rRNA gene
libraries revealed dominance of mesophilic Epsilonproteobacteria
in surface sediments of Palaeochori Bay, with other minor
groups composed of Cytophaga-Flavobacteria-Bacteroidetes,
Gammaproteobacteria and Deltaproteobacteria (Sievert et al.,
2000a; Giovannelli et al., 2013; Price et al., 2013b). The few
16S rRNA-gene based phylogenetic studies that investigated
sediments deeper than 2 cm reported considerable shifts
in bacterial community composition relative to the surface
sediments, notably the presence of Bacilli, Planctomycetes
and thermophilic bacteria such as Thermodesulfobacteria,
Thermomicrobia and Thermotogae (Sievert et al., 2000a; Price
et al., 2013b).

Lipid biomarkers have proven to be important tools for
monitoring microbial ecology of marine environments, where
most species of archaea and bacteria are uncultured (e.g.,
Hedrick et al., 1992; Hinrichs et al., 1999; Schubotz et al., 2009;
Kellermann et al., 2012; Gibson et al., 2013; Lincoln et al.,
2013; Reeves et al., 2014b). In some cases, however, polar lipids
lack the taxonomic specificity of DNA-based techniques. For
instance, major DAG phospholipid classes identified in this
study such as CL, PE, and PG are common among cultured
bacteria (e.g., Goldfine, 1984; Dowhan, 1997; Sohlenkamp et al.,
2003), including Epsilonproteobacteria that are widespread in
surface sediments of Milos. Others, more specific polar lipids
such as sphingolipids, may be assigned to Sphingobacteria or
Bacteroidetes (e.g., Kato et al., 1995; Olsen and Jantzen, 2001),
which are detected by 16S rRNA-gene sequencing in Milos
sediments (Price et al., 2013b). While abundant in sediments,
archaeal H-nMe-GDGT have been exclusively described for the
hyperthermophilic M. kandleri (Liu et al., 2012), which is not
apparent in archaeal 16S rRNA-gene surveys of Milos (Dando
et al., 1998; Price et al., 2013b). Rather than applying lipids as

chemotaxonomic markers, we attempted to reconcile microbial
membrane adaptations based on polar lipid distribution along a
thermal gradient in sediments of Spathi Bay.

Archaeal Polar Lipid Quandary: Does the
Dominance of Archaeal Lipids in
Sediments with Elevated Temperatures
Reflect the Extremely Low Permeability
of Their Membranes?
The thermal gradient sampled in sediments of Spathi Bay
(Figure 1) allows inferring membrane lipid adaptation to
temperature. Our results evidenced a higher contribution
of archaeal lipids compared to bacterial lipids in deep
layers of the sediments influenced by hydrothermal fluids
(Figures 2, 4). As discussed earlier, a preservation scenario
could explain the dominance of archaeal vs. bacterial lipids
at elevated temperatures. However, the significant correlation
of “thermophilic” H-GDGT and H-nMe-GDGT as polar lipids
with increasing temperatures (% H-GDGT in Figure 5) suggests
active communities as the most important source of lipids
in high temperature sediments. Furthermore, addition of
cyclopentane rings and/or methyl groups to these archaeal
H-shaped tetraethers, which are proposed to decrease membrane
permeability (see Discussion below), appeared to be significantly
correlated with temperature. Thus, in agreement with Valentine
(2007), we propose that the dominance of archaeal polar lipids
in sediments with elevated temperatures reflects the generally
lower ion permeability relative to the bacterial analogs. It
is important to note that in Milos sediments, hydrothermal
fluid advection is associated with high temperatures and
accompanying toxic compounds such as arsenic (Price et al.,
2013a). Thus membrane lipid adaptations may likely reflect the
extent of these conditions.

Archaeal polar lipids detected in sediments of Spathi Bay
were exclusively glycolipids. Glycolipid-rich membranes are
proposed to be more resistant to temperature and low pH than
phospholipids given the tight hydrogen bonding between sugar
headgroups (Curatolo, 1987; Baba et al., 2001; Shimada et al.,
2008; Wang et al., 2012). Another interesting feature of archaeal
lipids observed in sediments of Spathi Bay was the dominance
of tetraethers over diethers (Figure 3A). Controlled experiments
using cultured thermophilic archaea such as methanogens
(Sprott et al., 1991), Thermococcus (Matsuno et al., 2009) and
Archaeoglobus fulgidus (Lai et al., 2008) have shown that the di-
to tetraether ratio tends to decrease with increasing temperature.
According to these data, a higher proportion of tetraether lipids
over diether lipids in archaeal membranes represents a clear
lipid adaptation to elevated temperatures. Although a tetraether
structure itself confers low ion permeability to the membrane
(Koyanagi et al., 2016), the modifications of archaeal tetraether
structures revealed by our study (e.g., H-shape, additional
methylation or cyclopentane rings) suggest further requirements
for avoiding futile ion cycling or ion leakage in high-temperature
environments.

Increasing sediment temperatures correlated with increased
proportions of H-shaped GDGT and tetraethers with additional
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methyl groups in biphytane chains, i.e., nMe-GDGT and H-
nMe-GDGT (Figures 4, 5). Although these features of archaeal
tetraethers have been exclusively found in cultured thermophilic
archaea (Morii et al., 1998; Sugai et al., 2004; Schouten et al.,
2008; Knappy et al., 2009, 2011; Liu et al., 2012; Yoshinaga
et al., 2015a), little is known about their functions in the
membranes. For instance, it is generally accepted that H-shaped
GDGT represent an archaeal membrane adaptation to heat stress
(e.g., Morii et al., 1998). We borrow from Thomas Haines
(Haines, 2001) the concept of membrane bulking, which predicts
that lipid structures such as fatty acids with additional methyl
groups, sterols or squalane can crowd the hydrophobic region
of bilayers making them bulkier. The net effect is that these
lipid structures may effectively prevent formation of water
clusters in the lipid bilayer (see Haines, 2001), thus avoiding ion
leakage across the membrane. In this sense, H-shaped GDGT
may reduce the fluidity of biphytanyl chains, thereby stabilizing
van der Waals forces among isoprenoidal chains from adjacent
lipids. In analogy to the functions of methyl-branched fatty
acids in bacteria (e.g., Suutari and Laakso, 1992; Haines, 2001),
additional methyl groups in biphytane(s) of tetraethers may
provide extra bulking between neighbor membrane lipids, thus
reducing ion permeability of archaeal membranes under heat
stress. In addition to membrane bulking, recent experiments with
molecular dynamics simulations revealed that methyl branching
enhances membrane fluidity of membranes composed of fatty
acids (Poger et al., 2014). This effect may thus also hold true for
methylated tetraethers of archaea in Spathi sediments.

The presence of cyclic biphytanes is proposed to reduce
membrane thickness while leading to stronger interaction
between neighbor isoprenoidal chains (Gabriel and Chong, 2000;
Gliozzi et al., 2002). The absence of significant correlation
between increasing number of rings in regular GDGT
(0-Cren) with temperature (Figure 5) contrasts with laboratory
experiments using cultured thermoacidophilic archaea (Shimada
et al., 2008; Boyd et al., 2011; Jensen et al., 2015). Interestingly,
the later studies reported diverging responses of tetraether
cyclization relative to pH conditions. This observation in
combination with our results suggest that cyclization of archaeal
tetraether might reflect a net effect of several parameters
important for bioenergetics rather than only membrane bulking
for thermal adaptation. We consider three possibilities to explain
our findings. First, that archaea producing regular GDGT
(0-Cren) do not respond to increasing temperature by increasing
the number of rings in their biphytanyl chains. Second, that
active thermophilic archaea producing H-GDGT and H-nMe-
GDGT increase the number of rings with temperature (Figure 5),
whereas regular GDGT are mainly sourced by less active or dead
archaea (see preservation scenario above). Third and the one that
we favor: cyclopentane rings may not be an exclusive membrane
permeability response to temperature.

One fundamental aspect to consider is that the presence of
methyl groups protruding from isoprenoidal side chains is the
main reason explaining the higher stability of archaeal compared
to bacterial lipids (e.g., Degani et al., 1980; Yamauchi and
Kinoshita, 1993; Yamauchi et al., 1993; Elferink et al., 1994;
Baba et al., 2001; Mathai et al., 2001). Although the addition of

cyclopentane rings has been proposed to decrease permeability
in molecular dynamics simulations (MDS; Gabriel and Chong,
2000; Gliozzi et al., 2002), the presence of rings corresponds to
a one-to-one loss of methyl groups in isoprenoidal tetraethers.
Accordingly, Sinninghe Damsté et al. (2002) comparing GDGT-4
and -Cren in MDS, concluded that the latter provided less
dense packing of biphytanyl chains likely resulting in a lower
thermal transition point, i.e., increased fluidity. Therefore, we
alternatively suggest that the presence of cyclopentane rings
in archaeal tetraethers could dramatically increase membrane
fluidity/motion while keeping isoprenoidal chains neighbors
compacted in the hydrophobic environment. In support of our
argumentation, recent MDS experiments have evidenced a dual
role of cyclopropane fatty acids in stabilizing membranes and
promoting their fluidity, which in general terms is distinct from
the analogous unsaturated chains (Poger and Mark, 2015). Note
that this “double-function” of cyclopentane rings in tetraethers
is slightly different than that of mobile, but less compacted
unsaturated biphytanes (Figure 6).

In summary, the dominance of archaeal over bacterial
polar lipids in sediments with high temperatures indicates that
membrane lipids may be directly linked to the higher potential for
energy conservation of archaea compared to bacteria under stress
conditions (Valentine, 2007; Valentine and Valentine, 2009).
Alternatively, this finding may reflect the high preservation
potential of archaeal lipids in marine sediments (Schouten
et al., 2010; Xie et al., 2013), i.e., lower degradation rates of
lipids derived from archaea compared to bacteria (Logemann
et al., 2011). Our data, however, support the idea that the
high abundance of H-GDGT and H-nMe-GDGT in sediments
with elevated temperatures is related to the low permeability
properties induced by H-shape and additional methyl groups
of archaeal tetraethers. Moreover, cyclic tetraethers and/or extra
methyl group(s) may provide both increased fluidity/motion and
reduced permeability for archaeal membranes. Finally, we cannot
exclude that these adaptations at the archaeal cell membrane level
may also be used as mechanisms to cope with other stresses,
such as low pH, high sulfide and arsenic concentrations that are
commonly encountered in the hydrothermally heated sediments
of Spathi Bay (Supplementary Figure S1; Price et al., 2013a;
Gomez-Saez et al., 2016).

Bacterial Lipids Quandary: Benefit and
Risk of Membrane Fluidity and Futile Ion
Cycling
Bacterial polar lipids concentrations decreased abruptly with
increasing temperature (Figures 2, 4B). A dominance of bacterial
phospholipids even under the highest measured temperatures
introduces a controversial picture to the energy conservation
properties of archaeal glycolipids (see above). We suggest
two explanations that may account for the dominance of
phospholipids among bacteria. The first involves energy invested
in the synthesis of complex envelope structures (e.g., outer
membrane, peptidoglycan layers) that would provide a robust
permeability barrier at high temperatures. The rationale is that
H-bonded lipopolysaccharides of Gram-negative bacteria, e.g.,
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FIGURE 6 | Lipid chemical structures determining ion permeability (e.g.,
proton and sodium) and fluidity of archaeal and bacterial membranes in
sediments of Milos. The arrows indicate a continuum trend from high (+) to
low (–) membrane permeability and fluidity. The essential structural distinction
between archaeal and bacterial lipid membranes are the ether-linked
isoprenoids in the former and typical ester-linked fatty acids in the latter. The
permeability and fluidity properties of bacterial membranes were mainly
regulated by the degree of unsaturation (i.e., number of double bonds) and
chain length of fatty acids (highlighted in red), as shown in Figure 5. Apart
from the transition diether to tetraether, i.e., bilayer to monolayer membranes,
archaea featured several modifications in tetraethers that are suggested to
influence the permeability and fluidity properties of their membranes
(Figure 5). These features (in red) include unsaturation, cyclization and
methylation of biphytane(s) and covalent bonds between isoprenoidal chains
(H-shaped).

lipid A (Nikaido, 2003), or several wraps of peptidoglycan layers
and associated structures in cyanobacteria or Gram-positive
bacteria (Ward et al., 1998; Bansal-Mutalik and Nikaido, 2014),
would provide an effective protection for cells under heat stress.
Recall that archaeal cell envelopes are less sophisticated than
bacterial cell envelopes (Albers and Meyer, 2011), and likely
explain the dominance of sugar headgroups as a hallmark of
archaeal lipids in hydrothermally heated sediments of Spathi
Bay. The second explanation concerns lipid adaptations at the
side chain level and/or by increasing amounts of membrane-
stabilizing lipids such as sphingolipids.

For most of the polar bacterial DAG lipids, we observed
a trend of increased average chain length with increasing
temperature (Figure 5). Data on lipid vesicles have shown that
polar lipids composed of longer fatty acids in their side chains
are less permeable to ions, including H+, K+, and Cl−, than
the ones linked to shorter fatty acids (Paula et al., 1996). In
addition, there is robust experimental evidence suggesting that
polar lipid bilayers become thinner with increasing temperature
and consequently more prone to futile ion cycling (Pan et al.,
2008). Based on these assumptions, we suggest that bacterial
cells may purposely increase their bilayer thickness in response
to elevated temperatures in sediments of Spathi Bay. The
rationale is that the elongation of fatty acid side chains may
strengthen the relatively weak van der Waals forces in the
hydrophobic region of the bilayer, thereby decreasing membrane
permeability.

It is well known that microbes decrease the unsaturation levels
of fatty acids with increasing temperature (Reizer et al., 1985;
Suutari and Laakso, 1992; Hazel, 1995; Beranová et al., 2008).
By decreasing the amount of double bonds, lipid membranes are
less mobile and less fluidized, thus reducing futile ion cycling
(e.g., Valentine and Valentine, 2004). This trend was indeed
observed for a few lipids such as G-, PME-, and PDME-DAG
(Figure 5). However, a number of bacterial polar lipids were
observed to increase their degree of unsaturation concomitantly
with an increase in fatty acid chain length. Some abundant
polar lipids displaying this trend included OL and CL which
represented, respectively, up to 40% and ca. 80% of total bacterial
lipids in sediments of temperatures of >60◦C (Figure 3B).
This increase in unsaturation of fatty acids with increasing
temperatures introduces a dilemma concerning lipid adaptation
to temperature in sediments of Spathi Bay. On the one hand, an
elongated chain would provide less permeability under elevated
temperatures but also low membrane fluidity. On the other hand,
more unsaturation implies more fluidity, but increased futile ion
cycling (Figure 6). Alternatively, increased membrane fluidity
might represent a response to increased cell curvature stress, as
it is generally accepted that higher ambient temperature results
in smaller individuals (e.g., Atkinson, 1994; Morán et al., 2015).
Highly unsaturated fatty acids in bacterial membranes are known
to localize to the curves and control its curvature stress during
cell division (Kawamoto et al., 2009; Sato et al., 2012), similarly
to CL (e.g., Kawai et al., 2004). Thus, curvature stress control
may also explain the relatively high abundance of CL in hotter
portions of the sediments (Figure 4), together with a general
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trend of increased membrane fluidity (Figure 5). This membrane
quandary resembles the requirement for low permeability and
high fluidity of archaeal membranes under heat stress discussed
above. We thus suggest that archaea and bacteria may adjust both
permeability and fluidity properties of their cell membranes to
cope with elevated temperatures in sediments of Spathi Bay.

While monoglycosidic ceramides are minor polar lipids
in the anoxic water column of the Black Sea (Schubotz
et al., 2009) and in hot springs of Yellowstone National Park
(Schubotz et al., 2013), phosphatidyl sphingolipids have not
been reported thus far in marine sediments. We attribute the
relatively high abundance of phosphate-based sphingolipids in
sediments of Spathi Bay (up to 40% of total bacterial lipids;
Figures 3B, 4B) to their strong potential for hydrogen bonding.
A pioneer study by Pascher (1976) revealed that both the
amino and the hydroxyl groups of sphingolipids side chains
form intermolecular hydrogen bonding with neighbor lipid
molecules. More recently, nuclear magnetic resonance and
MDS experiments demonstrated the additional possibility of
intramolecular hydrogen bonding of amino and hydroxyl groups
with the phosphatidyl headgroup of sphingomyelin (e.g., Talbott
et al., 2000; Mombelli et al., 2003; Venable et al., 2014). The
net effect is that sphingolipids may lend to both high internal
rigidity and intermolecular order compared to DAG lipids (e.g.,
Pascher, 1976; Venable et al., 2014), particularly at elevated
temperatures.

According to our data, the distribution of sphingolipids was
markedly associated with relatively “hot” sediments (40 to 80◦C,
Figures 3B, 4B). Indeed, sphingolipids are characteristic lipids of
some thermophilic bacteria (e.g., Tenreiro et al., 1997; Yabe et al.,
2013; Anders et al., 2014). Moreover, the role of sphingolipids
in thermal adaptation of yeast has been demonstrated by both
suppressor mutations (Wells and Lester, 1983) and their up-
regulation in response to increased temperatures (Jenkins et al.,
1997). Under elevated temperatures in sediments of Spathi
Bay, the high melting point and hydrogen bonding potential
of sphingolipids may provide a more rigid lateral organization
of biological membranes when mixed with phospholipids via
formation of lipid microdomains (Goñi and Alonso, 2009).
Conversely, below and above the temperature threshold of
40–80◦C, sphingolipids may not behave as bilayer structures
when mixed with other bilayer-forming lipids (reviewed in Goñi
and Alonso, 2006, 2009). Sphingolipid-mediated microdomains
in bacteria (e.g., An et al., 2011; Wieland Brown et al., 2013)
may thus stabilize DAG phospholipids such as CL and PC that
displayed relatively high abundances at elevated temperatures
(Figures 3B, 4B).

Environmental Conditions Dictate
Microbial Membrane Lipid Composition:
A Working Hypothesis toward a Unified
Concept
Our study provides evidence for a diverse array of molecular
architecture of archaeal lipids to cope with heat stress (see
Polar Lipid Distribution along a Thermal Gradient in Marine
Sediments). It is interesting to notice that archaea inhabiting

cold to moderate temperature environments generally lack
the membrane bulking features identified by our study (e.g.,
H-GDGT, H-nMe-GDGT; Figure 6). Recent advances in polar
lipid analysis by HPLC-MS have allowed the description of
several novel archaeal lipids (e.g., Knappy et al., 2009; Yoshinaga
et al., 2011; Liu et al., 2012; Zhu et al., 2014). Those include
unsaturated tetraethers, which thus far were only reported to
occur in marine sediments (Zhu et al., 2014) and in a few
thermophilic archaea such as Thermoplasmatales (Bauersachs
et al., 2015; Yoshinaga et al., 2015b). Although the distribution
of unsaturated tetraethers in the marine environment is not
yet fully understood, in the studied sediments they were
found more abundantly in temperatures between 30 and 55◦C
(Figures 3A, 4A). Thus, we propose that unsaturated tetraethers
do not likely reflect an archaeal membrane adaptation to extreme
high temperatures, as suggested recently (Bauersachs et al.,
2015). Conversely, unsaturation might be critical for motion of
the rigid isoprenoidal membranes (Kellermann et al., 2016a).
Supporting the idea that unsaturation of isoprenoids may not
directly represent a thermal adaptation, unsaturated diethers
are observed in several archaea ranging from psychrophilic to
hyperthermophilic (Gonthier et al., 2001; Nishihara et al., 2002;
Nichols et al., 2004; Gibson et al., 2005; Kellermann et al.,
2016a).

The low permeability of archaeal membranes may not only
explain the predominance of archaea in hotter sediments of
Spathi Bay, but also in hotter portions of chimneys from deep-
sea hydrothermal vents (Gibson et al., 2013; Reeves et al., 2014b).
In those environments, a higher proportion of archaeal over
bacterial lipids could be used to predict the hotter portions of
chimney structures, represented in Gibson et al. (2013) by the
Rainbow hydrothermal field and in Reeves et al. (2014b) by the
RMR5-dark. Coincidently, both of these structures (characterized
by the highest contribution of archaeal polar lipids among all
samples) displayed PC as the major bacterial polar lipids, which
otherwise were only found as minor components. This trend
is observed in our study (Figure 4B), suggesting that PC may
represent a common membrane lipid adaptation of bacteria to
heat stress. The rationale is that temperature influences the phase
behaviors of polar lipids (Quinn, 1985; Hazel and Williams,
1990): bilayer-stabilizing lamellar phase (e.g., PC, sphingolipids
and 2G) or bilayer-destabilizing non-lamellar phase (e.g., PE and
G). Although the acyl chain composition may also influence
lipid phase behavior, increased temperatures generally induce the
formation of non-lamellar phase membranes (Quinn, 1985; Hazel
and Williams, 1990). Thus the ratio of membrane-stabilizing PC
is predicted to increase relative to PE, and perhaps PME and
PDME, with increasing growth temperatures (Hazel, 1995), as
suggested by our data (Figure 4B).

Polar lipids of archaea in sediments of Spathi Bay were
largely composed of glycolipids, likely as a thermal adaptation
strategy. This glycolipid strategy for heat stress is not only
consistent with cultured thermophilic archaea (Shimada et al.,
2008), but also with the high abundance of archaeal glycolipids
in hydrothermal systems (Gibson et al., 2013; Schubotz et al.,
2013; Reeves et al., 2014b; Kellermann et al., 2016b). While the
glycolipid strategy was not evidenced for bacteria in sediments of
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Spathi Bay, a study in Lost City Hydrothermal Field attributed
the dominance of bacterial glyco- over phospholipids to a
possible phosphate limitation (Bradley et al., 2009). Given
that these bacteria might inhabit the mixing zone between
the source fluid (pH ∼10, low phosphate and ∼90–100◦C;
Reeves et al., 2014a) and seawater replete with phosphate, we
suggest the glycolipid strategy for thermal adaptation as an
additional explanation for the dominance of bacterial glycolipids
at Lost City. Given the strong hydrogen bonding network
between one another, glycolipids appear as a signature lipid of
many thermophilic and thermoacidophilic archaea and bacteria
(e.g., Sprott et al., 1991; Yang et al., 2006; Shimada et al.,
2008; Kellermann et al., 2016b). Under phosphate limitation,
however, glycolipids can indeed substitute for phospholipids in
photosynthetic, bacterial, and archaeal membranes (Van Mooy
et al., 2006; Carini et al., 2015; Yoshinaga et al., 2015b). In
addition to phosphate limitation, this glycolipid substitution
has been also observed in cultured methanogens grown under
hydrogen limitation (Yoshinaga et al., 2015b). We suggest that
sugar headgroups may represent a common microbial strategy
for energy conservation at the cell membrane level, including
high temperature, low pH, phosphate limitation and perhaps
substrate limitation.

Our study revealed that non-DAG lipids such as sphingolipids
and OL are relatively enriched in sediments above 60◦C
(Figures 3B, 4B). A distinctive characteristic of sphingolipids
and OL compared to DAG lipids is the availability of an
amino group close to the lipid headgroup in position to
hydrogen bonding, which may confer an effective protection
for cells under elevated temperatures (see above Discussion).
Indeed, an upregulation of OL has been reported as the
main membrane adaptation of cultured sulfate-reducing bacteria
to increased temperatures (Seidel et al., 2013). In analogy
to sphingolipids and OL, we suggest that lipid headgroups
such as N-acetylated hexosamines and aminopentanetetrol
characteristic of several deep-branching thermophilic bacteria
such as Thermus, Thermodesulfobacterium, and Aquificales (e.g.,
Ferreira et al., 1999; Sturt et al., 2004; Yang et al., 2006)
may also feature potential for strong intermolecular hydrogen
bonding. This aspect could explain the widespread distribution
of OL, N-acetylated hexosamines and aminopentanetetrol in
hydrothermal settings (Gibson et al., 2013; Schubotz et al., 2013;
Reeves et al., 2014b).

While ubiquitous in eukaryotic cells, sphingolipids are
generally absent in most bacteria. Sphingolipid-containing
bacteria, however, are highly represented in Bacteroidetes (Kato
et al., 1995; Olsen and Jantzen, 2001), and sphingolipid-
mediated microdomains have been linked to the capacity
of Bacteroides fragilis to overcome stressful conditions in
mammalian intestine (An et al., 2011). It is fascinating that
similar properties of sphingolipids as permeability barrier in
bacterial outer membranes (e.g., against antibiotics and salt;
Nikaido, 2003) or as key components of “lipid rafts” in
mammalian cells (e.g., Simons and Ikonen, 1997; Hannun
and Obeid, 2008; Lingwood and Simons, 2010) may apply
to lipid microdomains in bacterial membranes under heat
stress. We suggest that sphingolipid-mediated microdomains

may stabilize DAG phospholipids (e.g., CL and PC), enabling
bacterial membranes to achieve both low permeability and
a more fluidized configuration that are apparently required
under elevated temperatures in sediments of Spathi Bay
(Figure 5).

As described in our study, archaea and bacteria modulate their
membrane architecture in response to temperature. Surprisingly,
a balance between low permeability and increased fluidity
(i.e., motion) appears as a unified property of microbial
membranes to cope with heat stress. For instance, a higher
degree of bulking (e.g., H-shaped) and fluidity (i.e., cyclization)
of archaeal tetraethers were observed in concert with elevated
temperatures. We propose that a more fluidized configuration of
cell membranes may be beneficial for both cell bioenergetics (e.g.,
Valentine and Valentine, 2004, 2009; Kellermann et al., 2016a)
and perhaps membrane curvature stress control (Kawamoto
et al., 2009; Mouritsen, 2011; Sato et al., 2012). At the
headgroup level, heat stress adaptations included membrane-
stabilizing glycolipids in archaea. In bacteria, abundant CL
in high temperature sediments may reflect curvature stress
control and PC, OL and sphingolipids may potentially form
rigid microdomains. The possibility for membrane domain
formation under energy stress may provide a new dimension
for interpreting lipid distribution in response to environmental
conditions. That is, we are considering the possibility that lipid
responses may in fact reflect a general energy conservation
strategy rather than a limited effect of single stressors
(e.g., temperature, pH or nutrients; see Valentine, 2007 and
Kellermann et al., 2016a). It will be very exciting in future
studies to interpret lipids with the idea that they are crucial
for the bioenergetics of bacteria and archaea in natural
systems.
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