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An evolutionary game approach 
for determination of the structural 
conflicts in signed networks
Shaolin Tan1 & Jinhu Lü2

Social or biochemical networks can often divide into two opposite alliances in response to structural 
conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, 
the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the 
structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides 
a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. 
Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can 
adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization 
of the structural conflicts in the entire network. Numerical experiments show that the evolutionary 
game approach is universally efficient in quality and speed to find optimal solutions for all undirected 
or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is 
inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a 
feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks.

Signed networks are graphs with positive and negative edges to embody additional information about the rela-
tionships between members. The notion comes from a variety of studies such as social psychology and biological 
systems1–11. Generally, the positive/negative ties in signed networks can be used to characterize the friendly/
hostile or cooperative/competitive relationships in social networks1–5, and are also suitable for representation of 
the activating/inhibiting interactions in biochemical networks6–11. In recent years, increasing interests have arisen 
to infer the dynamical behaviors of a social or biological network through analysis of the corresponding signed 
network12–17.

A core and extensively studied property of signed networks is structural balance. In social networks, structural 
balance, also called social balance, is formulated to understand the stability or tensions in population systems18–21. 
In biochemical networks, structural balance, equivalent to the monotonicity property, equips the dynamical sys-
tem with useful properties as diverse as convergence, high predictability, and robustness6–9. Formally, a signed 
network is structurally balanced if and only if all its cycles have an even number of negative edges.

Real social and biological networks are usually not exactly balanced yet they are very near to balance22. In 
most cases, sign change of a small proportion of edges is sufficient to make real networks balanced. With regard 
to practical applications, two problems are often encountered in analysis of signed networks: Firstly, is the signed 
network balanced? Secondly, if not, at least how many (and which) edges should change sign or be pruned to 
make the network balanced? Here, the minimal numbers of edges, which should be deleted to make the net-
work balanced, are called structural conflicts of the signed network. Indeed, the first problem is simple and has 
been completely solved by Heider23,24. Yet, the second problem turns out to be NP-hard from a computational 
perspective25.

At present, several heuristic methods have been proposed to determine the structural conflicts based on 
semi-definite programming24 or equivalence transformations to signed networks9,22,26–28. In spite of bringing sig-
nificant achievements, these methods, all utilize a centralized optimizer, which needs complete information of the 
signed network each step. Yet, in the face of large-scale, time-varying, weighted, or directed signed networks—
which are a result of the development of social media and system biology—centralized approaches become inef-
ficient or even unworkable. As a consequence, distributed heuristic approaches, which allow agents themselves 
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to optimize their own performances, becomes of utmost significance, especially for determining the structural 
conflicts in the future research.

In this paper, inspired by the intrinsic relationship between natural evolution and optimization29, we initiate a 
novel distributed heuristic approach to determine the structural conflicts in signed networks based on the spatial 
evolutionary game dynamics30–34. In the proposed approach, network nodes (agents) adaptively update their own 
choice of alliances to gain better performance without considering the impact on the whole network. Under the 
above microscopic self-adaption, the overall signed network will spontaneously divide into two stable alliances 
where the structural conflicts could be directly determined. This effective and easy method can also be applied 
to directed or weighted signed networks. Moreover, since the method is distributed, its computational time can 
be greatly reduced, which plays an important role in applications to large-scale on-line signed social networks.

Results
Signed networks and structural conflicts.  A signed network can be denoted by a graph G =  (V, E) with 
V =  {v1, v2, …, vN} representing the nodes and E =  {eij|i, j =  1, 2,…, N} the edges, where eij =  1, − 1, or 0 indicate a 
positive edge, a negative edge, or no edge between nodes vi and vj, respectively (see Fig. 1). In most cases, since the 
relationship between individuals is mutual, the edges are assumed undirected, that is, eij =  eji. For convenience, 
hereafter let Ni =  {j|eij ≠ 0, j =  1, 2, …, N} denote the neighboring nodes of node vi.

In balanced signed networks, the nodes can be divided into two opposite alliances such that the edges within 
each alliance are positive while those between two alliances are negative (see Fig. 1(a)). From a mathematical 
point of view, there exists a spin assignment vi =  1 or − 1 to each node vi such that vieijvj =  1 holds for all edges in 
balanced networks. However, in unbalanced networks, no matter how the nodes are divided, there always exist 
conflict edges, i.e. negative edges within the same alliance or positive edges between the opposite alliances (see 
Fig. 1(b)). Determining the structural conflicts means finding an optimal division of the nodes such that the 
number of conflict edges is minimal.

The evolutionary game approach.  Note that the above optimization problem is equivalent to assigning 
vi =  1 or − 1 to each node vi so as to maximize

∑( ) = .
( )( , )

H V v e v
1i j

i ij j

Denote the above function H(V) the fitness of the network. Here, we design an evolutionary game35–38 (see 
Supplementary Information (SI) for details) on the signed network G =  (V, E) such that the nodes automatically 
adjust their strategies towards maximization of the above fitness function during the evolutionary process.

In detail, let each node vi choose a strategy from {1, − 1}, representing the alliance it belongs to. Every node 
interacts in a game with all its neighbors as follows. For each pair of nodes, if they possess the same strategy and 
the relationship between them is positive, or they possess two opposite strategies and the relationship between 
them is negative, then both nodes obtain a positive unit payoff. Otherwise, if they possess the same strategy yet 
the relationship between them is negative, or they possess two opposite strategies and the relationship between 
them is positive, then both nodes obtain a negative unit payoff. Thus, the fitness (payoff) of each node is deter-
mined by

Figure 1.  Illustration of signed networks. (a) Balanced graphs, and (b) Unbalanced graphs. In each graph, 
the colors of the nodes denote their alliances, and the colors of the edges denote the positive and negative signs, 
respectively.
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In the microscopic dynamics of the evolutionary process, nodes update their strategies according to the fitness 
landscape. We consider an aspiration-exploration updating dynamics as follows. Let the aspiration-level be zero. 
For a node vi, if its fitness is less than the aspiration level at time t, that is <F 0i , then the node abandons the 
present strategy and turns to adopt an opposite strategy at the next step. That is, vi(t +  1) =  −vi(t). However, if the 
fitness of a node is equal to or greater than the aspiration level, that is ≥F 0i , then the node explores other strat-
egies with a designed probability Ri. In detail, with probability Ri, the node adopts a random strategy at the next 
step, otherwise, the node keeps to the previous strategy.

In the above evolutionary process, the exploration behavior searches the solution space by bringing various 
new solutions, while the aspiration dynamics keeps better solutions and eliminates disadvantageous ones. As 
such, the evolutionary process leads to better performance of each node (see Fig. 2) in the long run. In practical 
applications, the exploration probability is set to be

= . , ( )− /R e0 5 3i
F Ti

where α=T Tk
0 denotes the noise parameter. Here, α< <0 1 is the damping coefficient, T0 >  0 is the initial 

temperature, and = /⌊ ⌋k t K , where t is the iteration step indicator, K is the damping period, and the notion  /⌊ ⌋t K  
denotes the maximal integer less than t/K. (see SI for details about setting of α, T0, and K). The above setting of 
exploration probability can help the network overcome those local fitness peaks and eventually reach to nearly 
maximal global fitness.

Note that the fitness of the whole network is just the summation of the fitness of each node. If the fitness of a 
node increases by 1, then the fitness of the whole network will increase by 2. Thus, the non-cooperative updat-
ing of each node could drive the signed network towards better fitness. Based on the above evolutionary game 
approach, a novel heuristic optimization algorithm is proposed (for more details, please refer to Methods). In 
what follows, we apply the proposed algorithm to different kinds of signed networks and illustrate its effectiveness 
and advantages.

Determining the structural conflicts in undirected unweighted signed networks.  To begin with, 
we test the performance of the evolutionary game approach with four large scale real-world signed networks, 
including the yeast (gene regulatory) network39, EGFR (epidermal growth factor receptor) pathway network40, 
macrophage (molecular interaction) network41, and E.coli (gene regulatory) network42. The numbers of nodes and 
edges of the above networks span from hundreds to thousands. Since all the above original networks contains a 
number of symmetric- incompatible and sign-ambiguous edges pairs, following previous practices9, all the above 
networks have been rendered undirected beforehand by deleting those incompatible edges pairs.

After imposing the proposed evolutionary game dynamics on the above signed networks, we find that all the 
nodes adaptively adjust their strategies (alliances) to gain better fitness. Moreover, though the strategy-updating 
process of each node is non-cooperative and self-interested, the number of conflict edges among the entire 

Figure 2.  Illustration of optimization based on the evolutionary game dynamics. (a) Through the aspiration 
dynamics, nodes adjust their strategies to gain larger fitness, leading to better solutions to the optimization 
problem; (b) Exploration behaviors introduce new feasible solutions and help to overcome those local optimal 
solutions to the optimization problem. In each graph, ±1 denotes the strategy of each node, and the values in 
the parentheses denote the fitness of each node.
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network decreases rapidly with strategy adjustment of nodes (see Fig. 3). Take the E.coli network as an example. 
The number of conflict edges among the alliances is 1195 at step t =  5000, whereas it decreases to 684 at step 
t =  15000, 484 at step t =  25000, and 376 at step t =  35000 (see Fig. 3(d)).

To gain a clear display of the optimization process with the evolutionary game approach, we record the evolu-
tionary trajectory of the fitness of each network (see Fig. 4). Note that the number of conflict edges can be deter-
mined by the network size |E| and the network fitness H(V). In detail, if the number of structural conflicts is zero, 
then we have H(v) =  2|E|. Moreover, every increase of the number of structural conflicts leads to a decrease by 4 
on the network fitness. Thus, the number of structural conflicts s can be derived as follows:

=
− ( )

. ( )s
E H v2

4 4

Since the exploration probability decreases to zero with time and the fitness of each node never decreases 
under the aspiration dynamics, the evolutionary game process of the signed networks will always converge to 

Figure 3.  The evolution of alliances and structural conflicts in different signed networks under the 
evolutionary game dynamics. (a) The yeast network; (b) the EGFR pathway network; (c) the macrophage 
network; (d) the E.coli network. In the above networks, the red and green nodes denote two hostile alliances. 
The gray, black, and blue edges denote the positive, negative, and conflict edges, respectively. Under the 
evolutionary game dynamics, the nodes form two alliances spontaneously such that the number of conflict 
edges (i.e. the blue edges) in the signed networks decreases. The change of node locations from image to image 
is due to randomness of the network layout algorithm.
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a stable equilibrium with nearly minimal structural conflicts. Table 1 displays the obtained minimal number of 
structural conflicts of the above four real-world signed networks. The results outperform those of refs 24 and 27 
and equal to the best performance of a recent work9.

Evaluating the performance of the evolutionary game approach.  The evolutionary game approach 
can adaptively minimize the conflict edges in signed networks, yet it is still a doubt how close the obtained num-
ber of conflict edges is to the optimal solution. To address this problem, the performance of our method is further 
evaluated with a sequence of signed networks with a designated number of structural conflicts.

The designated signed networks are generated with the following method. Suppose the network contains 2N 
nodes, 2M1 positive edges, and M2 negative edges, and the designated number of structural conflicts is s. Firstly, 
divide the nodes into two equal parts and randomly connect the node pairs within each part with M1 positive 
edges. Then, randomly connect the node pairs between the two parts with M2 negative edges. Finally, randomly 
sample s edges from the edge set and reverse their signs.

Generally, the actual number of structural conflicts in the above signed network is equal to or slightly smaller 
than the designated number. Through the evolutionary game approach, it can be found that the obtained number 
of structural conflicts is also always equal to or smaller than the pre-established one in all the designated signed 
networks (see Fig. 5). This indicates that the structural conflicts in signed networks can be nearly accurately 
figured out by our method. The experimental results clearly validate the effectiveness of the evolutionary game 
approach.

Determining the structural conflicts in weighted signed networks.  In some social or biochemical 
networks, the intensity of friendly/hostile or activating/inhibiting relationships may vary from each other. In 
these cases, weighted signed networks are more proper to characterize the real-world systems43. In the following, 
we turn to address the problem of determining the structural conflicts in weighted signed networks.

Denote G =  (V, E, W) a weighted signed network. Here, W =  (wij)N×N is a weighted matrix, where each weight 
wij =  wji can be positive, negative, or zero. Intuitively, the cost of changing the sign of a relationship with small 
weight is also small. Thus, to make a signed network balanced, it is more effective to change the sign of those 
insignificant edges. In this perspective, the structural conflicts of a weighted signed network are defined by a set of 
edges with minimal total weights, which should be deleted to make the network balanced. Correspondingly, the 
problem of determining the structural conflicts in weighted signed networks becomes to assign 1 or − 1 to each 
node vi such that the following function is maximized.

Figure 4.  The evolutionary trajectory of the fitness of each signed network with the evolutionary game 
dynamics. Initially, all the nodes belong to the same alliances. Hence, the fitness of network is very low. The 
aspiration process promotes the fitness of entire network. While exploration behavior breaks local fitness peaks 
and brings in fluctuation to the fitness of network.

Networks |V| |E| H(V) s

Yeast 690 1080 1996 41

EGFR 329 779 786 193

Macrophage 678 1425 1522 332

E.coli 1461 3215 4946 371

Table 1.   The number of nodes |V|, the number of edges |E|, the final fitness H(V), and the obtained number 
of structural conflicts s of four kinds of real-world signed networks.
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Note that the definition of structural conflicts in weighted signed networks is a little different from that in 
unweighted signed networks. The assignment of weight to edges could greatly alter the choices of structural con-
flicts in the signed networks (see Fig. 6 (a,b)).

By redefining the fitness of each node as

∑= ,
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the above proposed evolutionary game approach can be directly applied to determine the structural conflicts in 
weighted signed networks without further modification. To explore the effectiveness of the evolutionary game 
approach, we initialize a sequence of weighted signed networks as testing samples, in which the tight upper 
bounds of structural conflicts are pre-established. The sequence of experimental weighted signed networks 
are generated with the same method as the experimental unweighted signed networks except that each edge is 
assigned with a random absolute weighted from (0, 1). In all the experiments, it can be found that the obtained 
upper bounds of structural conflicts agree with the pre-established ones excellently (see Fig. 6 (c)). Notably, the 
evolutionary game approach can also successfully determine the structural conflicts in weighted signed networks.

Figure 5.  Comparison between the experimental and pre-designated upper bounds of the number of 
structural conflicts in designated signed networks. 31 experiments have been done and the designated 
number of structural conflicts uniformly distributed from 0 to 150.

Figure 6.  Structural conflicts in weighted signed networks. (a) If the network is unweighted, changing 
the sign of any edge will make the network balanced. However, if the network is weighted, the choice of the 
structural conflict is further determined by the weight of edges. (b) If the network is unweighted, it is optimal 
that node v1, v3, and v4 form an alliance and node v2 forms the other. In this case, e24 is the only structural 
conflict. However, if node v2 and v4 are very close friends, then it is more likely that node v2 and v4 form an 
alliance and node v1 and v3 form the other. That is, e14 and e34 are the structural conflicts. (c) Comparison 
between the experimental and pre-designated upper bounds of the total weight of structural conflicts in 
designated weighted signed networks.
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Determining the structural conflicts in directed signed networks.  Directed signed networks are 
often encountered in social and biochemical networks44. In previous works, directed signed networks are com-
monly rendered into undirected networks for simplicity. Since the interactions in directed signed networks may 
be incompatible (e.g. ≠e eij ji), increase of the fitness of a node may not promise increase of the fitness of the 
entire network. In particular, in some cases, the proposed evolutionary game dynamics on directed signed net-
works may not reach consensus. Instead, it absorbs into a periodic orbit (see Fig. 7 (a)).

To solve this problem, we redefine the fitness of each node by

∑= ( + ) .
( )∈

F v e e v
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Numerical experiments show that the evolutionary game approach with the above modified fitness can effec-
tively determine the number of directed structural conflicts in directed signed networks (see Fig. 7 (b)). As such, 
the evolutionary game approach may be seen as a universally applicable method for determining the structural 
conflicts in directed weighted signed networks.

Discussion
The above results have shown the validity and effectiveness of the evolutionary game approach in determining 
the structural conflicts in unweighted or weighted, undirected or directed signed networks. The success of the 
evolutionary game approach is mainly driven by two factors. First, the aspiration dynamics leads to adaption of 
nodes. In the strategy updating process, each node adjusts its strategy to adapt to its neighbors in the network. 
And the self-adaption of each node drives the entire network towards better balance eventually. Note that the 
assignment of node fitness promises cooperative improvement of macroscopic fitness via self-interested adaption 
of microscopic updating.

Exploration behavior is the second key factor leading to the success of the evolutionary game approach. The 
entire network can often be trapped in stable states with local maximal fitness during the strategy updating pro-
cess. Exploration behavior could constantly introduce various new feasible strategies into the network, which 
helps the network jump out of those local peaks and start evolving towards higher fitness landscapes. In particu-
lar, the gradual reduction of the exploration probability is of key importance in the optimization process. In detail, 
the fitness of nodes is very low initially. In this case, large exploration probability can rapidly drive the nodes to 
adopt more advantageous strategies. With the increase of fitness, the exploration probability decreases eventu-
ally. Finally, the exploration probability tends to zero and in this stage the entire network stabilizes at a state with 
nearly maximal fitness. The whole setting is similar to that in the simulated annealing (SA) algorithms45 (see SI 
for details).

It is noted that the proposed evolutionary game dynamics well characterizes the underlying formation process 
of alliances in real-world signed networks. For example, during the evolution of social alliances, an agent may 
alter its alliances due to the social tension from the opposite alliance. This process can be modeled by the aspi-
ration rule in the evolutionary game dynamics. In addition, agents may also sometimes explore other possible 

Figure 7.  (a) Illustration of periodic evolution of the evolutionary game dynamics on directed signed networks. 
In the signed network, node v1 likes node v2, yet node v2 dislikes node v1. The same thing also happens between 
node pairs (v2, v3) and (v3, v1). The above situation can be encountered in some social networks. In this network, 
the fitness of the whole network is always zero. Thus, increase of the fitness of one node leads to decrease of the 
fitness of another, which results in a periodic evolution. In each graph, ±1 is the strategy of the nodes and the 
values in the parentheses denote the fitness of each node. (b) Comparison between the experimental and pre-
designated upper bounds of the total number of structural conflicts in designated directed signed networks.
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strategies randomly to improve its situation. Correspondingly, this kind of behavior can be mimicked by the 
exploration process.

In summary, we have proposed an evolutionary game approach to determine the structural conflicts in signed 
networks. The proposed approach is effective for both unweighted/weighted and undirected/directed signed net-
works. Moreover, it is a distributed algorithm. That is, each node optimizes the performance of itself only with 
information of its neighbors. Moreover, through adaption among nodes, the structural conflicts in the networks 
can be nearly successfully determined. Signed networks underlying current social or biochemical systems are 
often diversified in different aspects. The connection patterns can be unweighted or weighted, and undirected or 
directed. The number of nodes may span from hundreds to hundreds of thousands. Moreover, the structure of the 
networks may be time-varying. In all these applications, the distributed evolutionary game approach provides an 
effective tool for exploring the formation process of alliances and determining the structural conflicts.

Methods
Algorithm.  Our algorithm is based on the evolutionary game dynamics on complex networks. Generally, it 
consists of three parts: the initialization process, the one-step node updating process, and the termination pro-
cess. Let strategy + 1 and − 1 represent the alliance the node belongs to. The detailed operations in each process 
are summarized as follows:

Input: A signed network G =  (V, E), the damping coefficient 0 <  a <  1, initial temperature T0 > 0, damping period 
K >  0, and a specified minimum threshold of the exploration probability R.
S1. � The initialization process: Given a signed network, assign all nodes to strategy + 1 and the payoff of each node 

according to Eq. (2). Let the step indicator t =  0.
S2. � The one-step node updating process: In an arbitrary order, update the strategy of each node in turn. And after 

updating the strategy of a node, renew the payoff of the node and all its neighbors subsequently.
			   S2.1. � Strategy updating: For each node, if its fitness is less than zero, then assign the node to an op-

posite strategy; otherwise, if its fitness is equal or greater than zero, then assign the node to a 
random strategy with a probability Ri, given by Eq. (3).

			   S2.2. � Payoff updating: Given that the strategy of the updating node has been changed, reverse the pay-
off of this node and add the payoff of its neighbors vj by 2sieijsj.

		   �After all nodes have been given a chance to update its strategy, record the total fitness of the current network 
and add the step indicator t by 1.

S3. � The termination process: if all the exploration probabilities are less than the specified minimum threshold R, 
then end the program; otherwise, turn to S2.

The specific setting of the exploration probability and other parameters is shown in the supplementary mate-
rials. Since the exploration rate decreases to zero with time, the program will always end in finite iterations. 
Moreover, the total number of one-step node updating processes does not depend on the size of the network; it is 
a constant which depends only on the parameters of the exploration probability. Note that in each one-step node 
updating process, the strategy and payoff of a node vi update at most one and |Ni| +  1 times, respectively. Here, 
|Ni| refers to the number of neighbors of node vi. Thus, the computation complexity of the algorithm is linear 
increasing with the product of the number of nodes and edges in the signed network, which is polynomial time.
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