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Simple Summary: Most of the production of sheep’s milk is used in the manufacture of mature
cheeses. The milk composition has a strong influence on the technological and organoleptic properties
of dairy products. Several genetic polymorphisms have been related to variations of milk protein
and milk fatty acid content. The use of whole genome resequencing (WGR) has encouraged the
discovery of polymorphisms in the sheep genome. Exploiting information derived from a large
number of sheep WGR datasets, this study aimed to evaluate the variability of 24 candidate genes
involved in physiological pathways related to milk production. The genetic variants highlighted by
this work have a potential influence on the function of the protein encoded by the candidate genes.
The relevance of sheep milk composition on the cheese-making industry enhances the potential
interest of the present study as the variants highlighted herein could be considered to increase the
efficiency of breeding programs currently applied to dairy sheep populations. Further studies would
be needed to understand the role of these genetic variants on milk production traits.

Abstract: Different studies have shown that polymorphisms in the sequence of genes coding for
the milk proteins and milk fatty acids are associated with milk composition traits as well as with
cheese-making traits. However, the lack of coincident results across sheep populations has prevented
the use of this information in sheep breeding programs. The main objective of this study was to
exploit the information derived from a total of 175 whole genome resequencing (WGR) datasets from
43 domestic sheep breeds and three wild sheep to evaluate the genetic diversity of 24 candidate genes
for milk composition and identify genetic variants with a potential phenotypic effect. The functional
annotation of the identified variants highlighted five single nucleotide polymorphisms (SNPs)
predicted to have a high impact on the protein function and 42 missense SNPs with a putative
deleterious effect. When comparing the allelic frequencies at these 47 polymorphisms with relevant
functional effects between the genomes of Assaf and Churra sheep breeds, two missense deleterious
variants were identified as potential markers associated to the milk composition differences found
between the Churra and Assaf: XDH:92215727C>T and LALBA:137390760T>C. Future research is
required to confirm the effect of the potential functionally relevant variants identified in the present
study on milk composition and cheese-making traits.
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1. Introduction

Selection for specialized production traits and adaptation to a wide range of environments has
involved changes within the genome of modern sheep breeds. Sheep specialization for milk production
began 4000–5000 years ago [1]. In the last few hundred years, the development of the different sheep
breeds and the use of quantitative genetics methodology have resulted in the establishment of dairy
sheep breeds, some of which show a high level of specialization for milk production [2]. Due to the
higher total solid content of sheep milk compared to that of other dairy species, the main purpose
of dairy sheep production is the manufacturing of high-quality cheese. Sheep milk is an excellent
supplier of proteins, energy, fat, minerals, and vitamins [3,4]. Milk protein and fat content as well as the
total solids content are directly correlated with the cheese yield trait [5,6]. Therefore, genetic selection
programs in dairy sheep take into account not only milk yield, but also milk composition traits.

Since about the 1980s, several studies have tried to identify genetic markers that could be used to
improve the efficiency of selection for these traits through the candidate gene approach, focusing on the
study of milk protein genes and genes related to milk fat content. The initial studies on this field were
focused on the study of polymorphisms in the genes coding for the caseins (Cn), which represent more
than 95% of the proteins contained in sheep milk [7]. Sheep milk has four types of caseins, αs1-Cn,
αs2-Cn, β-Cn, and κ-Cn, and their coding genes (CSN1S1, CSN1S, CSN2, and CSN3, respectively)
are clustered on a region of ovine chromosome 6 (OAR6) spanning 250 kb [8,9]. Polymorphisms in
the coding regions of the casein genes have been found to be associated with effects on milk yield,
milk protein, and fat percentages [10,11]. Genetic variants in these genes have also been related
to milk coagulation properties such as rennet coagulation time and curd firmness [8]. For many
polymorphisms in the genes coding for milk sheep caseins, significant associations have been reported
for quantitative and qualitative milk parameters [12]. Other studies have also focused on the genetic
variants of the genes coding for the sheep milk whey proteins, α-Lactalbumin and β-Lactoglobulin,
which account for 17–22% of the total milk proteins in sheep milk [13]. These whey proteins are
encoded by two genes located on OAR3, the LALBA gene and the LGB gene (annotated as PAEP in
the sheep reference genome Oar_v3.1), both located on regions that have been associated with milk
performance traits in dairy sheep [14,15]. In this sense, it is worth mentioning that a missense variant
in the coding region of the LALBA gene (p.Val27Ala) was identified through a GWAS study as the
causal mutation of a previously identified QTL effect influencing milk protein and milk fat content in
Spanish Churra sheep [16]. Another study carried out by Corral et al. [10] related a missense variant
within the PAEP gene (p.Tyr38His) to higher protein and fat percentages in Merino ewes. On the other
hand, further important factors that influence the manufacturing properties and organoleptic quality
of dairy products are the milk fat content and the milk fatty-acid composition pattern. Fat content
is a highly variable component of milk, dependent on breed, genotype, and diet [17]. This can be
explained because lipid metabolism in the mammary gland is a complex process that involves a large
number of genes and their interactions [18]. Therefore, researchers have also applied the candidate
gene approach to identify polymorphisms in genes that could influence the fat composition of sheep
milk such as ACACA, CSN1S1, CSN2, FASN, and LALBA [11,15,19,20].

Overall, these studies suggest that polymorphisms in the milk protein genes and the genes coding
for fatty-acid syntheses in the mammary gland appear to have a direct effect on milk composition
traits, and indirectly on cheese-making properties and cheese yield-related traits. However, up to
date, the controversial results obtained in the different sheep breeds have prevented the use of this
molecular information in the practice of milk selection programs [3]. Hence, information on the genetic
diversity of these genes across different sheep populations could be of interest. For instance, evidence
of the presence of selection signatures around these genes could suggest a potential direct effect of the
corresponding gene on phenotypes of interest for the dairy sheep industry.

The Sheep HapMap project was a first attempt to decipher the genetic variability of the sheep
genome across a large sample of worldwide ovine breeds through the genotyping of a medium-density
SNP-chip (50K-chip) [2]. This study did not reveal any significant selection signal in the genomic
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regions harboring the candidate genes mentioned. As an extension of the Sheep HapMap project,
the International Sheep Genomics Consortium (ISGC) initiated the “Ovis aries diversity study” in 2012,
which included the whole genome sequences of a subset of samples from the Sheep HapMap project,
a total of 75 sheep from 43 breed groups, and two wild species from around the world. The whole
genome resequencing (WGR) datasets generated in this project are publicly accessible in the Sequence
Read Archive (SRA) [PRJNA160933].

Considering the availability of these WGR datasets, the aim of this study was focused on assessing
the genetic diversity of candidate genes for milk production/composition traits across a large number
of breeds. Considering the limited number of available WGR datasets corresponding to specialized
dairy breeds in the repositories, we analyzed here an additional dataset of 71 individual genomes
including samples from two dairy breeds with different specialization level: Spanish Churra (n = 46)
and Spanish Assaf (n = 19). These two breeds significantly differ in their dairy specialization level as
the Assaf milk yield (400 kg; lactation normalized to 150 days) is more than double the milk yield in
Churra (117 kg; lactation normalized to 120 days), whereas Churra milk has higher fat and protein
contents and also increased cheese yields than the Assaf milk [21].

The analysis presented here for a total of 175 WGR datasets from a worldwide sample of sheep
breeds has allowed us to evaluate the genetic diversity for a list of 24 milk composition candidate
genes and estimate the relationship between domestic sheep breeds and their Asian mouflon ancestor
(Ovis orientalis) based on the genome and candidate regions’ genetic variability. In addition, this work
exploited the value of WGR datasets to identify potential functional variants that could underlie
phenotypic variation for traits of economic interest in dairy sheep.

2. Materials and Methods

2.1. Whole Genome Resequencing (WGR) Datasets

This study involved the analysis of 151 WGR datasets from 43 domestic sheep breeds and 24 WGR
datasets of three wild sheep (O. canadiensis, O. dalli, and O. orientalis). The detailed description and
origin of the total 175 analyzed datasets are provided in Supplementary Table S1.

Briefly, most of the domestic sheep analyzed WGR datasets were publicly available from two
different projects at the Sequence Read Archive (SRA) repository. A total of 70 domestic sheep
datasets were obtained from the project “Ovis aries diversity study” (PRJNA160933) developed by
the International Sheep Genomics Consortium, which includes a representative group of samples
previously analyzed within the HapMap project [2]. Another 10 WGR datasets of Australian Merino
were obtained from the project “SheepCRC whole genome sequencing project” (PRJNA325682)
developed by the Sheep Commonwealth Government’s Cooperative Research Center. This project has
recently been extended with additional samples, but those analyzed here are the 10 initially available.
In addition, we included in our study 71 WGR datasets generated by our research group for four
Spanish domestic breeds [Spanish Assaf (n = 19), Churra (n = 46), Segureña (n = 2), and Spanish Merino
(n = 4) (WGR datasets available under request through the corresponding agreement framework
between authors and the particular sheep breeders’ associations). All WGR datasets generated by
our group were produced using the paired-end Illumina technology (Illumina HiSeq 2000 and Hiseq
2500 sequencers). Among this group of Spanish breeds, Assaf sheep shows the highest specialization
for milk production [22], whereas Churra is an autochthonous double aptitude breed classically
exploited for milk production and suckling lamb meat [23]. Although the Assaf breed has a higher
milk yield, Churra sheep have higher protein (5.98%) and fat (7.12%) contents in milk than Assaf sheep
(4.03 and 5.39%, respectively) [6,24]. This explains that Churra sheep milk shows a higher cheese
yield and a better aptitude for the production of mature cheeses than milk from Assaf sheep [25,26].
A recent study of our research group reported that Assaf milk shows a slow-coagulation during the
cheese-making process [5], whereas Churra milk appears to have better coagulation properties and
a higher cheese yield [6].



Animals 2020, 10, 1542 4 of 19

In addition, this study included additional WGR datasets available at the SRA repository for
a total of 19 Asian mouflon (Ovis orientalis) generated by the NEXTGEN project (PRJEB3139) and two
wild sheep breeds (Ovis canadiensis, n = 2 and Ovis dalli, n = 3) from the “Ovis aries diversity study”
(PRJNA160933). The geographic origin of breeds included in this study is represented in Figure 1.
The breeds of the domestic samples were drawn from Asia (7), Africa (4), America (4), Australia (2),
British (5), Central Europe (3), Northern Europe (3), Southwest Europe (7), and Southwest Asia (9).
On the other hand, the wild sheep species here considered belonged to America (2) and Southwest Asia
(1). The origin of the ancestor mouflon samples, all from the Iran region, is also indicated in Figure 1.
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Figure 1. Location breed map. Geographic origin of the samples analyzed by whole genome
resequencing (WGR) considered in this study including 151 samples from domestic sheep breeds and
24 samples from wild sheep. Breed and species names and their abbreviations are given in Table S1.
In order to differentiate the geographical origin of the samples analyzed, the geographic area with the
highest density of breeds analyzed (Europe and part of Asia) has been zoomed in.

2.2. Candidate Genes Considered

Genes considered in the analysis comprised of (i) the milk protein genes including the casein
genes (CSN1S1, CSN1S, CSN2, and CSN3, respectively), and the milk whey proteins (LALBA and
PAEP genes). A group of (ii) 17 other candidate genes related to milk fatty acid metabolism in the
mammary gland [18] in concordance with a previous study performed by our research group assessed
the expression of candidate milk genes in the milk sheep transcriptome [21]. The selected milk-fat
composition candidates can be grouped following lipid metabolism processes: fatty acid synthesis and
desaturation (ACACA, FASN and SCD), lipid droplet formation (BTN1A1, XDH), fatty acid activation
and intracellular transport (ACSL1, ACSS2, DBI and FABP3), acetate triacylglycerol synthesis (GPAM,
DGAT1 and LPIN1), fatty acid import into cells (CEL, LPL and VLDLR), and other genes related with
lipids metabolism such as FABP4, PLIN2, and SLC27A6 [18,21]. The genome coordinates corresponding
to the selected candidate genes according to the sheep reference genome Oar_v.3.1 were extracted with
the BioMart tool of Ensembl [27]. The complete list of studied candidate genes and their genomic
coordinates are detailed in Table S2.

2.3. WGR Bioinformatics Analysis

Samples obtained from the SRA public repository were converted from SRA format to FASTQ
format with the SRA-Toolkit software (available from http://www.ncbi.nlm.nih.gov/Traces/sra).
After this transformation, all WGR datasets were analyzed through the same pipeline, which involved

http://www.ncbi.nlm.nih.gov/Traces/sra
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the following steps: (1) quality of the raw paired-end reads was assessed with the FastQC program [28];
(2) good quality reads were filtered with Trimmomatic [29] using specific filter parameters for paired-end
samples (-phred33, LEADING:5, TRAILING:5 SLIDINGWINDOW:4:20, MINLEN:36 ILLUMINACLIP:
Trimmomatic-0.33/adapters/TruSeq 3-PE.fa:2:30:10); (3) samples were aligned against the ovine reference
genome assembly v.3.1 (Oar_v3.1 [27]) with the program Burrows-Wheeler Aligner (BWA) [30] using
the algorithm of maximal exact matches (mem); (4) data manipulation and statistical analyses were
performed with three programs: SAMtools [31] was used to convert SAM files into BAM files and to
remove non-mapped and improperly-pair reads and obtain alignment statistics, Picard [32] was used to
sort reads, mark duplicate reads and index building, and Genome Analysis Toolkit v4.0 (GATK) [33]
was used to perform a base quality score re-calibration; (5) identification of genetic variants was carried
out considering all 175 WGR datasets together with GATK v4.0 (University of Texas at Austin, Austin,
TX, USA) [33] using the haplotypecaller tool and default parameters following GATK Best Practices
recommendations; (6) filtering of the variants identified was performed with the program snpSIFT [34]
in order to remove low quality variants (DP > 10 & QUAL > 30 & MQ > 30 & QD > 5 & FS < 60); (7) the
BCFtools utilities (Genome Research Ltd., Cambridgeshire, UK) [31] were used to add the identifier
code for each known variant, using a VCF file (release91) downloaded from Ensembl database as
a reference [27]; and (8) variants located on candidate genes were extracted from all datasets with the
SnpEff software (Pablo Cingolani, Boston, MA, USA) [34], using the –fi option along with a bed file
providing information about the coordinates of each gene according to the sheep reference genome
(Table S2).

2.4. Genetic Diversity and Phylogenetic Analyses

Nucleotide diversity (π) was estimated in 20 kb genomic bins with a 10 kb step in both wild
and domestic sheep genome collections, following Naval-Sanchez et al. [35], through the VCFtools
software [36] and considering single nucleotide polymorphism (SNP) variants identified across the
whole genome. Genomic bins with fewer than 20 SNP were excluded. The same approach was used to
estimate π for the genomic regions harboring the candidate genes under study.

The estimation of evolutionary divergence among the samples studied was measured using the
maximum composite likelihood method [37] through the 1% of the total variants detected across the
genome among wild and domestic sheep, in order to construct the evolutionary divergence distance
matrix among the samples. Results were drawn using the Neighbor-joining method with the MEGA
X [38] and ggtree [39] software. Furthermore, evolutionary divergence distances, considering only
the variants found in the candidate regions were estimated using the same pipeline. The reliability of
phylogenetic tests was estimated through a bootstrapping method [40] using 500 bootstrap replicates [40]
with MEGA X [38].

2.5. Functional Annotation and Site Frequency Study for Candidate Gene Variants

For the variants identified at the milk composition candidate genes, annotation and prediction
of its effect were carried out by two software packages: (i) SnpEff [34] to predict the impact of the
polymorphism in the encoded protein, and (ii) Variant Effect Predictor (VEP) to predict the effect
of amino-acid changes through the Sorting Tolerant From Intolerant (SIFT) tool [41]. To highlight
variants of the candidate genes with a potential functional impact on the protein function, we selected
variants that were classified in terms of their functional consequences as HIGH and MODERATE by
the two different software programs. Due to the large number of variants classified as MODERATE,
within the moderate missense variants, we selected those predicted to be deleterious through the
VEP program [41]. SIFT is an algorithm that predicts whether an amino acid substitution will have
a deleterious effect on the protein function [42]. For these potential functionally relevant variants,
we later applied a site frequency analysis to identify nucleotides with divergent allele frequency
between the two Spanish dairy breeds included in the WGR datasets analyzed here, Spanish Churra
(CHU) and Spanish Assaf (ASF). The interpretation of this site frequency analysis also considered
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the site frequency in the wild sheep ancestor (O. orientalis) and Australian Merino samples (MRA) as
an example of a non-dairy sheep breed with a sufficient number of samples.

3. Results

3.1. Genetic Variability and Phylogenetic Relationship between Samples

We analyzed WGR datasets of 43 phenotypically diverse domestic sheep breeds for comparison
with 19 Asiatic Mouflon samples (O. orientalis) representing their wild ancestor and five wild sheep
samples including three Ovis canadiensis and two Ovis dalli to assess the genetic diversity of the sheep
genome regions harboring the list of selected candidate genes under study. The WGR datasets analyzed
showed read lengths ranging between 30 and 151 base pairs (bp) and an average number of raw reads
per sample of 175,176,421.77 paired reads. After the quality control of raw reads, an average of 16.06%
of the reads was eliminated. The number of reads aligned to the reference genome varied between
55,823,646 and 492,895,080, with a mean of accurately mapped reads per sample of 290,256,652.18 and
an average of assembly coverage of 94.79%. The median number of duplicated reads per sample was
19,206,080.17, with a range of 1,765,412 to 46,089,858 duplicate reads.

The variant calling analyses performed across the whole genome revealed, after quality filters,
a total of 81,053,638 variants across the entire genome, 59.98% of which had been previously described
in the database provided by Ensembl (dbSNP release 91). After filtering the regions corresponding to
the 24 functional candidate genes considered here, the total number of variants to be further assessed
was 20,100, most of which were SNPs (17,037 and 16,960, for SnpEff and VEP, respectively), with lower
numbers of insertions (1489 and 1245, for SnpEff and VEP, respectively) and deletions (1574 and 1396,
SnpEff and VEP, respectively) (see details in Table 1). These counting differences between these two
software packages are due to the different way they consider multiallelic polymorphisms as the SnpEff

program considers each polymorphism as a variant and the VEP software contemplates each position
contained in a polymorphism as a variant [26,27].

Table 1. Summary statistics of the annotation analyses performed with the SnpEff and VEP software
for the genetic variants identified within the studied candidate gene regions through the analysis of the
WGR datasets here analyzed.

Types of Variants According to
Different Classification Criteria

Number of Variants within the Candidate Gene Regions

Counts SnpEff Counts VEP

Variants processed 20,100 20,100
SNPs 17,037 16,960

Insertions 1489 1245
Deletions 1574 1396

Indel 422
Substitution 77

Effects by impact (Only for SNPs)
High 5 5

Moderate 203 203
Low 430 430

Modifier 16,378 16,378

Effects by functional class (Only
for SNPs)
Missense 228
Nonsense 1

Silent 424
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Table 1. Cont.

Types of Variants According to
Different Classification Criteria

Number of Variants within the Candidate Gene Regions

Counts SnpEff Counts VEP

SIFT summary (Only for SNPs)
Deleterious low confidence 11
Tolerated low confidence 19

Deleterious 42
Tolerated 150

Effects by type (Only for SNPs)
3 prime UTR 113 113
5 prime UTR 59 59

Downstream gene 651 651
Frameshift 0 0

Inframe deletion 0 0
Inframe insertion 0 0
Intergenic region 0 0

Intron 18,579 18,574
Missense 228 228

Non coding transcript exon 12 12
Non coding transcript 137 137

Splice acceptor 4 4
Splice donor 1 1
Splice region 97 96

Start lost 0 0
Stop gained 1 1

Stop lost 0 0
Stop retained 0 0
Synonymous 424 424

Upstream gene 729 729

Within the candidate gene regions, the rate of variants per base pair (bp) ranged from 26.44; for the
PAEP gene to 73.25; for the SCD gene, with an average ratio of one variant per 54 bp, which was lower
than the average variability of one variant per 32 bp estimated across the genome. The number of total
and novel variants identified per 500 bp within the considered candidate gene regions is represented in
Figure 2. As can be observed, the total number of variants per gene was proportional to the length of
the candidate genes, with the ACACA gene (with a length of 228,430 bp) involving the higher number
of variants. The genes ACACA, XDH, and SLC27A6 were those including the highest number of novel
variants identified per 500 bp (29, 26, 22, 22 novels per 500 bp variants, respectively). Several insertions
and deletions identified in some of the candidate genes (specifically in the ACACA, DGAT1, FASN,
and PAEP genes) were observed to be coincident among them, having the same reference allele but
different length (bp) for the alternate allele. As this observation could indicate that the sequences of the
harboring genes are not well-characterized and annotated in the reference genome Oar_3.1, only SNP
variants were considered in the further analysis including phylogenetic analysis and the identification
of functionally relevant polymorphisms in the candidate genes. The novel variants identified across
the studied candidate genes, a total of 4925 from 16,960 SNPs are listed in Table S3 and will be publicly
available through the European Variation Archive (EVA) (https://www.ebi.ac.uk/eva/).

https://www.ebi.ac.uk/eva/
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Figure 2. Density of total and novel variants identified in candidate gene regions. Manhattan plot
showing the number of variants identified per 500 bp across the selected candidate gene regions. The total
and novel variants uncovered in this study are represented in blue and orange colors, respectively.

A representative sample of 1,331,436 SNPs variants identified across the genome and the
16,960 SNPs variants located within the candidate genes were selected to study the distribution
of genetic variability among the samples included in this study. The results of this analysis are
graphically presented in a dendrogram plot (Figure 3), preserving the breed code described in Table S1.
The dendrogram shows roughly the genetic differences that arose during the evolution of modern sheep
breeds based on the across genome variability (left) and based on the variability identified within the
coding regions of the studied candidate genes (right). When focusing on the dendrogram that includes
the variability of the entire genome (left), most of the samples are distributed along the phylogenetic
tree accordingly to their breed group and their geographical origin region (Figure 1). This agreed with
the results reported by Kijas et al. [2] when the Sheep HapMap worldwide sample of sheep breeds was
analyzed with a medium-density SNP-chip. Aside from that, the dendrogram based on the variants
located within the candidate genes studied here (right) did not allow us to classify the samples by
breed, geographical location, or production specialization along the phylogenetic tree, although a clear
distinction between wild sheep and domestic sheep could be drawn. The bootstrap values obtained
with the dataset including the 1,331,436 SNP variants selected across the genome (represented in
Figure S1) showed very high confidence values for the relationship between individuals of the same
breed and also for the grouping among breeds of the same geographic regions, which supports the
reliability of the phylogenetic tree.

Likewise, the pairwise distance index between all the analyzed samples was computed using the
maximum composite likelihood method based on the variant diversity of the representative sample
selected from the variants identified across the genome (Table S4). The pairwise distance index matrix
had an average pairwise distance index of 0.22, ranging from 0.03 to 0.45. The mean distance pairwise
index was slightly higher between domestic and wild breeds (0.29) compared to the mean distance
pairwise index obtained by comparing distances between different domestic breeds (0.20). The two
samples with the highest pairwise distance index with each other were one Australian Merino sample
and one Ovis canadiensis sample (0.45), and the lowest index was observed between two individuals
of the Ovis dalli species (0.03). Aside from that, the two groups with the highest pairwise distance
index were Ovis dalli and Santa Inês (0.44), and the lower pairwise distance between groups was found
between Ovis dalli and Ovis canadiensis (0.05). Additionally, regarding the estimation of the nucleotide
diversity (π), this parameter was higher in wild sheep samples than in domestic sheep samples when
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estimated across the whole genome (π = 0.47% and 0.38%, for wild and domestic, respectively) and
when estimated for the candidate regions (π = 0.27% and 0.22%, respectively).Animals 2020, 10, x  8 of 19 
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Figure 3. Phylogenetic trees based on the genetic diversity identified across the genome and across and
candidate gene regions studied here. Phylogenetic trees were built using the maximum composite
likelihood method based on the variant diversity of a representative sample of all the identified SNPs
detected across the genome (left) and the SNPs detected within the milk candidate genes genomic
regions considered in this work (right). Phylogenetic trees were drawn using the neighbor-joining
method to represent the relationship among all samples analyzed in this study (wild and domestic
sheep). The breeds are represented in different colors according to the geographical region to which
they belong.

Furthermore, the pairwise distance matrix computed based on the 16,960 SNP variants located
in the candidate genes showed an average distance of 0.16 (0.02–0.43) [Table S5]. In the same way,
the average divergence index among the wild breeds (0.22) was much higher than that obtained among
the domestic breeds (0.13) in the candidate regions. Bootstrap values for the phylogenetic tree based
on the candidate gene variants were also high in the roots that classify separately wild and domestic
sheep and within breed groups. However, the bootstrap values were markedly reduced in the roots
that segregate the domestic breeds (Figure S2). Therefore, this analysis could not correctly classify the
breed groups when only variants of candidate genes were used.

3.2. Identification of Potential Functionally Relevant Variants in Candidate Genes

The functional annotation carried out with both SnpEff and VEP for the 16,960 SNPs identified in
the considered candidate genes through the variant calling analysis applied to the 175 WGR datasets
identified five SNP variants determining a HIGH functional impact consequence on the protein.
In addition, 203 SNP variants were predicted to cause a MODERATE functional impact consequence,
42 of which were missense variants predicted to be deleterious by the SIFT algorithm implemented in
the VEP analysis [42] (Table 1). Considering this classification, a total of 47 functional consequences
including those of HIGH impact (5) and the missense deleterious variants (42) were considered as
relevant functional variants or variants that are likely to have a direct effect on milk production and
composition traits. Twenty of these relevant functional variants are novel as they do not have an rs
number in the dbSNP database (https://www.ncbi.nlm.nih.gov/snp/). One of the variants was classified
as a stop gained in the ACACA gene as it was predicted to cause a codon stop in the coding region that
interrupts the elongation of the corresponding protein.

The 47 mentioned potential functionally relevant variants, which are characterized in Table S6,
were selected to be further explored regarding allelic frequency differences. Hence, for all functional
variants, Table S6 provides the estimation of the reference allele frequency for all breeds and also
an estimate of the average frequency for domestic and wild sheep. From these estimations, we can

https://www.ncbi.nlm.nih.gov/snp/
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observe that a total of the 11 potential functionally relevant variants were only identified in the
domestic breeds. Comparing the frequencies between domestic and O. orientalis, there was only one
polymorphism showing a difference in the allele frequency higher than 0.3 (ACACA:13029588A>T;
rs589600115), classified as stop gained (Table S6).

When comparing the allele frequencies of the relevant functional variants between the two dairy
breeds considered, Assaf and Churra, we identified two missense deleterious variants with allele
frequency differences higher than 0.3 located in the XDH and LALBA genes (variants highlighted in
Table S6). A complete characterization of these SNPs is presented in Table 2 as potential genetic markers
related to the phenotypic differences in milk composition traits between the two considered breeds.
On one hand, the alternate allele of the missense deleterious mutation LALBA:137390760T>C was close
to fixation (0.92), whereas in the Assaf breed, this allele showed a low–moderate allele frequency (0.26).
On the other hand, Assaf showed a remarkable higher frequency (0.42) for the alternate allele of the
missense deleterious XDH:92215727C>T mutation than Churra sheep (0.03), where the reference allele
was very close to fixation.

Table 2. Characterization of the two potential functionally relevant variants identified in the candidate
genes considered in this study showing allele frequency divergence between Churra and Assaf breeds.

Features XDH:92215727C>T LALBA:137390760T>C

Chromosome 3 3
Position (base pairs) 92,215,727 137,390,760

dbSNP ID rs429850918 rs403176291
Reference Allele C T
Alternate Allele T C

GeneSymbol XDH LALBA
Variant missense missense
BioType protein coding protein coding

Functional impact
(ensemblVEP_Oarv3.1) MODERATE MODERATE

Functional impact (SIFT_Oarv3.1) deleterious (0) deleterious (0.02)
Positions in coding sequence ENSOART00000011926.1:c.1840C>T ENSOART00000020933.1:c.80T>C

Codon change Cgg/Tgg gTg/gCg
Amino acid substitution Arg/Trp Val/Ala

Assaf Genotypes (Frequency) C (0.58), T (0.42) T (0.92), C (0.08)
Churra Genotypes (Frequency) C (0.97), T (0.03) T (0.26), C (0.74)

4. Discussion

This study exploited the large amount of information provided by WGR datasets from a worldwide
sample of sheep breeds to present a deep evaluation on the genetic variability of a list of genes that,
due to their known biological function, are considered candidates to explain phenotypic differences for
milk composition traits in dairy sheep. One important issue regarding the variant calling analyses
reported here is that all the WGR datasets, those obtained from the public SRA repository and those
generated by our research group, were processed following the same bioinformatic analysis workflow
and were considered jointly for the variant calling analysis. This procedure has been used in previous
studies analyzing WGR datasets [35,43,44] and has been proven to prevent biased results regarding
the variant calling detection process.

The variants detected by our analysis across the whole sheep genome were used to build
a phylogenetic tree that, according to Kijas et al. [2], was able to classify the different breeds and wild
species, showing a close relationship between the patterns of ovine genetic variation and geography
(Figure 3). Thereby, the highest pairwise distance was observed between one sample of Australian
Merino breed and one sample of Ovis canadiensis, which is a wild counterpart of the sheep, but not the
direct ancestor (Ovis orientalis) of the domestic breeds [35]. The individuals that showed the closest
relationship in the phylogenetic classification belonged to the same species (Ovis dalli). The higher



Animals 2020, 10, 1542 11 of 19

nucleotide diversity observed here in wild vs. domestic sheep has been previously described and can
be explained as the consequence of bottlenecks experienced during the domestication of sheep [35,44].
The wild sheep were classified independently from the domestic sheep, considering both the variants
identified across the whole genome and the variants included within the studied candidate genes,
which is in agreement with the diversity study on the casein genes presented by Luigi-Sierra et al. [44].
However, when the phylogenetic tree was built only considering the variants found in the milk
composition candidate genes analyzed here, the domestic sheep samples could not be classified within
breeds. According to Luigi-Sierra et al. [44], this may suggest that the set of identified variants identified
in the considered candidate genes appear not to have been a target of selection during the breed
formation process, as an extensive amount of polymorphisms is shared among the compared domestic
breed. Despite that, Naval-Sanchez et al. [35] described a selective sweep located in the coding region
of the DGAT1 gene that could play a role in adaptive changes during domestication or selection. On the
other hand, considering that the domestic and the wild sheep samples analyzed here were clearly
classified in different nodes based on the genetic variability detected in the considered candidate genes
for milk composition, it could be suggested that variants in these genes could have played a role in
adaptive changes during the domestication process, as previously suggested by Luigi-Sierra et al. [44]
in relation to the casein coding genes. Furthermore, the differences of nucleotide diversity between
wild and domestic sheep detailed in this paper agreed with the higher nucleotide diversity previously
reported for wild sheep compared with that of domestic sheep by other studies [35,44].

The variant calling bioinformatic pipeline implemented here for 175 WGR datasets from 43 sheep
breeds and three wild sheep has allowed for the identification of a total of 47 potential functionally
relevant variants located in the candidate genes selected concerning milk composition traits in sheep.
Among these variants, 20 were novel. This highlights the value of the analysis presented here for
a large number of WGR datasets from a diverse worldwide representation of sheep breeds. In addition
to exploiting publicly available information, the results of this analysis build on the sequencing analysis
generated for 71 sheep genomes by our research group for four Spanish sheep breeds, with a substantial
representation of two dairy sheep breeds, Spanish Assaf (n = 19) and Spanish Churra (n = 46). This fact
is especially relevant if the aim is to analyze genes with a potential influence on dairy traits since public
databases have a limited number of these individuals. Nowadays, when genomic selection is possible
in some livestock populations, the value of studies identifying genetic variants in candidate genes
relays the potential to identify mutations that could be potential causal mutations and also assess
the frequency of these mutations in different breeds. This is an important and essential step when
designing new SNP arrays that could be used efficiently to improve commercial populations through
genomic selection. Different studies have proven that the inclusion of causal mutations in SNP panels
used for genomic selection substantially increases the efficiency of this global strategy (reviewed by Xu
et al., 2019; Oget et al., 2019).

4.1. Variants in Genes Related to Milk Protein Content

Within the coding region of the six candidate genes coding for milk proteins (CSN1S1, CSN2,
CSN1S2, CSN3, PAEP, and LALBA), a total of 13 relevant functional SNP variants have been identified.
These SNP variants and the estimated frequency for the different breeds analyzed in this study are
summarized in Table S6. Within the functional variants located in the genes related to milk protein
content, one was inferred to have a HIGH impact and 12 amino acid substitutions were classified
as deleterious. The HIGH impact variant was found on the CSN1S2 gene, this polymorphism was
classified as a splice donor variant and was inferred to cause a disruptive impact on the protein that
could affect the gene expression of this gene or could cause an intron retention event and consequently
define a novel isoform. One of the missense deleterious variants mentioned was also identified in exon
9 of the CSN1S2 gene (CSN1S:85189841G>T; rs430397133). Of the rest of the missense deleterious
variants detected in the genes coding for the casein proteins (Table S6), two were located on the
CSN1S1 gene, one was on CSN2, and three were found in the CSN3 gene. Among the variants
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located in the whey protein genes, a total of three deleterious variants were identified in the encoded
region of the LALBA gene. In contrast, a multi-allelic SNP variant (rs600923112) with three alleles is
responsible for the two missense deleterious consequences indicated in Table S6 for the PAEP gene.
Interestingly, whereas the first of these consequences, related to the substitution PAEP:3570969T>A
is present uniformly across the different domestic breeds analyzed, the alternative polymorphism
PAEP:3570969T>C was only found, among the domestic breeds, at very low frequency in Churra and
Assaf (0.03 and 0.09, respectively), being also present in the O. orientalis samples. A possible association
of this functionally relevant variant with the dairy specialization of these two breeds should be studied.

Polymorphisms in these six candidate genes have classically been considered as potential tools
for the selection of dairy ruminants. On one hand, caseins (Cn) constitute 76–83% of the total protein
in sheep milk [9,45]. Previous studies had associated the variants in the encoded chain of CSN1S1
and CSN1S2 genes with milk yield, protein yield, fat yield, and milk casein content in sheep [9,11].
They were also related to different curd firming times and efficient renneting properties in Sarda goat [46].
Particularly in cow, CSN2 and CSN3 genes were significantly associated with the cheese-making
traits [1,47]. In sheep, CSN2 is the gene showing the highest expression level during lactation based on
the transcriptomic analysis of somatic milk cells reported by Suárez-Vega et al. [48]. Variants in the
CSN3 gene, which is responsible for stabilizing milk casein micelles, have been associated with protein
content and renneting parameters in East Friesian Dairy sheep and Sarda goat, respectively [11,46].
Most of the functional variants found in the coding region of the CSN3 gene were just present in wild
sheep, which is considered monomorphic in domestic sheep [3,20]. Still, our analysis of WGR datasets
has identified a missense variant (rs406485755) in one of the Australian Merino samples analyzed.
This polymorphism was predicted to cause the p.Arg118His substitution, classified as tolerated (0.32)
by our functional analyses.

On the other hand, the two genes that encode for major whey proteins, α-Lactalbumin (encoded
by LALBA) and β-Lactoglobulin (PAEP, also known as progestagen-associated endometrial protein),
both are located in ovine chromosome 3 (OAR3) [49]. García-Gamez et al. [16] identified a quantitative
trait nucleotide (QTN) in the LALBA gene influencing milk protein and fat percentages in Spanish
Churra sheep. Notably, this missense variant (LALBA:137390760C>T; p.Val27Ala; rs403176291) was
identified here as a potential functional relevant variant, which supports the value and efficiency
of the functional filtering process applied in the present study to identify genetic variants with
potential biological influence on complex traits. This filtering can help to better understand the genetic
architecture of the studied traits by helping to simplify and interpret the huge amount of information
generated through standard variant calling analyses of WGR datasets. The LALBA:137390760C>T was
found in several samples of domestic sheep (Table S6). The study of García-Gámez et al. [16] shows
the direct association of the LALBA:137390760C allele with increased milk protein and fat percentage
contents. Its high frequency in the Churra breed, compared to the Assaf, agrees with the higher protein
and fat contents of the milk from the Churra sheep [6,24]. This may also be related to the better aptitude
for mature cheeses of the Churra sheep when compared with the Assaf breed [25,26]. The presence
of this polymorphism in the Assaf breed, although at low frequency (0.08), could be considered as
a direct genetic marker or through a genomic selection scheme to improve milk composition and
cheese-making traits in this breed. Assessment of the potential use of this marker in other dairy
breeds should also be considered. The β-Lactoglobulin protein is the main whey protein of ruminant
milk and is polymorphic in many sheep breeds [50]. Previous studies have described significant
associations among variants found in the PAEP gene and protein percentage, fat percentage, clotting
time, and curd firming time [17,50,51]. The identification of the PAEP:3570969C allele only in the Asian
mouflon, Churra, and Assaf breeds, but also in the mouflon, suggest that this mutation has an origin
before domestication that has only been observed in breeds with dairy specialization studied in this
work. A study involving a larger number of dairy breeds would be necessary to check whether this
maintenance is due to reasons of adaptation to milk production or to pure chance.
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From the 13 relevant functional variants identified in the genes codifying for milk proteins,
four were not previously described (Table S6). The potential influence of these variants on sheep
milk composition, cheese yield, and organoleptic characteristics should be analyzed by future studies.
The frequency of these variants in each breed (Table S6) could be useful to select functional variants to
include in the design of SNP-chips aiming for the increase in genomic selection efficiency when applied
to dairy breeding programs (e.g., PAEP:c.500T>C, only found in Assaf and Churra domestic breeds).
One of these novel variants (CSN3:c.410A>G) was only present in wild sheep, as previously detailed by
Luigi-Sierra et al. [44]. Additionally, a total of 26 QTLs related to milk compositional/functional traits
(casein, fat, lactose, and protein percentage) and coagulation properties (curd firmness, curd firming
time, and rennet coagulation time) have been identified in a 250 Kb region of these candidate genes in
both Churra and Sarda sheep [8,16] (Table S7).

4.2. Variants in Genes Involved in Fatty Acid Metabolism

Within the 18 candidate genes selected in our study on fat metabolism in the sheep mammary
gland, a total of 34 relevant functional variants were found, 16 of which were novel variants not
included in the dbSNP database. The polymorphisms within these genes, classified as HIGH impact
(4) and deleterious missense substitutions (30), and their frequency for the reference allele for each of
the studied breeds analyzed, are summarized in Table S6.

Among the genes related to the fatty acid synthesis and desaturation processes (ACACA, FASN,
and SCD), the ACACA gene encoding region included a total of four missense deleterious variants and
one HIGH impact variant (causing the onset of a stop codon). Aside from that, four deleterious variants
were found in the FASN gene. In relation to genes related to lipid droplet formation, 12 deleterious
variants were found in the XDH gene and one in the BTN1A1 gene. It should also be noted that
no relevant functional variants were identified in the genes related to fatty acid activation and
intracellular transport.

Regarding the genes associated with the acetate triacylglycerol synthesis (DGAT1, GPAM,
and LPIN1), one missense SNP variant classified as deleterious was identified in the DGTA1 gene.
Furthermore, one SNP variant was classified as HIGH impact in the GPAM gene region, which was
in the second base region at the 3′ end of the intron, causing a disruptive effect. Finally, a total of
three deleterious and two HIGH impact variants were found on the LPIN1 gene. These HIGH impact
variants were located in the 2 bp region at the 3’ end of an intron, which could affect the expression of
this gene, causing a disturbing impact on the protein [41], as we have emphasized above. In addition,
the SNP located in the LPIN1 gene (LPIN1:20554676G>A) was only identified in the Churra breed
genomes. The breed specificity of this variant and the high milk fat content [6,24] and good aptitude of
Churra milk for the production of mature cheeses [25,26] suggests future research should focus on the
assessment of the potential influence of the LPIN1:20554676G>A variant on milk composition traits.

Mammary gland lipid metabolism involves a large number of genes [18]. In this study, we identified
a total of 16 novel functional variants in the coding region of five of the 18 candidate genes selected
about the milk fatty acid metabolism. The novel polymorphisms were found in the FASN, XDH,
LPIN1, VLDLR, and PLIN2 genes (Table S6). Within the genes related to fatty acid synthesis and
desaturation (ACACA, FASN and SCD), the ACACA and FASN genes are responsible for the fatty
acid chain elongation and are both related to the fatty acid synthesis in the mammary gland [17,18].
The high expression of the FASN gene and the moderate expression of the ACACA gene described
in the mammary gland during lactation [21] suggests an essential role of these genes in relation to
the synthesis of milk fatty acids. Nine potential functional relevant mutations were identified in the
ACACA and FASN genes. Two of these variants were novel missense mutations in the FASN gene,
whereas a HIGH impact mutation identified in the ACACA gene represented the only stop_gained
mutation included in our list of potential functional relevant mutations. These results are in contrast
with previous studies that had reported a high diversity level of the ACACA gene in sheep, but had not
identified any non-synonymous mutations [52,53]. This finding illustrates the value of the information
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generated in this work through the analysis of a large set of WGR samples from a wide range of
worldwide sheep breeds.

Among the genes related to fatty acid metabolism analyzed by Suárez-Vega et al. [21], the BTN1A1
and XDH genes, which encode for butyrophilin and xanthine dehydrogenase, respectively, showed the
highest expression levels during lactation. This highlights the importance of lipid droplet formation
in the overall process of milk lipid metabolism in sheep. The high expression of the BTN1A1 gene
during lactation has also been described in dairy cows [18], which is in agreement with the crucial role
in milk fat secretion suggested previously for this gene by Robenek et al. [54]. Thereby, the 13 relevant
functional variants found in the genes XDH and BTN1A1 might affect the function of both proteins
and, as a consequence, the lipid droplet formation process [55]. One of the XDH missense deleterious
variants identified here as a potential functional relevant variant (XDH:92215727C>T; rs429850918)
showed a certain level of divergence for the frequency of the reference allele between the Assaf and
Churra dairy breeds. Whereas the XDH:92215727C is segregating in the Assaf breed, this allele is
almost fixed in the Churra breed (Table 2). Whether this mutation may explain the higher milk fat
contents of Churra sheep compared with Assaf sheep should be further investigated.

In the three of the candidate genes related to acetate triacylglycerol synthesis [18] coding
for diacylglycerol transferase (encoded by DGAT1 gene), glycerol-3-phosphate acyltransferase
mitochondrial (GPAM gene), and Lipin 1 (LPIN1 gene), seven relevant functional variants were
identified (Table S6). One of the novel variants identified in the LPIN1 gene (LPIN1_20554676G>A)
was only present in the Assaf breed, which is a highly specialized sheep breed for milk production.
This gene has been reported to have a role in the transcriptional regulation of other genes involved in
milk lipid synthesis [18]. On the other hand, the GPAM gene was the most highly expressed of this
group in the sheep mammary gland during lactation [21] whereas the ovine DGAT1 gene has been
associated with a selective sweep caused by the domestication and selection process [35]. Fatty acid
synthesis has an important influence on dairy production because it affects the fatty acid composition
of milk sheep [52]. Thereby, the relevant functional variants, identified in these genes by the present
study, are of interest because they could influence milk composition and cheese-making. From our
point of view, the XDH:92215727C>T mutation is one of the most promising potential functionally
relevant variants highlighted by our study, due to the possible link between the divergence observed
for this variant allele frequency between the Assaf and Churra breeds and the known differences in the
milk fat contents of these two breeds [21].

Regarding the genes related to the fatty acid import into cells process (CEL, LPL, and VLDLR),
one missense deleterious was found in each of the LDL and VLDLR genes, and two SNPs classified
as missense deleterious variants were found in the PLIN2 gene. In addition, one variant classified as
deleterious was identified in the SLC27A6 gene region. The Lipoprotein lipase (encoded by LPL gene)
and Very-Low Density Lipoprotein Receptor (VLDLR gene) have been previously associated with the
function of fatty acid import into cells as the VLDLR is an essential component of LPL activity [18,56].
The deleterious variants described in these genes, which produce missense amino acid substitutions
could influence the functionality of the encoded proteins by the LDL and VLDLR genes. Regarding
the other genes related to lipid metabolism, Perilipin-2 (PLIN2) is a protein that has been related to
the packaging of triglycerides for the secretion of milk lipids in the mammary gland [57], and the
SLC27A6 gene has been found to be upregulated during lactation in dairy cows [18], but was found to
have low expression in the sheep mammary gland during lactation [21]. Additionally, when looking
for correspondence of previously reported QTL in sheep for milk production traits with the milk fat
candidate genes considered here (considering a 250 Kb interval centered on the corresponding gene
coding region), we found a total of seven QTLs previously reported within the genomic regions of the
ACACA and DGTA1 genes in Altamurana, Gentile di Puglia, and Sarda sheep breeds [53,58] (Table S6).

Due to the importance of the candidate genes selected for milk production and composition,
the variants described above could explain a proportion of the differences in milk composition and
quality between the sheep breeds included in the study. The candidate gene variants detailed might
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affect the expression and the functionality of the encoded proteins and the respective pathways
that are involved. Further research should be conducted to elucidate the genuine impact of the
polymorphisms highlighted by the variant filtering workflow implemented here and quantitative and
qualitative properties of sheep milk, especially for specific use for high-quality cheese manufacturing.
The assessment of allele frequency presented here for the list of potential functionally relevant variants
for two dairy breeds might be useful to guide the design of custom SNP chips to be used in genomic
selection strategies addressing the genetic improvement of dairy sheep commercial populations.

5. Conclusions

The phylogenetic study presented here describes the genetic similarity among domestic and wild
sheep. As far as we know, it is the first phylogenetic analysis reported in sheep based on WGR datasets.
The pairwise distances provided here might be useful in the design of future genetic studies based on
the proximity among the domestic breeds and/or wild sheep. Further research is required to elucidate
the full set of genomic regions modified during the process of sheep domestication and genomic
selection programs focused on specialized breeds. Furthermore, the functionally relevant variants
located in the candidate genes described in this study could be considered as potential markers to
increase the efficiency of genetic selection strategies on sheep milk composition traits. Future research
is required to confirm the effect of the functionally relevant variants identified in the present study on
milk composition and cheese-making traits.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/9/1542/s1,
Figure S1. Phylogenetic tree with bootstrap values based on a representative sample of the identified variants
across the genome. The phylogenetic tree was built using the maximum composite likelihood method based on
the variant diversity of a representative sample of the identified variants detected in the genome among domestic
and wild sheep. It was drawn using the neighbor joining method to represent the relationship between every
sample analyzed in this study. The phylogeny test was performed through 500 replicates using the bootstrap
method; the percentage of replicate trees are shown next to the respective branch, Figure S2. Phylogenetic
tree with bootstrap values based on the SNP variants located in candidate regions. The phylogenetic tree
was built using the maximum composite likelihood method based on the variant diversity of the variants
detected in the candidate gene regions. It was drawn using the neighbor-joining method to represent the
relationship between every sample analyzed in this study. The phylogeny test was performed through 500
replicates using the bootstrap method, and the percentage of replicate trees are shown next to the respective
branch, Table S1. Whole genome resequencing datasets analyzed in the present study. This table briefly
summarizes the WGR datasets used in this study and the breed and region to which each animal belongs, Table S2.
Coordinates of the 24 milk composition candidate genes studied in this work. Worksheet providing the genome
coordinates for the candidate genes considered in this study according to the sheep reference genome Oar_v3.1
(https://www.ensembl.org/Ovis_aries/Info/Index), Table S3. Characterization of the novel SNP variants identified
in the candidate genes considered in this work (4925 SNPs) and their functional consequences according to the
annotation performed with the SnpEff and VEP software (for further information about the column field names
see Ensembl Variant Effect Predictor: http://www.ensembl.org/info/docs/tools/vep/vep_formats.html; SnpEff:
http://snpeff.sourceforge.net/SnpEff_manual.html), Table S4. Estimates of evolutionary divergence between each
sample rely on the representative sample of the SNP variants across the genome. This table summarizes the
evolutionary divergence index matrix computed using the maximum composite likelihood method based on
the variant diversity of a representative sample of the identified variants detected across the genome including
domestic and wild sheep, Table S5. Estimates of evolutionary divergence between each sample rely on the SNP
variants located in candidate regions. This table summarizes the evolutionary divergence index matrix obtains
after the maximum composite likelihood model based on the variant diversity of the variants detected in the
candidate gene regions including domestic and wild sheep, Table S6. Potential functionally relevant variants
found in the genomic regions harboring the milk composition candidate genes considered in this work. Worksheet
providing the functional variants identified within the 24 candidate gene regions studied in the present work
according to the annotation performed with the SnpEff and VEP software (for further information about the column
field names see Ensembl Variant Effect Predictor: http://www.ensembl.org/info/docs/tools/vep/vep_formats.html;
SnpEff: http://snpeff.sourceforge.net/SnpEff_manual.html) and their reference allele frequency in the breeds’
genomes included in this study and the average of the domestic and wild sheep genomes here analyzed, Table S7.
QTLs previously identified in the surroundings of the candidate gene region selected in this study. This table
summarizes the QTLs previously identified related to milk production and compositional traits in a 250 Kb region
of the candidate gene locations.
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