

EAT-UpTF: Enrichment Analysis Tool for Upstream Transcription Factors of a Group of Plant Genes

Sangrea Shim^{1,2*} and Pil Joon Seo^{1,2,3*}

¹ Department of Chemistry, Seoul National University, Seoul, South Korea, ² Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea, ³ Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea

OPEN ACCESS

Edited by:

Nunzio D'Agostino, University of Naples Federico II, Italy

Reviewed by:

Federico Zambelli, University of Milan, Italy Jose M. Franco-Zorrilla, National Center for Biotechnology (CNB), Spain Yang Jae Kang, Gyeongsang National University, South Korea

*Correspondence:

Sangrea Shim sangreashim@gmail.com Pil Joon Seo pjseo1@snu.ac.kr

Specialty section:

This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics

Received: 02 June 2020 Accepted: 17 August 2020 Published: 11 September 2020

Citation:

Shim S and Seo PJ (2020) EAT-UpTF: Enrichment Analysis Tool for Upstream Transcription Factors of a Group of Plant Genes. Front. Genet. 11:566569. doi: 10.3389/fgene.2020.566569 EAT-UpTF (Enrichment Analysis Tool for Upstream Transcription Factors of a group of plant genes) is an open-source Python script that analyzes the enrichment of upstream transcription factors (TFs) in a group of genes-of-interest (GOIs). EAT-UpTF utilizes genome-wide lists of TF-target genes generated by DNA affinity purification followed by sequencing (DAP-seq) or chromatin immunoprecipitation followed by sequencing (ChIP-seq). Unlike previous methods based on the two-step prediction of *cis*-motifs and DNA-element-binding TFs, our EAT-UpTF analysis enabled a one-step identification of enriched upstream TFs in a set of GOIs using lists of empirically determined TF-target genes. The tool is designed particularly for plant researches, due to the lack of analytic tools for upstream TF enrichment, and available at https://github.com/sangreashim/EAT-UpTF and http://chromatindynamics.snu.ac.kr:8080/EatupTF.

Keywords: transcription factor, cis-elements, plant, Arabidopsis, DAP-seq

INTRODUCTION

The rapid development of high-throughput technologies such as RNA sequencing (RNA-seq), DNA affinity purification followed by sequencing (DAP-seq), and chromatin immunoprecipitation followed by sequencing (ChIP-seq) has led to an explosion in the availability of sequence data. The high-throughput analyses produce lists of genes that are under a particular regulation. When such lists are generated, researchers usually try to understand the biological implications of groups of genes-of-interest (GOIs). To this end, routine follow-up studies typically include gene ontology (GO) enrichment analyses (Maere et al., 2005; Huang et al., 2009) and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping (Kanehisa and Goto, 2000). In addition, transcription factor (TF) prediction analyses (Kreft et al., 2017; Kulkarni et al., 2018) can be performed to identify consensus upstream regulators of a subset of GOIs, giving a biological insight into the integrated role of the genes under specific conditions. Furthermore, comprehensive identification of TF binding sites and cognate TFs can be used to characterize regulatory networks containing GOIs.

Several bioinformatics tools have been developed to predict upstream TFs. The *cis*-element sequences that are commonly conserved in sets of input query genes can be identified using *ab initio* motif enrichment algorithms such as MEME (Bailey et al., 2009). The identified consensus

1

sequences can be further analyzed to compare enrichment of TF candidates to the consensus binding motifs provided by databases of experimentally validated TF binding sites, such as JASPAR (Khan et al., 2018) and TRANSFAC (Matys et al., 2003). Recently, accumulating data have enabled that position weight matrix (PWM)-based enrichment methods solely cover a wide range of upstream TF prediction. This theoretical basis has been implemented in various upstream TF prediction tools, such as TFEA.ChIP, oPOSSUM, and PlantRegMap (Ho Sui et al., 2005; Puente-Santamaria et al., 2019; Tian et al., 2020). However, this approach occasionally produces a considerable number of false positives due to short and degenerate nature of TF-binding sites (Kreft et al., 2017). In addition, this method is complicated by the fact that TFs can sometimes bind to gene sequences that differ from their consensus binding sites, and that several TFs undergo protein-protein interactions that enable them to recognize additional DNA sequence motifs. Overall, it is clear that a simplified and realistic prediction of TFs controlling a group of GOIs is necessary to generate a confident conclusion.

In this regard, several bioinformatics tools implementing TF enrichment analysis have been developed using ChIP-seq datasets (Zambelli et al., 2012; Auerbach et al., 2013; Zheng et al., 2019). However, these tools are applicable mainly to animal systems, and no codes have been released to analyze enriched upstream TFs for other species. Based on explosive accumulation of plant DAP-seq and ChIP-seq data, there are growing needs to integrate the NGS data and use them to retrieve upstream TFs in plant researches. Notably, O'Malley and colleagues adapted the innovative DAP-seq method and have successfully produced a genome-wide collection of target

genes for 349 TFs in *Arabidopsis thaliana* (O'Malley et al., 2016). In this study, we have developed the "Enrichment <u>A</u>nalysis <u>T</u>ool for <u>Upstream Transcription Factors of a group of plant genes" (EAT-UpTF) tool to provide upstream TF enrichment analysis (Shim and Seo, 2020). As a proof of concept, we combined it with the *Arabidopsis* DAP-seq database to analyze the enrichment of upstream TFs in a group of *Arabidopsis* GOIs. We found that EAT-UpTF was able to robustly evaluate the over-representation of experimentally validated upstream TFs binding to a group of GOIs without the prediction of *cis*motifs.</u>

METHODS

High-throughput sequencing analyses typically produce sets of GOIs that require further analyses to evaluate their biological implication and underlying regulatory mechanisms. EAT-UpTF is linked to a DAP-seq database (Plant Cistrome database¹) that provides a list of TF-target genes (locus IDs). When a set of GOIs is input in the form of locus IDs, EAT-UpTF identifies the TF targets and compares their relative enrichment in the list of GOIs with that in the total genomic genes. As a result, target genes of certain TFs, which are enriched (overrepresented) in the set of GOIs can be identified as a major upstream regulators of the gene group (**Figure 1**). To examine the statistical significance of over-representation, the SciPy module (Oliphant, 2007) is used to perform hypergeometric

¹http://neomorph.salk.edu/dap_web/pages/index.php

FIGURE 1 | Workflow of EAT-UpTF. Manual database can be constructed based on binding profiles of multiple TFs generated by DAP-seq and ChIP-seq using manual database construction module (construct_manual_database.py). When a set of genes of interest (GOIs) is input along with database, EAT-UpTF performs enrichment analysis and shows the overrepresented upstream TFs for the GOIs. Network construction module (network.py) also visualizes regulatory networks of TFs and their target genes.

and binomial tests, which differ in that the binomial test considers replacement whereas the hypergeometric test does not. These two tests are used to compare the occurrence of x genes (a subset of TF-target genes) among n genes (GOIs) with that of X genes (total TF-target genes) among N genes (total reference genes). Comparisons with relatively large differences (x/n - X/N) can then be considered to identify upstream TFs that may play a particular role in regulating at least a subset of GOIs.

For the initial validation of EAT-UpTF, we used the DAPseq *Arabidopsis* database, which lists the target genes of a vast majority of *Arabidopsis* TFs (\sim 349). Since EAT-UpTF performs enrichment analyses for hundreds of TFs simultaneously, a *post hoc* test should be applied to counteract the type I errors (false positives) originating from multiple testing. A number of *post hoc* analyses can be used to compensate for the increase in the false positive rate caused by multiple tests. The most widely used method is the family-wise error rate (FWER) correction, named after Carlo Emilio Bonferroni. The Bonferroni correction tests individual hypotheses at a significance level of a/m, where a is the desirable alpha level and m is the number of tests performed (Bonferroni et al., 1936; Dunn, 1961). This correction method is considered conservative when a large number of tests are conducted, but was likely appropriate in our analysis because the multiple hypothesis tests were limited to several hundreds of TFs. Another post hoc analysis option is the false discovery rate (FDR) correction described by Benjamini and Hochberg (1995). The Benjamini-Hochberg FDR correction tests hypotheses at a significance level of ka/m, where a is the desirable alpha level, m is the number of tests performed, and k is the rank of the p-value of the hypothesis. These two most popular post hoc analyses have been implemented in the current version of EAT-UpTF using the Statsmodels module of Python (Seabold and Perktold, 2010).

TF ID (AGI ID)	x ^a	n ^b	Observed (%)	Xc	N ^d	Expected (%)	<i>p</i> -Value	Corrected <i>p</i> -value ^e	Gene symbols	Gene names
AT5G02840	287	722	39.8	4,110	27,206	15.1	5.84×10^{-60}	2.04×10^{-57}	LCL1	LHY/CCA1-LIKE 1
AT3G09600	426	722	59.0	8,276	27,206	30.4	2.59×10^{-58}	4.52×10^{-56}	RVE8, LCL5	LHY-CCA1-LIKE5, REVEILLE 8
AT3G56850	275	722	38.1	3,936	27,206	14.5	6.43×10^{-57}	7.48×10^{-55}	AREB3, DPBF3	ABA-RESPONSIVE ELEMENT BINDING PROTEIN 3
AT2G46270	318	722	44.0	5,255	27,206	19.3	2.09×10^{-53}	1.82×10^{-51}	GBF3	G-BOX BINDING FACTOR 3
AT1G01060	517	722	71.6	11,896	27,206	43.7	3.01×10^{-53}	2.10×10^{-51}	LHY	LATE ELONGATED HYPOCOTYL
AT2G36270	274	722	38.0	4,188	27,206	15.4	8.13×10^{-51}	4.73×10^{-49}	ABI5, GIA1	GROWTH-INSENSITIVITY TO ABA 1, ABA INSENSITIVE 5
AT3G62420	327	722	45.3	5,764	27,206	21.2	7.54×10^{-49}	3.76×10^{-47}	BZIP53	BASIC REGION/LEUCINE ZIPPER MOTIF 53
AT1G18330	619	722	85.7	16,878	8 27,206	62.0	3.63×10^{-46}	1.58×10^{-44}	EPR1, RVE7	EARLY-PHYTOCHROME- RESPONSIVE 1, REVEILLE 7
AT5G17300	585	722	81.0	15,403	8 27,206	56.6	6.78×10^{-45}	2.63×10^{-43}	RVE1	REVEILLE 1
AT1G32150	357	722	49.4	6,979	27,206	25.7	6.05×10^{-44}	2.11×10^{-42}	bZIP68	BASIC REGION/LEUCINE ZIPPER TRANSCRIPTION FACTOR 68
AT4G34590	381	722	52.8	7,781	27,206	28.6	1.94×10^{-43}	6.15 × 10 ⁻⁴²	GBF6, BZIP11, ATB2	ARABIDOPSIS THALIANA BASIC LEUCINE-ZIPPER 11, G-BOX BINDING FACTOR 6
AT5G52660	224	722	31.0	3,280	27,206	12.1	6.20×10^{-43}	1.80×10^{-41}		
AT5G15830	336	722	46.5	6,440	27,206	23.7	2.94×10^{-42}	7.88×10^{-41}	bZIP3	BASIC LEUCINE-ZIPPER 3
AT2G18160	178	722	24.7	2,268	27,206	8.3	4.60×10^{-41}	1.15 × 10 ⁻³⁹	GBF5, bZIP2, ATBZIP2, FTM3	BASIC LEUCINE-ZIPPER 2, FLORAL TRANSITION AT THE MERISTEM3, G-BOX BINDING FACTOR 5
AT4G01280	339	722	47.0	6,654	27,206	24.5	1.88×10^{-40}	4.38×10^{-39}		
AT3G10113	579	722	80.2	15,664	27,206	57.6	6.91×10^{-39}	1.51×10^{-37}		
AT1G45249	165	722	22.9	2,112	27,206	7.8	1.45 × 10 ⁻³⁷	2.98 × 10 ⁻³⁶	ABF2, AREB1	ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING PROTEIN 1, ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR 2
AT3G10800	132	722	18.3	1,469	27,206	5.4	7.86×10^{-36}	1.52×10^{-34}	BZIP28	
AT4G36780	269	722	37.3	4,944	27,206	18.2	1.02×10^{-34}	1.88×10^{-33}	BEH2	BES1/BZR1 HOMOLOG 2
AT2G35530	137	722	19.0	1,630	27,206	6.0	3.89×10^{-34}	6.79×10^{-33}	bZIP16	BASIC REGION/LEUCINE ZIPPER TRANSCRIPTION FACTOR 16

TABLE 1 Summary statistics of the upstream transcription factor (TF) enrichment analysis for the Arabidopsis gene set bound by LHY (Adams et al., 2018).

^a The number of genes bound by the specific TF in the test set. ^b The number of genes in the test set. ^c The number of genes bound by the specific TF in the reference set. ^d The number of genes in the reference set. ^e The p-value after Bonferroni or Benjamini-Hochberg correction.

RESULTS AND DISCUSSION

To validate the relevance of EAT-UpTF, we input a gene set bound by the LATE ELONGATED HYPOCOTYL (LHY) TF in *Arabidopsis*, which was identified via a ChIP-seq analysis (Adams et al., 2018). EAT-UpTF identified LHY as being an overrepresented upstream TF in the test set. Specifically, 71.6% of the input genes were retrieved to be bound by LHY (**Table 1**) and LHY was identified as one of the top five enriched TFs in the test set (**Table 1**). The mismatch between the EAT-UpTF output and the ChIP-seq data might be related to the fact that DAP-seq is generally more stringent than ChIP-seq. Typically, DAP-seq produces a rigorous gene set and usually identifies a smaller number of TF-target genes than ChIP-seq. Indeed, all of the LHY-target genes identified by DAP-seq were included in the list of LHY-target genes identified by ChIPseq analysis.

We also compared EAT-UpTF analysis to a conventional motif enrichment analysis for a similar purpose. DREME, a motif enrichment algorithm of MEME suite (Bailey et al., 2009), identified 33 conserved sequence motifs that can be bound by 157 TFs (**Supplementary Table 1**). While the LHY transcription factor was predicted, which could bind to two motifs, AAATATCK and GATATTTW (**Supplementary Table 1**), a vast

TF ID (AGI ID)	xa	n ^b	Observed (%)	Xc	N ^d	Expected (%)	p-Value	Corrected <i>p</i> -alue ^e	Gene symbols	Gene names
AT5G02840	267	824	32.4	4,110	27,206	15.1	9.65×10^{-37}	3.37×10^{-34}	LCL1	LHY/CCA1-LIKE 1
AT4G01280	329	824	39.9	6,654	27,206	24.5	1.75×10^{-23}	3.05×10^{-21}		
AT5G52660	196	824	23.8	3,280	27,206	12.1	1.71×10^{-21}	1.98×10^{-19}		
AT3G09600	374	824	45.4	8,276	27,206	30.4	3.27×10^{-20}	2.85×10^{-18}	LCL5, RVE8	LHY-CCA1-LIKE5, REVEILLE 8
AT1G01060	479	824	58.1	11,896	27,206	43.7	2.47 × 10 ⁻¹⁷	1.72 × 10 ⁻¹⁵	LHY1, LHY	LATE ELONGATED HYPOCOTYL 1, LATE ELONGATED HYPOCOTYL
AT3G62420	275	824	33.4	5,764	27,206	21.2	1.20×10^{-16}	6.99×10^{-15}	BZIP53	BASIC REGION/LEUCINE ZIPPER MOTIF 53
AT4G34590	344	824	41.7	7,781	27,206	28.6	1.75 × 10 ⁻¹⁶	8.70 × 10 ⁻¹⁵	BZIP11, GBF6, ATB2	G-BOX BINDING FACTOR 6, NA, ARABIDOPSIS THALIANA BASIC LEUCINE-ZIPPER 11
AT2G46270	250	824	30.3	5,255	27,206	19.3	9.54×10^{-15}	4.16×10^{-13}	GBF3	G-BOX BINDING FACTOR 3
AT1G18330	610	824	74.0	16,878	27,206	62.0	9.71 × 10 ⁻¹⁴	3.76 × 10 ⁻¹²	RVE7, EPR1	REVEILLE 7, EARLY-PHYTOCHROME- RESPONSIVE1
AT3G56850	194	824	23.5	3,936	27,206	14.5	1.39×10^{-12}	4.86×10^{-11}	AREB3, DPBF3	ABA-RESPONSIVE ELEMENT BINDING PROTEIN 3
AT5G17300	560	824	68.0	15,403	27,206	56.6	8.36×10^{-12}	2.65×10^{-10}	RVE1	REVEILLE 1
AT1G32150	297	824	36.0	6,979	27,206	25.7	1.37 × 10 ⁻¹¹	3.97 × 10 ⁻¹⁰	bZIP68,	BASIC REGION/LEUCINE ZIPPER TRANSCRIPTION FACTOR 68
AT2G18160	126	824	15.3	2,268	27,206	8.3	1.78 × 10 ⁻¹¹	4.77 × 10 ⁻¹⁰	GBF5, bZIP2, FTM3	BASIC LEUCINE-ZIPPER 2, G-BOX BINDING FACTOR 5, FLORAL TRANSITION AT THE MERISTEM 3
AT5G15830	278	824	33.7	6,440	27,206	23.7	2.02×10^{-11}	5.03×10^{-10}	bZIP3	BASIC LEUCINE-ZIPPER 3
AT1G45249	119	824	14.4	2,112	27,206	7.8	2.95 × 10 ⁻¹¹	6.87 × 10 ⁻¹⁰	AREB1, ABF2	ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR 2, ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING PROTEIN 1
AT2G36270	198	824	24.0	4,188	27,206	15.4	3.38×10^{-11}	7.38×10^{-10}	GIA1, ABI5	GROWTH-INSENSITIVITY TO ABA 1, ABA INSENSITIVE 5
AT2G35530	97	824	11.8	1,630	27,206	6.0	1.44×10^{-10}	2.96 × 10 ⁻⁹	bZIP16,	BASIC REGION/LEUCINE ZIPPER TRANSCRIPTION FACTOR 16
AI3G10113	559	824	67.8	15,664	27,206	57.6	5.25×10^{-10}	1.02×10^{-8}		
AI1G75390	127	824	15.4	2,485	27,206	9.1	2.97×10^{-9}	5.46×10^{-6}	bZIP44	BASIC LEUCINE-ZIPPER 44
A13G10800	82	824	10.0	1,469	27,206	5.4	$(.24 \times 10^{-6})$	1.26×10^{-6}	BZIP28	

^a The number of genes bound by the specific TF in the test set. ^b The number of genes in the test set. ^c The number of genes bound by the specific TF in the reference set. ^d The number of genes in the reference set. ^e The p-value after Bonferroni or Benjamini-Hochberg correction.

number of additional *cis*-elements, which are not related to LHY, were also suggested. These results indicate that a motif enrichment analysis possibly produces a considerable number of false positives, but EAT-UpTF enables to suggest realistic upstream TFs.

To ensure whether the EAT-UpTF analysis is relevant with less stringent data set, we input DEGs in *ccal lhy* double mutant relative to wild type identified by RNA-seq (Kamioka et al., 2016). Again, EAT-UpTF identified LHY as an over-represented upstream TF for the input gene set (**Table 2**). Since CCA1 and LHY are transcriptional repressors (Kamioka et al., 2016), a significant portion of up-regulated genes in *cca1 lhy* was supposed to be direct targets of CCA1 and LHY. Indeed, EAT-UpTF predicted LHY as a top ranked TF for up-regulated genes in *cca1 lhy* double mutant (**Supplementary Table 2**), whereas LHY was excluded but other bZIP TFs were identified to be bound to down-regulated genes in *cca1 lhy* (**Supplementary Table 3**).

In addition, we further examined the relevance of EAT-UpTF in upstream TF enrichment analysis using unoptimized

datasets. Genes up-regulated and down-regulated in root tissues upon 1 µM IAA treatment for 6 h (Omelyanchuk et al., 2017) were used as input queries. As for the upregulated genes, EAT-UpTF identified LATERAL ORGAN BOUNDARIES DOMAIN 19 (LBD19), LBD18 and LBD16 as upstream regulators, which are involved in auxindependent lateral root emergence (Feng et al., 2012) (Table 3). Meanwhile, BASIC REGION/LEUCINE ZIPPER MOTIF 53 (bZIP53) and bZIP11, which negatively regulate adventitious root formation and primary root growth in an auxin-dependent pathway (Weiste et al., 2017; Zhang et al., 2020), were retrieved as overrepresented upstream TFs for the IAA-repressed genes (Table 4). Overall, the EAT-UpTF analysis reliably identified upstream TFs for a group of GOIs. Although our study mainly focused on the enriched upstream TFs for input query genes, which provides essential interpretation of the GOIs in the context of biological pathways and networks, we cannot rule out that TFs regulating a subset of input genes are also sometimes

TF ID (AGI ID)	x ^a	n ^b	Observed (%)	Xc	Nd	Expected (%)	<i>p</i> -Value	Corrected <i>p</i> -value ^e	Gene symbols	Gene names
AT1G72740	172	789	21.8	2,924	27,206	10.7	5.21 × 10 ⁻²⁰	1.82×10^{-17}		
AT2G45410	303	789	38.4	6,835	27,206	25.1	4.78×10^{-17}	1.67×10^{-14}	LBD19	LOB DOMAIN-CONTAINING PROTEIN 19
AT2G45420	215	789	27.2	4,503	27,206	16.6	1.11×10^{-14}	3.88×10^{-12}	LBD18	LOB DOMAIN-CONTAINING PROTEIN 18
AT5G59430	49	789	6.2	563	27,206	2.1	9.88×10^{-12}	3.45×10^{-9}	TRP1,	TELOMERIC REPEAT BINDING PROTEIN 1
AT3G46590	33	789	4.2	363	27,206	1.3	8.56×10^{-9}	2.99×10^{-6}	TRP2, TRFL1, ATTRP2	TRF-LIKE 1
AT5G67580	221	789	28.0	5,446	27,206	20.0	2.85 × 10 ⁻⁸	9.94 × 10 ⁻⁶	TRB2, TBP3	TELOMERE-BINDING PROTEIN 3, TELOMERE REPEAT BINDING FACTOR 2
AT1G34670	136	789	17.2	3,086	27,206	11.3	3.89×10^{-7}	1.36×10^{-4}	MYB93	MYB DOMAIN PROTEIN 93
AT4G32730	269	789	34.1	7,322	27,206	26.9	3.87 × 10 ⁻⁶	1.35 × 10 ⁻³	MYB3R1, PC-MYB1	MYB DOMAIN PROTEIN 3R1, C-MYB-LIKE TRANSCRIPTION FACTOR 3R-1
AT5G11510	83	789	10.5	1,732	27,206	6.4	4.80×10^{-6}	1.68×10^{-3}	AtMYB3R4	MYB DOMAIN PROTEIN 3R4
AT2G02820	249	789	31.6	6,794	27,206	25.0	1.36×10^{-5}	4.75×10^{-3}	MYB88	MYB DOMAIN PROTEIN 88
AT3G10030	42	789	5.3	751	27,206	2.8	4.44×10^{-5}	1.55×10^{-2}		
AT1G06180	102	789	12.9	2,422	27,206	8.9	8.38×10^{-5}	2.93×10^{-2}	ATMYBLFGN, MYB13	MYB DOMAIN PROTEIN 13
AT3G15210	179	789	22.7	4,758	27,206	17.5	9.38 × 10 ⁻⁵	3.28 × 10 ⁻²	ERF4, RAP2.5	RELATED TO AP2 5, ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 4
AT3G04070	231	789	29.3	6,448	27,206	23.7	1.49×10^{-4}	5.20×10^{-2}	NAC047	NAC DOMAIN CONTAINING PROTEIN 47
AT5G02320	97	789	12.3	2,334	27,206	8.6	2.04×10^{-4}	7.11×10^{-2}	MYB3R5	MYB DOMAIN PROTEIN 3R-5
AT5G58850	181	789	22.9	4,895	27,206	18.0	2.13×10^{-4}	7.44×10^{-2}	MYB119	MYB DOMAIN PROTEIN 119
AT1G28370	205	789	26.0	5,657	27,206	20.8	2.21×10^{-4}	7.72×10^{-2}	ERF11	ERF DOMAIN PROTEIN 11
AT5G25190	161	789	20.4	4,281	27,206	15.7	2.38×10^{-4}	8.32×10^{-2}	ESE3	ETHYLENE AND SALT INDUCIBLE 3
AT5G65130	76	789	9.6	1,742	27,206	6.4	2.54×10^{-4}	8.87×10^{-2}		
AT2G42430	31	789	3.9	540	27,206	2.0	2.75×10^{-4}	9.60 × 10 ⁻²	ASL18, LBD16	LATERAL ORGAN BOUNDARIES-DOMAIN 16, ASYMMETRIC LEAVES2-LIKE 18

^a The number of genes bound by the specific TF in the test set. ^b The number of genes in the test set. ^c The number of genes bound by the specific TF in the reference set. ^d The number of genes in the reference set. ^e The p-value after Bonferroni or Benjamini-Hochberg correction.

TABLE 4	Summar	y statistics of enriched u	pstream TFs for dowr	n-regulated genes in	Arabidopsis roots upon	1µM IAA treatment for 6 h	(Omelyanchuk et al., 2017).
---------	--------	----------------------------	----------------------	----------------------	------------------------	---------------------------	-----------------------------

TF ID (AGI ID)	x ^a n ^b	Observed (%)	Xc	N ^d	Expected (%)	p-Value	Corrected <i>p</i> -value ^e	Gene symbols	Gene names
AT3G62420	238 659	36.1	5,764	27,206	21.2	3.78 × 10 ⁻¹⁹	1.32 × 10 ⁻¹⁶	BZIP53	BASIC REGION/LEUCINE ZIPPER MOTIF 53
AT4G34590	289 659	43.9	7,781	27,206	28.6	2.33×10^{-17}	8.12 × 10 ⁻¹⁵	BZIP11, GBF6, bZIP11, ATB2	2 G-BOX BINDING FACTOR 6, BASIC LEUCINE-ZIPPER 11
AT5G65310	451 659	68.4	14,295	5 27,206	52.5	3.52×10^{-17}	1.23×10^{-14}	ATHB5,	HOMEOBOX PROTEIN 5
AT4G36740	460 659	69.8	14,742	27,206	54.2	8.29×10^{-17}	2.89×10^{-14}	HB-5, ATHB40	HOMEOBOX PROTEIN 40
AT5G66700	283 659	42.9	7,658	27,206	28.1	1.44×10^{-16}	5.03×10^{-14}	HB-8, ATHB53	HOMEOBOX-8, HOMEOBOX 53
AT5G03790	381 659	57.8	11,605	5 27,206	42.7	1.77×10^{-15}	6.17×10^{-13}	ATHB51, LMI1	HOMEOBOX 51, LATE MERISTEM IDENTITY1
AT5G15830	244 659	37.0	6,440	27,206	23.7	5.41×10^{-15}	1.89×10^{-12}	bZIP3	BASIC LEUCINE-ZIPPER 3
AT1G14687	393 659	59.6	12,176	8 27,206	44.8	6.05×10^{-15}	2.11×10^{-12}	HB32, ZHD14	HOMEOBOX PROTEIN 32, ZINC FINGER HOMEODOMAIN 14
AT3G56850	169 659	25.6	3,936	27,206	14.5	1.84×10^{-14}	6.42×10^{-12}	AREB3, DPBF3	ABA-RESPONSIVE ELEMENT BINDING PROTEIN 3
AT1G69780	422 659	64.0	13,486	3 27,206	49.6	2.64×10^{-14}	9.22×10^{-12}	ATHB13	
AT1G12630	228 659	34.6	5,960	27,206	21.9	2.79×10^{-14}	9.72×10^{-12}		
AT1G32150	254 659	38.5	6,979	27,206	25.7	1.30×10^{-13}	4.53×10^{-11}	bZIP68	BASIC REGION/LEUCINE ZIPPER TRANSCRIPTION FACTOR 68
AT2G18550	229 659	34.7	6,124	27,206	22.5	2.91×10^{-13}	1.01×10^{-10}	ATHB21, HB-2	HOMEOBOX-2, HOMEOBOX PROTEIN 21
AT3G50260	400 659	60.7	12,825	5 27,206	47.1	1.07 × 10 ⁻¹²	3.73×10^{-10}	DEAR1, ATERF#011, CEJ1	COOPERATIVELY REGULATED BY ETHYLENE AND JASMONATE 1, DREB AND EAR MOTIF PROTEIN 1
AT2G18160	110 659	16.7	2,268	27,206	8.3	1.48×10^{-12}	5.17×10^{-10}	bZIP2, FTM3, ATBZIP2, GBF3	5 G-BOX BINDING FACTOR 5, BASIC LEUCINE-ZIPPER 2, FLORAL TRANSITION AT THE MERISTEM3
AT2G46270	201 659	30.5	5,255	27,206	19.3	2.40×10^{-12}	8.38×10^{-10}	GBF3	G-BOX BINDING FACTOR 3
AT5G52020	224 659	34.0	6,069	27,206	22.3	2.49×10^{-12}	8.69×10^{-10}		
AT4G16750	353 659	53.6	10,971	27,206	40.3	2.63×10^{-12}	9.18×10^{-10}		
AT1G75390	115 659	17.5	2,485	27,206	9.1	8.58×10^{-12}	3.00×10^{-9}	bZIP44	BASIC LEUCINE-ZIPPER 44
AT1G69010	328 659	49.8	10,132	27,206	37.2	2.20×10^{-11}	7.69 × 10 ⁻⁹	BIM2	BES1-INTERACTING MYC-LIKE PROTEIN 2
AT2G36270	165 659	25.0	4,188	27,206	15.4	5.50 × 10 ⁻¹¹	1.92 × 10 ⁻⁸	ABI5, GIA1	ABA INSENSITIVE 5, GROWTH-INSENSITIVITY TO ABA 1
AT5G51990	279 659	42.3	8,325	27,206	30.6	7.80×10^{-11}	2.72 × 10 ⁻⁸	DREB1D, CBF4	C-REPEAT-BINDING FACTOR 4, DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 1D
AT5G25810	82 659	12.4	1,602	27,206	5.9	1.22×10^{-10}	4.26×10^{-8}	TNY	TINY
AT1G71450	310 659	47.0	9,574	27,206	35.2	1.60×10^{-10}	5.60×10^{-8}		
AT3G10800	77 659	11.7	1,469	27,206	5.4	1.62×10^{-10}	5.64×10^{-8}	BZIP28	
AT1G77200	175 659	26.6	4,646	27,206	17.1	4.32×10^{-10}	1.51×10^{-7}		
AT4G25480	158 659	24.0	4,064	27,206	14.9	4.46×10^{-10}	1.56 × 10 ⁻⁷	DREB1A, CBF3	C-REPEAT BINDING FACTOR 3, DEHYDRATION RESPONSE ELEMENT B1A
AT2G31220	55 659	8.3	913	27,206	3.4	6.64×10^{-10}	2.32×10^{-7}		
AT3G28920	203 659	30.8	5,711	27,206	21.0	1.42 × 10 ⁻⁹	4.97×10^{-7}	ZHD9, AtHB34	ZINC FINGER HOMEODOMAIN 9, HOMEOBOX PROTEIN 34
AT4G32730	246 659	37.3	7,322	27,206	26.9	2.20×10^{-9}	7.67 × 10 ⁻⁷	MYB3R1, PC-MYB1	MYB DOMAIN PROTEIN 3R1, C-MYB-LIKE TRANSCRIPTION FACTOR 3R-1

^a The number of genes bound by the specific TF in the test set. ^b The number of genes in the test set. ^c The number of genes bound by the specific TF in the reference set. ^d The number of genes in the reference set. ^e The p-value after Bonferroni or Benjamini-Hochberg correction.

important for estimating biological functions of GOIs, independently of statistical enrichment. Thus, EAT-UpTF can also be used for profiling all possible upstream TFs that potentially regulate GOIs.

The EAT-UpTF analysis requires the input of an experimentally validated genome-wide list of TF-target genes in the form of locus ID. As mentioned above, we used the DAP-seq *Arabidopsis* database for the initial validation of EAT-UpTF.

6

represents the edge count and the color intensity indicates the strength of the neighborhood connectivity. Black dots represent single nodes.

However, the EAT-UpTF analysis is not limited to the use of DAP-seq data and could also employ ChIP-seq data or any database that provides a list of TF-target genes. If only 'bed' files for DAP-seq and ChIP-seq are available, they can be converted to the EAT-upTF input format (Figure 1; see EAT-upTF homepage). In this regard, the EAT-UpTF analysis could be expanded to any plant species for which DAP-seq, ChIP-seq, or other appropriate sequencing data are available. In the future, a large-scale database integrating DAP-seq and ChIP-seq results would aid the identification of bona fide upstream TFs for groups of GOIs. EAT-UpTF is an open platform that can be improved by integrating updated TF databases. In addition, to ensure convenience for users, TF regulatory networks of GOIs identified by EAT-UpTF can also be visualized in Cytoscape (Figure 2). Compared to the previous webtools, such as TF2Network (Kulkarni et al., 2018) and AthaMap (Steffens et al., 2004), which conduct cis-element-based construction of TF regulatory networks, EAT-UpTF involves simple and rapid processing of data without cis-element identification, and thereby promptly visualizes gene regulatory networks showing TF-target gene interactions. While processing our study, a remarkable webtool

'Plant Regulomics'² has been released (Ran et al., 2020), which might implement a similar logic and code of EAT-UpTF, supporting the relevance of this analysis.

CONCLUSION

In summary, EAT-UpTF is a tool for analyzing the overrepresentation of upstream TFs based on the relative enrichment of TF-target genes in a group of GOIs in plants. EAT-UpTF can be used to identify upstream TFs for a group of genes without limitations on species and conservation of cis-motifs. With a regular update or manual construction of databases of TF-target genes in plant species, EAT-UpTF will become a powerful tool for TF regulatory network studies in plants. For user convenience, EAT-UpTF web service is also available at http://chromatindynamics.snu.ac.kr:8080/ EatupTF.

DATA AVAILABILITY STATEMENT

EAT-UpTF is available at https://github.com/sangreashim/EAT-UpTF; operating system(s): Linux, programming languages: Python3; other requirements: Python3 packages (SciPy, Statsmodels, Argparse). The EAT-UpTF home page provides detailed user manuals. EAT-UpTF is freely available. There are no restrictions on non-academics use.

AUTHOR CONTRIBUTIONS

SS and PS: conceptualization and funding acquisition. SS: data curation and implementation and writing - original draft. PS: writing - review and editing. Both authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Research Foundation of Korea (NRF-2019R1I1A1A01061376 to SS, NRF-2019R1A2C2006915 to PS) and the Rural Development Administration (PJ01319304 to PS).

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at bioRXiv (doi: https://doi.org/10.1101/2020.03.22.001537) (SS and PS).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online https://www.frontiersin.org/articles/10.3389/fgene.2020. at: 566569/full#supplementary-material

²http://bioinfo.sibs.ac.cn/plant-regulomics/

REFERENCES

- Adams, S., Grundy, J., Veflingstad, S. R., Dyer, N. P., Hannah, M. A., Ott, S., et al. (2018). Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. *New Phytol.* 220, 893–907. doi: 10.1111/nph.15415
- Auerbach, R. K., Chen, B., and Butte, A. J. (2013). Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool. *Bioinformatics* 29, 1922–1924. doi: 10.1093/bioinformatics/ btt316
- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME Suite: tools for motif discovery and searching. *Nucleic Acids Res.* 37, W202–W208. doi: 10.1093/nar/gkp335
- Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. Ser. B 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
- Bonferroni, C. E., Bonferroni, C. E., Bonferroni, C., Bonferroni, C. E., and Bonferroni, C. E. (1936). *Teoria Statistica Delle Classi e Calcolo Delle Probabilita*'. Available online at: https://www.scienceopen.com/document?vid= 06182bb9-afa9-4e09-9d1b-fe199febbe81 (accessed March 9, 2020).
- Dunn, O. J. (1961). Multiple comparisons among means. J. Am. Statist. Assoc. 56, 52–64. doi: 10.1080/01621459.1961.10482090
- Feng, Z., Zhu, J., Du, X., and Cui, X. (2012). Effects of three auxin-inducible LBD members on lateral root formation in *Arabidopsis thaliana*. *Planta* 236, 1227–1237. doi: 10.1007/s00425-012-1673-3
- Ho Sui, S. J., Mortimer, J. R., Arenillas, D. J., Brumm, J., Walsh, C. J., Kennedy, B. P., et al. (2005). oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. *Nucleic Acids Res.* 33, 3154–3164. doi: 10.1093/nar/gki624
- Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* 4, 44–57. doi: 10.1038/nprot.2008.211
- Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., et al. (2016). Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the *Arabidopsis* circadian clock[OPEN]. *Plant Cell* 28, 696–711. doi: 10.1105/tpc.15.00737
- Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.
- Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J. A., van der Lee, R., et al. (2018). JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. *Nucleic Acids Res.* 46, D260–D266. doi: 10.1093/nar/gkx1126
- Kreft, L, Soete, A., Hulpiau, P., Botzki, A., Saeys, Y., and De Bleser, P. (2017). ConTra v3: a tool to identify transcription factor binding sites across species, update 2017. *Nucleic Acids Res.* 45, W490–W494. doi: 10.1093/nar/gkx376
- Kulkarni, S. R., Vaneechoutte, D., Van de Velde, J., and Vandepoele, K. (2018). TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. *Nucleic Acids Res.* 46:e31. doi: 10.1093/nar/gkx1279
- Maere, S., Heymans, K., and Kuiper, M. (2005). *BiNGO*: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics* 21, 3448–3449. doi: 10.1093/bioinformatics/bti551
- Matys, V., Fricke, E., Geffers, R., Gößling, E., Haubrock, M., Hehl, R., et al. (2003). TRANSFAC[®] : transcriptional regulation, from patterns to profiles. *Nucleic Acids Res.* 31, 374–378. doi: 10.1093/nar/gkg108

- Oliphant, T. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20. doi: 10.1109/MCSE.2007.58
- O'Malley, R. C., Huang, S. C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., et al. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. *Cell* 165, 1280–1292. doi: 10.1016/j.cell.2016.04.038
- Omelyanchuk, N. A., Wiebe, D. S., Novikova, D. D., Levitsky, V. G., Klimova, N., Gorelova, V., et al. (2017). Auxin regulates functional gene groups in a fold-change-specific manner in *Arabidopsis thaliana* roots. *Sci. Rep.* 7:2489. doi: 10.1038/s41598-017-02476-2478
- Puente-Santamaria, L., Wasserman, W. W., and del Peso, L. (2019). TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets. *Bioinformatics* 35, 5339–5340. doi: 10.1093/bioinformatics/ btz573
- Ran, X., Zhao, F., Wang, Y., Liu, J., Zhuang, Y., Ye, L., et al. (2020). Plant regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. *Plant J.* 101, 237–248. doi: 10.1111/tpj. 14526
- Seabold, S., and Perktold, J. (2010). "Statsmodels: econometric and statistical modeling with python," in *Proceedings of the 9th Python in Science Cone*, New York, NY.
- Shim, S., and Seo, P. J. (2020). EAT-UpTF: enrichment analysis tool for upstream transcription factors of a gene group. *bioRxiv* [Preprint], doi: 10.1101/2020/.03. 22.001537
- Steffens, N. O., Galuschka, C., Schindler, M., Bülow, L., and Hehl, R. (2004). AthaMap: an online resource for in silico transcription factor binding sites in the *Arabidopsis thaliana* genome. *Nucleic Acids Res.* 32, D368–D372. doi: 10.1093/nar/gkh017
- Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J., and Gao, G. (2020). PlantRegMap: charting functional regulatory maps in plants. *Nucleic Acids Res.* 48, D1104– D1113. doi: 10.1093/nar/gkz1020
- Weiste, C., Pedrotti, L., Selvanayagam, J., Muralidhara, P., Fröschel, C., Novák, O., et al. (2017). The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genet. 13:e006607. doi: 10.1371/journal.pgen.1006607
- Zambelli, F., Prazzoli, G. M., Pesole, G., and Pavesi, G. (2012). Cscan: finding common regulators of a set of genes by using a collection of genome-wide ChIP-seq datasets. *Nucleic Acids Res.* 40, W510–W515. doi: 10.1093/nar/g ks483
- Zhang, Y., Yang, X., Cao, P., Xiao, Z., Zhan, C., Liu, M., et al. (2020). The bZIP53-IAA4 module inhibits adventitious root development in *Populus. J. Exp. Bot.* 71, 3485–3498. doi: 10.1093/jxb/eraa096
- Zheng, R., Wan, C., Mei, S., Qin, Q., Wu, Q., Sun, H., et al. (2019). Cistrome data browser: expanded datasets and new tools for gene regulatory analysis. *Nucleic Acids Res.* 47, D729–D735. doi: 10.1093/nar/gky1094

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Shim and Seo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.