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Abstract: Eugenol, 4-allyl-2-methoxyphenol, is the main constituent of clove essential oil and has
demonstrated relevant biological activity, namely anticancer activity. Aiming to increase this activity,
we synthesized a series of eugenol β-amino alcohol and β-alkoxy alcohol derivatives, which were
then tested against two human cancer cell lines, namely gastric adenocarcinoma cells (AGS) and
lung adenocarcinoma cells (A549). An initial screening was performed to identify the most cytotoxic
compounds. The results demonstrated that three β-amino alcohol derivatives had anticancer activity
that justified subsequent studies, having been shown to trigger apoptosis. Importantly, the most
potent molecules displayed no appreciable toxicity towards human noncancer cells. Structure-activity
relationships show that changes in eugenol structure led to enhanced cytotoxic activity and can
contribute to the future design of more potent and selective drugs.

Keywords: eugenol; β-amino alcohols; β-alkoxy alcohols; cytotoxicity; apoptosis; anticancer

1. Introduction

Cancer currently remains one of the leading causes of death, the global burden of
cancer having increased in the last years as a consequence of higher life expectancy. In
2020 there were nearly 10 million deaths associated with cancer, with the highest mortality
being associated with lung, colorectal, liver, stomach, and breast cancers [1]. Depending
on the stage of development and the etiology involved, anticancer therapeutic strategies
rely on chemotherapy, radiotherapy, and immunotherapy approaches. According to the
latest studies, nearly 25% of chemotherapy drugs are directly obtained from plants, with
an additional 25% of the molecules being naturally inspired [2].

The capacity of tumor cells to escape from programmed cell death pathways such as
apoptosis is a hallmark of most types of cancer [3,4]. Various molecules are involved in
apoptotic pathways, and caspases, a group of cysteine aspartic acid proteases, are crucial
for triggering the intrinsic and extrinsic apoptosis pathways [5,6]. Although tumor cells
lose proapoptotic components, surrogate ones can still be active. For this reason, new
therapies that reactivate the apoptotic defense mechanism could be a great promise for
cancer therapy [3,4].

Eugenol (4-ally-2-methoxyphenol) is a phenylpropanoid that can be found in several
essential oils. Syzygium aromaticum (L.) Merr. & L.M. Perry is one of the most common
sources of eugenol, which is usually obtained through steam distillation or hydrodistilla-
tion [7,8]. Eugenol has shown biological properties such as anti-inflammatory, antioxidant,
antimicrobial, antitumorigenic, and cytotoxic activities [7,9,10]. It has been reported to
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possess antiproliferative effects in several cancer cells as well as being shown to activate
mitochondrial apoptosis pathways in mast and leukemia cells and in rat models of gas-
tric carcinogenesis and activates both apoptotic pathways in gastric cells (AGS) [11,12].
Moreover, eugenol has a good structure for use as a starting molecule due to its ready
availability, so several derivatives have already been obtained and proven to enhance
biological properties in relation to eugenol, namely anticancer activity [7,13]. Alterations
such as alkylation of the free phenol of eugenol and attachment of a trioxygenated aromatic
ring to the end of the three-carbon side chain result in synthetic compounds cytotoxic
to breast cancer as well as in chemopreventive agents [7]. Additionally, nitro-derivative
molecules presented higher cytotoxicity than eugenol against androgen-insensitive prostate
cancer cells (DU-145) and oral squamous carcinoma cells (KB) [14].

In the present work, several eugenol derivatives—β-amino alcohols and β-alkoxy
alcohols—were synthesized with the aim of improving the anticancer capacity of the parent
molecule. With this aim in view, we evaluated the impact of these chemical structures on
the activity profile of this family of molecules against cancer cells, having also benchmarked
them against the original structures. We were also interested in assessing whether the
chemical space of these molecules could be mapped and used in the future to guide future
synthesis of increasingly potent molecules.

2. Results and Discussion
2.1. Eugenol β-Amino Alcohol Derivatives Are More Cytotoxic Than Their β-Alkoxy
Alcohol Counterparts

The biological activity of twelve compounds was tested against human gastric adeno-
carcinoma (AGS) and human lung adenocarcinoma (A549) cell lines. All molecules were
initially evaluated at a single concentration (200 µM) to allow the identification of the most
active ones. A549 cells are known to be resistant to chemotherapy, contrariwise to AGS,
which are more responsive [15–17].

Earlier reports in the literature refer the toxicity of eugenol to AGS cells with 12 h of
incubation [12]. In our conditions, no impact of eugenol (1) or its epoxide (2) upon cell viability
was found (Figure 1a); however, this is likely related to the concentration used, 200 µM, while
earlier reports used a much higher concentration (700 µM). By contrast, β-amino alcohols 4, 5,
and 14 elicited a statistically significant reduction in cell viability (Figure 1a). When compared
with compound 3, which was inactive, the only difference in compound 4 is the presence of a
benzonitrile substituent versus the benzyl substituent found in compound 3, thus pointing to
the importance of the cyanide group in the biological effect.

Substitution of the benzonitrile group by an aliphatic chain (5) markedly increased
the toxicity of the molecule. These molecules were further tested at a lower concentration
(100 µM) and they were still active (Figure 1b), with the exception of compound 14, for
which no impact on cell viability was found. Being the most potent molecule, compound 5
advanced into subsequent assessment.

In A549 cells, β-amino alcohols 3, 4, 5, 8, and 14 had more impact on reducing the
cell viability than the β-alkoxy alcohols, with only one derivative of the latter group (13)
presenting a significant impact on cell viability (Figure 2a). When the concentration of the
compounds was reduced to 100 µM, compounds 4 and 8 continued to exhibit toxicity, a
trait not found for the parent molecule at these concentrations (Figure 2b). Compound 8 is
structurally very similar to the inactive molecule 3, the difference being the methylation of
the amine, which is thus highlighted as an important trait. For this reason, compounds 4,
5, and 8 were picked up to be further studied. Among all derivatives studied, the results
clearly show that β-amino alcohols were the most cytotoxic subset of molecules
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Figure 1. Viability of AGS cells exposed to the molecules at 200 µM (a) and 100 µM (b). The effect
of topotecan at 5 µM is also presented in (b) for benchmark purposes. (c) Influence of molecule 5
(100 µM) on membrane integrity of AGS cells after 24 h. Triton X-100 at 1% was used as a positive
control for maximum extracellular LDH activity. Each dot represents a single determination. C:
control; T: topotecan. * p < 0.05; *** p < 0.001.

After selecting the most active molecules of the series, we were interested in evaluating
whether the impact on cell viability involved the loss of membrane integrity. Considering
molecules that elicit necrosis are generally avoided in clinical practice, to find such a trait
would reduce interest in the molecules. To this end, we assessed the impact of compound 5
on extracellular levels of lactate dehydrogenase (LDH) in AGS cells, a marker of plasma
membrane integrity, and no impact was found, which suggests that compound 5 may
cause a process of organized cell death (Figure 1c) [3]. As had been found in AGS cells,
compounds 4 and 8 also did not negatively impact membrane integrity in A549 cells
(Figure 2c). In light of this necrosis-independent capacity to reduce cancer cell viability, we
hypothesized that these molecules could be triggering a process of programmed cell death
such as apoptosis, a process during which the plasma membrane remains intact.

We took the most promising compound, 5, and evaluated its impact upon cell mor-
phology. As shown in Figure 3, incubation of AGS cells with compound 5 resulted in a clear
reduction in cell density, in agreement with the results on cell viability. By using an intensity
sensitive lookup table (LUT), it is clear that cells treated with compound 5 display signif-
icantly higher signals for 4’,6-diamidino-2-phenylindole (DAPI) when compared to the
control, which points to chromatin condensation. In some fields, it was also possible to find
chromatin fragmentation (Figure S1). These morphological characteristics indicated that
programmed cell death, namely apoptosis, could be involved in cell-viability reduction.

.
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Figure 2. Viability of A549 cells exposed to the molecules at 200 µM (a) and 100 µM (b). The effect of
topotecan at 5 µM is also presented in (b). (c) Influence of molecules 4 and 8 at 100 µM on membrane
integrity of A549 cell line after 24 h. Triton X-100 at 1% was used as a positive control for maximum
extracellular LDH activity. Each dot represents a single determination. C: control; T: topotecan. ** p < 0.01
*** p < 0.001.

Figure 3. Morphological assessment of AGS cells incubated with compound 5 (100 µM, 24 h). DNA
was studied using DAPI and overall cell morphology with phalloidin.

2.2. The Toxicity of Eugenol Derivatives Is Selective for Cancer Cells

Considering the ability of the molecules presented to elicit cell death in cancer cells,
we were interested in assessing whether this effect was selective. To this end, we evaluated
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their effect on noncancer cells, namely human keratinocytes (HaCaT). When tested at
100 µM for 24 h, the same conditions at which toxicity was found for cancer cells, neither
of the molecules resulted in a loss of viability in noncancer cells, thus pointing to their
selectivity (Figure S2).

2.3. Eugenol β-Amino Alcohols Activate Several Caspase Isoforms

As mentioned before, caspases are essential for the onset and development of apopto-
sis, with caspase-3 being the most relevant executor caspase isoform and caspases-8 and -9
typically classified as initiator caspases. In light of the impact on cell viability exhibited
by the molecules presented so far, and considering that this effect was found to be non-
necrotic, we hypothesized that a process of organized cell death could be taking place. To
confirm this, we evaluated the effect of these compounds on the activity of several caspase
isoforms. Topotecan, a topoisomerase I inhibitor that is well-characterized as an apoptosis
activator [18], was used as positive control.

This experiment revealed that for the AGS cell line, molecule 5 elicited an increase in
caspase-3, -8, and -9 activity. Caspase-3 increased 14 fold, caspase-8 nearly 10 fold, and
lastly, caspase-9 increased 2.8 fold (Figure 4a). The results showed that molecule 5 in AGS
cells could increase both initiator caspases-8 and -9, meaning that both the intrinsic and
extrinsic pathways were activated, converging with the activation of executor caspase-3, as
shown before [19].

Figure 4. Fold increase (normalized for DNA content) in caspase-3, -8, and -9 activation in (a) AGS
with molecule 5 and (b) A549 with molecules 4 and 8. Topotecan at 2.5 µM was used as positive
control. The values were normalized for DNA content; C: control; T: topotecan. * p < 0.05; ** p < 0.01;
*** p < 0.001.

Concerning the results for A549 cells, molecule 4 showed an increase in activity in
caspase-3 of 1.35 fold, in caspase-8 of 1.41 fold, and in caspase-9 of 1.35 fold. Molecule 8
increased caspase-3 by 1.55 fold, caspase-8 by 1.58 fold, and lastly, caspase-9 increased by
1.54 fold (Figure 4b).

In general, all three molecules could induce the activation of caspases, with compound
5 activating with the greatest magnitude.
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2.4. β-Amino Alcohol 5 Enhances the Toxicity of Topotecan

The parent molecule eugenol was previously reported as having the capacity to
synergize with clinically used anticancer drugs, thus resulting in increased cytotoxic ef-
fects [10,20]. For that reason, we decided to study whether this feature was retained in
its β-amino alcohol derivatives, for which we used the combination of compound 5 and
topotecan, known to activate apoptosis, as mentioned before.

Molecule 5 (100 µM) in combination with topotecan (2.5 µM) in AGS cells had a
noticeable effect upon cell viability when compared with either molecule alone (Figure 5);
therefore, this combination could be used to enhance the effect of the clinically used
anticancer drug topotecan. In the case of molecules 4 and 8, their combination with
topotecan in A549 cells did not enhance cytotoxic activity (data not shown).

Figure 5. Viability of AGS cells exposed to molecule 5 at 100 µM combined with topotecan at 2.5 µM.
Each dot represents a single determination. C: control; T: topotecan. *** p < 0.001.

2.5. Derivatives 5 and 8, but Not 4, Have a Time-Dependent Effect

To understand whether the impacts of the molecules under study were time-dependent,
compounds 4, 5, and 8 were additionally tested for their cytotoxic effects at 48 h and 72 h
of incubation.

In the case of compound 5, the results show that at 48 h the inhibition of cell viability
increased to 88% and at 72 h to 92% (Figure 6), a result markedly different than what
had been found at 24 h (Figure 1b). As such, the effect of compound 5 on AGS cells is
time-dependent.

Molecules 4 and 8 were also tested at 100 µM for a time-dependent effect in the
A549 cell line. The results show that the effect of compound 4 did not change even with
longer incubation periods, while a small decrease was found for compound 8, namely
a statistically significant increase in viability reduction from 24% to 37% (Figure 6). We
observed that with longer exposure to compounds 5 and 8, cytotoxic effects improved, so
the effects of both molecules were shown to be time-dependent.
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Figure 6. Viability of AGS cells exposed to molecule 5 (100 µM) at 48 h/72 h and viability of
A549 cells exposed to molecules 4 and 8 (100 µM) at 48 h/72 h. The results correspond to the mean
value for at least three independent experiments performed in triplicate. Each dot represents a single
determination. C: control; *** p < 0.001.

2.6. Structure-Activity Relationship

Considering the results, it was possible to conclude that the objective of obtaining
molecules with more potent anticancer activity than the parent molecule, eugenol, was
achieved. The first conclusion regarding the impact of the chemical structure upon cytotoxic
activity is that all active molecules were β-amino alcohol derivatives, and thus this subclass
is more biologically active than the β-alkoxy analogues.

The free hydroxyl group present in the benzene ring appears to be important to
enhancing cytotoxic activity, as shown by a recent study which demonstrated that in a
group of nitro-eugenol derivatives, the molecules containing a free hydroxyl group in their
structure presented better cytotoxic effects [14]. Also, another study of several benzoate-
eugenol derivatives against colon cancer cells (HT29) demonstrated that the two derivatives
with free hydroxyl groups present in their carbon chains were some of the best compounds
for providing cytotoxic effects. Additionally, the hydroxyl group was shown to be essential
for developing apoptotic properties, namely in the case of the interaction with the Bcl-2
protein [21]. In the specific cases of the group of molecules evaluated herein, the free
hydroxyl group is clearly not a pivotal factor for cytotoxicity as all molecules share this
trait despite their distinct biological profiles.

When we compared β-amino-alcohols 3, 4, 8, and 14, which exhibited cytotoxic effects
on A549 cells, it was possible to see that all molecules have an aromatic ring, namely
benzene, attached to the three-carbon side chain, a trait not found in inactive molecules.
While the inactive molecule 7 also shares this trait, its lack of activity may be associated
with the methoxylation of the benzene ring, which is absent in all active molecules. Former
studies have already proven that the attachment of an aromatic ring to the three-carbon
side chain results in cytotoxic and chemopreventive molecules [7,22]. The same behavior
was not verified in the AGS cells, which suggests a different manner of interaction between
the molecules and the two cell lines.

When we compare compounds 3 and 4, the only difference between them is the
cyanide group in the benzyl substituent. This group must be playing a role, since molecule
4 was the only molecule with the benzyl substituent that had an impact on the AGS cells
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at a concentration of 100 µM. Additionally, in the A549 cells, the effects of molecule 4
remained at 100 µM but the same did not happen with molecule 3. Analogues of paclitaxel,
an approved chemotherapeutic drug with a cyanide group at the meta position on the C-2
benzoyl group proved to be more active than the parent molecule, although the same effect
was not verified in the para position [23].

We also tried to understand whether the physicochemical properties of the molecules
could be related to their activity. To this end, we calculated several properties of all
molecules synthesized and tested (Table 1). Taking as example molecule 5, which was the
most potent molecule found in this evaluation, it was clear that when creating a 2D-chemical
space consisting of distinct molecular descriptors (molecular weight, cLogP, TSA, VDW
volume, and drug-likeness, among others), there are several combinations of descriptors
in which compound 5 is clearly separated from the other molecules (Figure 7). This is
a very important information as it shows that a chemometric analysis in tandem with
structure−activity relationships and biological assessment can help us map and define the
chemical spaces that are most likely to yield active molecules in the future. As such, the
properties found here for the most potent molecule can guide future development of novel
drugs by defining the ideal set of physicochemical properties.

Figure 7. Chemical space occupied by the parent molecules 1 and 2 (blue dots) and β-amino (3–9,
14—orange dots)/β-alkoxy (10–13—green dots) alcohol derivatives. cLogP, calculated partition
coefficient; TSA, total surface area; VDW, van der Waals surface.
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Table 1. Calculated properties of the molecules under study. Interm: intermediate; PSA: polar surface area; VDW: van der Walls.

Molecule 1 2 3 4 5 6 7 8 9 14 10 11 12 13

Group Parent/Interm β-Amino Alcohols β-Alkoxy Alcohols

Molecular weight 164.20 180.20 273.33 298.34 309.45 253.34 303.36 287.36 265.35 352.23 226.27 212.24 254.33 274.32

cLogP 2.27 1.21 2.17 2.01 3.60 1.61 2.10 2.42 1.86 2.90 1.34 0.94 2.08 2.45

cLogS −2.05 −1.686 −2.704 −3.477 −3.117 −1.984 −2.722 −2.68 −1.791 −3.538 −1.633 −1.333 −2.12 −2.662

H-Acceptors 2 3 4 5 4 4 5 4 4 4 4 4 4 4

H-Donors 1 1 3 3 3 3 3 2 2 3 2 2 2 2

Total Surface Area 140.17 146.04 219.46 241.17 265.52 206.89 241.72 230.56 213.84 238.09 184.26 170.5 205.43 218

Relative PSA 0.16 0.28 0.22 0.25 0.18 0.23 0.24 0.17 0.19 0.20 0.25 0.27 0.22 0.21

Polar Surface Area 29.46 41.99 61.72 85.51 61.72 61.72 70.95 52.93 52.93 61.72 58.92 58.92 58.92 58.92

Druglikeness −4.64 −3.79 2.50 −1.78 −7.76 8.04 2.50 4.23 2.66 0.71 −1.41 −0.33 −13.87 −0.05

Non-H Atoms 12 13 20 22 22 18 22 21 19 21 16 15 18 20

Non-C/H Atoms 2 3 4 5 4 4 5 4 4 5 4 4 4 4

Electronegative Atoms 2 3 4 5 4 4 5 4 4 5 4 4 4 4

Stereo Centers 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Rotatable Bonds 3 3 6 6 11 6 7 6 5 6 6 5 6 6

Aromatic Atoms 6 6 12 12 6 6 12 12 6 12 6 6 6 12

sp3-Atoms 4 7 7 7 16 12 9 8 13 7 10 9 12 8

Carbo-Rings 1 1 2 2 1 1 2 2 1 2 1 1 1 2

Hetero-Rings 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Non-Aromatic Rings 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Aromatic Rings 1 1 2 2 1 1 2 2 1 2 1 1 1 2
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Table 1. Cont.

Molecule 1 2 3 4 5 6 7 8 9 14 10 11 12 13

Group Parent/Interm β-Amino Alcohols β-Alkoxy Alcohols

Amines 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Alkyl-Amines 0 0 0 0 1 1 0 0 1 0 0 0 0 0

Aromatic Amines 0 0 1 1 0 0 1 1 0 1 0 0 0 0

Basic Nitrogens 0 0 0 0 1 1 0 0 1 0 0 0 0 0

VDW-Surface 188.95 192.07 280.22 301.71 343.78 273.89 309.8 291.99 271.35 299.96 243.92 220.22 269.69 274.62

VDW-Volume 174.15 179.9 280.28 300.96 347.12 276.4 307.53 301.51 281.39 299.68 233.78 215.05 273.74 273.89
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3. Materials and Methods
3.1. Reagents

Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), 0.25% Trypsin-
EDTA, Hanks’s balanced salt solution (HBSS), and penicillin/streptomycin solution were
purchased from GIBCO (Invitrogen, NY, USA). Trypan blue, Triton X-100, dimethyl sulfox-
ide (DMSO), and topotecan hydrochloride hydrate were purchased from Sigma-Aldrich
(Madrid, Spain). The 4’,6-diamidino-2-phenylindole (DAPI) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Phalloidin was purchased from VWR. CytoTox 96® Non-
Radioactive Cytotoxicity Assay was purchased from Promega Corporation (WI, USA).
PrestoBlue™ Cell Viability reagent and Qubit™ 1X dsDNA HS Assay Kit for DNA quan-
tification was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Caspase 3,
Caspase 8, and Caspase 9 Multiplex Activity Assay Kit (Fluorometric) was purchased from
Abcam (Cambridge, UK).

3.2. Synthesis of Eugenol Derivatives

Firstly, eugenol 1 was obtained from Syzygium aromaticum (L.) Merr. & L.M. Perry
through hydrodistillation, and then its epoxide 2 was prepared by reaction of eugenol 1 with
m-chloroperoxybenzoic acid in dichloromethane using a known procedure [24].The reaction
of eugenol epoxide 2 at 50 ◦C in ethanol and water with aniline, 4-cyanoaniline, octan-
2-methylpropan-2-amine, 2-methylpropan-2-amine, 3-methoxyaniline, N-methylaniline,
piperidine, and 3-bromoaniline, gave the eugenol β-amino alcohols 3, 4, 5, 6, 7, 8, 9, and
14, respectively, as we previously reported [25]. In addition, reaction of eugenol epoxide 2,
under nitrogen atmosphere, at 0 ◦C, using boron trifluoride diethyl etherate with ethanol,
methanol, tert-butanol, and phenol afforded eugenol alkoxy alcohols 10, 11, 12, and 13,
respectively (Figure 8) [26]. All molecules were purified by column chromatography and
1H NMR spectra are in agreement with those obtained previously for the same compounds
and confirm the desired chemical structures [26].

Figure 8. Chemical structures of eugenol 1, epoxide 2, β-amino alcohols (3–9, 14) and β-alkoxy
alcohols (10–13), obtained through different reactions between eugenol epoxide 2 and several amines
or alcohols, respectively.

3.3. Cell Culture

Human gastric adenocarcinoma (AGS; Sigma-Aldrich), human lung adenocarcinoma
(A549; ECACC, Salisbury, UK) and human skin keratinocyte (HaCaT; ATCC, Rockville,
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MD, USA) cells were maintained with DMEM + GlutaMAX™ supplemented with 10% FBS
and 1% penicillin/streptomycin at 37 ◦C in a humidified atmosphere of 5% CO2.

3.4. Cell Viability Assessment

For the assessment of cell viability, a resazurin-based method was used. Cells were
seeded in 96-well plates, A549 at a density of 10,000 cells/well at 24 h, 5000 cells/well at
48 h, and 2500 cells/well at 72 h, while AGS were seeded at a density of 15,000 cells/well
at 24 h, 10,000 cells/well at 48 h, and 5000 cells/well at 72 h, and HaCaT cells were seeded
at 15,000 cells/well at 24 h. Cells were allowed to attach for 24 h and then exposed to the
molecules under study for 24 h, 48 h, and 72 h. After this incubation period, PrestoBlue
reagent was added (1:10) and incubated for 30 min. Finally, fluorescence was read at
560/590 nm (excitation/emission wavelength) in the SYNERGY H1 microplate reader.
The results of cell viability correspond to the mean ± standard deviation (SD) of at least
three independent experiments performed in triplicate. The percentage of viability of each
well was measured in relation to the untreated cells (control group). Blank readings were
subtracted from the values of treated and control groups.

3.5. LDH Assay

AGS and A549 cells were cultured in the presence of the molecules under study at
the same density described above for the viability assay. After that, 30 µL of culture
media were removed from each well and the LDH release was measured using CytoTox
96® non-radioactive cytotoxicity assay kit from Promega according to the manufacturer’s
instructions. The absorbance was read at 490 nm in the Thermo Scientific™ Multiskan™ GO
microplate reader. Triton X-100 at 1% was used as positive control. The results correspond
to the fold-increase in absorbance in treated versus untreated cells for three independent
experiments performed in duplicate.

3.6. Morphology Assement

Cells were incubated in the presence of each compound for 24 h, as described before.
After incubation, the medium was removed and cells were washed with HBSS and fixed
with 10% formalin solution for 20 min at room temperature. Ending this period, wells
were again washed with HBSS and incubated with DAPI (0.25 µg/mL) and phalloidin
(0.5 µg/mL) for 20 min. Finally, the wells were washed three times with HBSS and left
with 100 µL of this solution remaining in each well. Images were analyzed with Fiji.
Two independent experiments were each performed in duplicate.

3.7. Caspase Activity Assay

AGS and A549 cells were plated at the same density described before and exposed to
the molecules under study for 24 h. Caspase-3, -8, and -9 activity was assessed by using
Abcam’s Caspase Multiplex Activity Assay Kit (Fluorometric). Cells were incubated in
the presence of each compound for 24 h, as described before. After the incubation time,
50 µL of supernatant were removed from each well, followed by the addition of 50 µL of
caspase substrate diluted at 1:200 in assay buffer. The plate was incubated for 45 min in a
humidified incubator at 37 ◦C with 5% CO2, protected from light. After that, fluorescence
was read in Cytation 3 at three specific wavelengths: caspase-3 (535–620 nm), caspase-8
(490–525 nm), and caspase-9 (370–450 nm). Topotecan was used as positive control, and
all results were normalized for DNA content to account for potential differences in cell
density arising from cell death. The results correspond to the fold-increase in fluorescence
in treated versus untreated cells in each well in at least three independent experiments
performed in duplicate.

3.8. DNA Quantification

Cells were cultured and exposed to the molecules under study, as referred before. Past
the incubation period, the culture medium was replaced by 50 µL of ultra-pure water and
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then the plate was incubated for 30 min in a humidified incubator at 37 ◦C with 5% CO2
and subsequently frozen at −80 ◦C. DNA quantification was performed by using QubitTM

1X dsDNA HS assay kit according to the manufacturer’s instructions. Three independent
experiments were performed in duplicate. The quantification was performed in order to
normalize the results from the caspase activity assay.

3.9. Chemometric Analysis

The properties and descriptors of the molecules were calculated using DataWarrior
(https://openmolecules.org/datawarrior/, accessed on 20 January 2022). The data was
exported to a csv file and analysed using Phyton 3.9, Numpy, and Pandas. Graphics for
Figure 7 were generated using Seaborn 0.11.2.

3.10. Statistical Analysis

Normality tests were performed for the data, which was shown to follow a normal distri-
bution. As such, results were statistically analyzed using the one-way ANOVA to determine
whether the treated groups were significantly different from the untreated group (control). After
that, Dunnett’s test was performed to know which groups were significantly different, and a
p < 0.05 was considered statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001). Data are
expressed as mean ± SD. All statistical analyses were performed through the GraphPad Prism
8.4.2 software.

4. Conclusions

Several β-amino-alcohol and β-alkoxy-alcohol eugenol derivatives were studied for
their cytotoxic properties against AGS and A549 cells. The results showed that some
derivatives possess enhanced cytotoxic properties in relation to eugenol. Additionally, it
was possible to understand that β-amino-alcohol derivatives were more cytotoxic to A549
and AGS cells when compared with β-alkoxy-alcohol derivatives and the parent molecule.

Also, we identified that β-amino alcohols (4 and 8) with a benzene ring attached to
the three-carbon chain have more impact on A549 cells, showing that AGS and A549 cells
interact in different ways with the molecules. With regard to AGS cells, compound 5 with
an aliphatic chain instead of a benzene ring attached to the three-carbon chain had impact
on cell viability. Additionally, compound 5 was the most potent molecule and stands
out from the other molecules in several descriptor combinations which give us clues to
determine new molecules with specific physicochemical characteristics. We further clarified
that cytotoxic proprieties of compounds 4, 5, and 8 were related to the activation of apop-
tosis, once they trigger caspases-3, -8, and -9, and morphologic assessment of compound
5 demonstrated chromatin condensation and fragmentation, which are morphological
characteristics of the apoptotic process. Moreover, compounds 4, 5, and 8 were shown to
be selective for cancerous cells at 100 µM.

For subsequent studies, understanding the interactions between the molecules and
their targets via in silico studies, such as inverse virtual screening, could result in new and
more potent anticancer molecules.
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