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During the last decades nitric oxide (•NO) has emerged as a critical physiological signaling molecule in mammalian tissues, notably
in the brain. •NO may modify the activity of regulatory proteins via direct reaction with the heme moiety, or indirectly, via S-
nitrosylation of thiol groups or nitration of tyrosine residues. However, a conceptual understanding of how •NO bioactivity is
carried out in biological systems is hampered by the lack of knowledge on its dynamics in vivo. Key questions still lacking concrete
and definitive answers include those related with quantitative issues of its concentration dynamics and diffusion, summarized
in the how much, how long, and how far trilogy. For instance, a major problem is the lack of knowledge of what constitutes a
physiological •NO concentration and what constitutes a pathological one and how is •NO concentration regulated. The ambient
•NO concentration reflects the balance between the rate of synthesis and the rate of breakdown. Much has been learnt about
the mechanism of •NO synthesis, but the inactivation pathways of •NO has been almost completely ignored. We have recently
addressed these issues in vivo on basis of microelectrode technology that allows a fine-tuned spatial and temporal measurement
•NO concentration dynamics in the brain.

1. Introduction

Nitric oxide (•NO) is a small and diffusible free radical
synthesized by a family of nitric oxide synthases (NOS) that
participates in a wide range of signaling pathways in bio-
logical tissues, mediating physiologic processes such as va-
sodilation, memory and learning, neuronal development,
regulation of immune response, among many others [1–5].
In the brain, •NO is mainly synthesized in synaptic terminals
by a neuronal NOS isoform, acting as a neuromodulator
[3, 4]. The radical nature, small size, and hydrophobicity
support the notion that •NO lacks specific interactions with
receptors, and yet these properties confer to this molecule
a great versatility concerning interactions with biological
targets. The outcome of these interactions is dictated by
•NO concentration dynamics, ranging from physiological
to pathological effects leading to cell death. This dual role
anticipates a tight regulation of •NO concentration dynamics
under physiologic conditions.

The major aspects that characterize •NO neuroactivity
and its regulation are discussed in this paper.

2. The Interactions of •NO with Biological
Targets: Redox and Functional Impact

Nitric oxide is able to rapidly diffuse in tissue and interact
with a variety of biological targets involved in relevant physi-
ological processes. Two main mechanisms that stabilize the
unpaired electron of •NO are its reaction with other free
radicals and interactions with d-orbitals of transition metals
[6]. Among the latter, the interactions of •NO with iron are
the most relevant in biological systems due to the abundance
of proteins containing iron, most notably hemeproteins,
involved in numerous physiological processes. Essentially,
•NO can interact with iron complexes by three ways: (a)
binding to iron, (b) reaction with dioxygen iron complexes,
and (c) reaction with high valent oxo-complexes [7]. •NO
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can bind to both ferrous and ferric heme proteins, but the
binding to Fe(II) is generally faster and more reversible than
to Fe(III) [8]. Actually, the majority of biologically relevant
•NO reactions with heme proteins involve the reversible
binding of •NO to ferrous iron in proteins, a process called
nitrosylation [7]. For instance, the binding of •NO to ferrous
heme activates the enzyme soluble guanylyl cyclase (sGC)
[3], which is the best characterized signaling target of •NO
and inhibits cytochrome c oxidase (CcO), a crucial enzyme
for mitochondrial respiration [9]. The interaction between
•NO and ferrous hemoglobin is also biologically relevant by
binding to the deoxy-hemoglobin heme or as a means to
degrade •NO via reaction with oxy-hemoglobin, resulting in
the oxidation of the ferrous heme and formation of nitrate.

These interactions are relatively fast, exhibiting rate
constants of 2–4 × 107 M−1 s−1 [8]. Given the abundance
of hemoglobin in the vasculature, they constitute the main
pathway of •NO removal in that compartment and signif-
icantly contribute to shape the dynamics of •NO at the
neighboring tissues [10].

A critical aspect of the interactions of •NO with heme-
proteins able to transduce a transient •NO concentration
change into a biological response is their different sensitivity
for •NO. The most sensitive •NO physiologic signaling target
is sGC with half-maximal activation at 10 nM [11], mediat-
ing most of the known •NO biological effects [3]. For higher
•NO concentrations inhibition of CcO occurs, being half-
maximal at ≈120 nM, under resting metabolic conditions
and physiological O2 tension [9, 12].

The indirect effects of •NO require it to react with molec-
ular oxygen or superoxide anion radical (O2

−•) to produce
reactive oxygen and nitrogen species (RONS) such as
nitrogen dioxide (•NO2), nitrogen trioxide (N2O3), and
peroxynitrite (ONOO−). ONOO− and •NO2 are potent
oxidants (>1.0 V NHE) [13] and can both oxidize and nitrate
protein residues and lipids. The product of •NO autooxida-
tion, N2O3, is a mild oxidant and will preferably nitrosate
nucleophiles such as amines and thiols [14, 15].

S-Nitrosation is a covalent posttranslational modifica-
tion associated to •NO-dependent signaling, which refers to
the incorporation of a nitroso group (–NO) to a thiol group
(in cystein residues). There are several mechanisms by which
S-nitrosation can occur, mainly through (a) involvement of
N2O3, (b) direct interaction of •NO with a thiyl radical
(radical-radical interaction), and (c) transfer of a nitroso
group from a nitrosylated metal or nitrosothiol (transni-
trosation) [16]. S-Nitrosation mediated by N2O3 somehow
defines the microenvironment in which the modification
predominantly occurs. Because the reaction of •NO with O2

is slow, it requires high levels of both species, a condition
favored by the proximity of sources of •NO production and
by hydrophobic environment (where both species accumu-
late). Also, the life time of N2O3 is increased in hydrophobic
compartments [7]. These factors limit S-nitrosation and
confer selectivity to the reaction as only cysteine residues
found within a particular microenvironment in a protein are
prone to be nitrosated (reviewed by [17]).

Several proteins have been described as being regulated
by S-Nitrosation and ensued physiologic and pathologic

consequences described [18, 19]. To mention some, S-
nitrosation of N-methyl-D-aspartate receptors (NMDAr) has
been shown to inactivate the receptor, thereby possibly pro-
tecting against excessive NMDAr activation and consequent
excitotoxicity [20]. S-Nitrosation of 2-amino-3-(5-methyl-3-
oxo-1,2-oxazol-4-yl)propanoic acid receptor (AMPAr) reg-
ulatory proteins (stargazin and N-ethylmaleimide-sensitive
factor) may increase surface expression of the receptor [21,
22]. Other examples include nitrosation of caspases-3 and
-8 and poly(ADP-ribose) polymerase [23–25], protecting
against apoptosis. In turn, S-nitrosation of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) inhibits its dehydroge-
nase activity and induces an acyl phosphatase activity in the
enzyme, resulting in the uncoupling of glycolytic flux from
ATP synthesis [26]. Nitrosated GAPDH can also translocate
to the nucleus, enabling it to degrade selected target proteins
and affect apoptosis [27].

The nitration of proteins and lipids by •NO-derived
reactive species is a further posttranslational modification of
proteins by which •NO can accomplish functional diversity
in cellular processes. It is currently accepted that protein
nitration is an in vivo protein modification that translates
into functional alterations in physiological and pathological
settings [28]. Nitration results from the addition of a nitro
–NO2 group to aromatic and aliphatic residues in proteins
or to the aliphatic chain of fatty acids, mainly mediated by
ONOO− and •NO2. In proteins, tyrosine residues are the
key target for nitration by ONOO− (reviewed in [29]). 3-
Nitrotyrosine (3-NT) has been used as a marker of patho-
logical events associated to oxidative stress. Indeed, 3-NT
immunoreactivity has been found in early stages of several
neurodegenerative disorders in human autopsy samples as
well as in animal models (reviewed in [28, 30]).

Protein nitration is a very selective modification. Not
all tyrosine residues present in a given protein can suffer
nitration. Protein folding, the surrounding local environ-
ment (namely, the presence of glutamate residues), and the
nitration agent all contribute to direct nitration towards
specific tyrosine residues [31]. Examples of nitration targets
with relevance in the context of the nervous system and
neurodegeneration may include the following: (1) neuro-
filament L in human ALS neurons, preventing assembly
and possibly axonal transport, both pathological hallmarks
of ALS [32–34]; (2) tyrosine hydroxylase, the rate-limiting
enzyme in catecholamine synthesis, causing loss of enzyme
function in the MPTP-induced Parkinson’s disease model
[35–37], affording a possible cause of dopamine deficiency
prior to cell death; (3) nitration of Mn superoxide dis-
mutase inactivates this mitochondrial antioxidant enzyme,
with implications several disease states (reviewed in [38]);
(4) Lewy bodies in Parkinson’s disease have been found
to contain nitrated alfa-synuclein, which tends to form
oligomers [39].

In sum, at low •NO concentrations, direct •NO interac-
tions with transition metal centers via reversible binding are
likely to predominate as a physiological signal transduction
mechanism.

On the other hand, the actual concentration at which
•NO-dependent nitrosative and nitrative chemistry occurs,



International Journal of Cell Biology 3

either from a physiological or deleterious view point, is not
known and likely depends on the particular tissue redox con-
ditions. A rough estimate has been made in cellular prepa-
rations, indicating that nitrosative stress becomes significant
when the •NO concentration reaches near-micromolar levels
[5, 40].

From the lines of evidence shown above it becomes
clear that the concentration dynamics of •NO (the profile of
change in time and space) is an essential aspect of its biology.
Nitric oxide signals, having different amplitude, time course,
and spatial distribution may thus encode different signaling
messages, possibly mediated by different biological targets.
Paradoxically, in spite of being one of the most studied
endogenous molecules during the last decades, the exceeding
majority of studies are of qualitative and phenomenological
nature, lacking the critical quantitative information on •NO
dynamics. Under this scenario it is not a surprise that several
dogmas have undermined the knowledge of •NO biological
actions.

Therefore, the monitoring of •NO concentration profiles
in vivo, allowing to unravel its endogenous concentration
profiles and the major factors regulating its concentration, is
a critical piece of knowledge to understand the mechanisms
by which •NO affects cell and tissue function in the brain.

3. The Transient •NO Change from
the Background and the Mechanisms That
Regulate Its Profile

3.1. •NO Production in the Brain. The •NO signaling in
CNS is intimately associated to the glutamate system. In
glutamatergic synapses, •NO synthesis involves the stimula-
tion of ionotropic glutamate receptors (iGluR), particularly
NMDA subtype, and consequent influx of Ca2+ to the
cytosol that, upon binding to calmodulin, activates neuronal
isoform of NOS (nNOS). The α-splice variant of nNOS is
particular in that it possesses an N-terminal PDZ motif [41],
which allows the enzyme to bind to other PDZ-containing
proteins, such as the synaptic density scaffold protein PSD-
95 [42]. The functional impact of this association is very
relevant, as PSD-95 simultaneously binds to the NR2 subunit
of the NMDAr [43, 44], thus forming a supramolecular
complex that places the Ca2+-dependent nNOS under the
direct effect of Ca2+ influx through the activated NMDAr
channel [45]. Upon Ca2+ influx, providing that substrates
(L-arginine, O2) and several other cofactors (NADPH,
FMN, FAD, tetrahydrobiopterin, heme) are available, nNOS
catalyses the conversion of L-arginine to L-citrulline and
•NO [46, 47]. However, the regulation of •NO synthesis by
nNOS goes beyond Ca2+ dynamics, also involving, among
other factors, specific adaptor proteins [48] and posttrans-
lational modifications [49, 50]. In addition to the diverse
regulatory mechanisms associated to •NO synthesis, the
distribution of nNOS within a particular volume is suggested
to influence the •NO volume signaling [51]. In essence,
the abovementioned notions suggest an intricate regulatory
process for •NO production that may translate into distinct
concentration dynamics.

3.1.1. Measurement of Nitric Oxide Concentration Dynamics
In Vitro and In Vivo. The measurement of •NO in real time
by electrochemical methods with microelectrodes inserted
into the •NO diffusion field is an important tool to character-
ize •NO concentration dynamics [52]. Glutamate-dependent
•NO production in hippocampus is of particular relevance
because of the involvement of •NO in the regulation of
plasticity, such as learning and memory, and cell death
associated with neurodegeneration [53]. Electrochemical
detection presents several advantages in relation to other
methods to measure •NO in biological systems, as it allows
direct and real-time measurement. Moreover, the small size
of the carbon fiber microelectrodes affords their use in
nervous tissue, with minimal perturbation of the natural
environment, and confers high spatial resolution to the
measurements [54, 55].

In hippocampal slices, chemically modified carbon fiber
microelectrodes with suitable analytical properties for •NO-
selective measurement [56] have been used to perform real-
time recording of endogenous •NO concentration dynamics
evoked by activation of ionotropic GluR. By using this
methodological approach we were able to show that NMDA-
evoked •NO concentration dynamics is heterogeneous along
the trisynaptic loop in the rat hippocampus [57]. We also
provided evidence that the AMPAr in addition to the
NMDAr could contribute to the fine tuning of glutamate-
dependent •NO production [58] and that NMDA-evoked
•NO production inhibits tissue O2 consumption for submi-
cromolar concentrations [59].

The use of this approach has also allowed the charac-
terization of endogenous •NO concentration dynamics pro-
duced in rat brain in vivo upon glutamatergic stimulation.
In the hippocampus we found that both endogenous and
synthetic agonists of ionotropic GluR (glutamate, NMDA,
and AMPA) promoted transient increases of extracellu-
lar •NO concentration, although with different kinetics.
Pharmacological modulation suggested that •NO overflow
elicited by glutamate resulted from an integrated activation
of both subtypes of ionotropic GluR [60]. Glutamate-evoked
•NO concentration changes were further characterized along
the hippocampal trisynaptic loop (CA1, CA3, and dentate
gyrus), as well as in cerebral cortex and striatum, showing
that while glutamate induced transitory increases in •NO
levels in all regions, regional-specific concentration profiles
were observed (unpublished data).

3.2. •NO Diffusion and Half-Life. Together with •NO pro-
duction, the rates of diffusion and inactivation are key
determinants of •NO concentration dynamics in tissues.
However, unlike the mechanisms of •NO synthesis, the
physiologic processes underlying the termination of •NO
signals in vivo (inactivation) remain unclear, particularly in
the brain. Inactivation of classical neurotransmitters (e.g.,
dopamine or glutamate) relies on their rapid removal from
the extracellular space via intracellular uptake processes
[61–63]. However, given the uncommon physicochemical
properties of •NO, its consumption via chemical reactions
is generally accepted as the most probable route of inac-
tivation. Although several biochemical mechanisms have
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been proposed to fulfill that role, the exact extent of their
effect on •NO concentration dynamics in brain tissue has
remained uncertain. Another layer of complexity is added
by the effect of diffusional processes on the signal. Although
•NO has been frequently considered as a molecule that can
freely diffuse in tissues [64–66], with a diffusion coefficient
estimated in aqueous solution of 2×10−5 to 4.5×10−5 cm2/s
[67–69], it has been observed that •NO diffusion is hindered
across the aortic wall [70].

Recently, we have obtained experimental data that
allowed the characterization of •NO diffusion in the rat
brain in vivo. The studies were conducted by using •NO-
selective carbon fiber microelectrodes to monitor •NO
increases following local application of small volumes (few
nanoliters) of •NO solution from a micropipette located
200–350 μm away. These microelectrode/micropipette arrays
were stereotaxically inserted in the brain of anesthetized rats
[71].

The resulting electrochemical signals were fitted to an
equation that describes the diffusion of a compound and
takes into account a first-order kinetics of inactivation.
This approach allowed the estimation of the •NO diffusion
coefficient and half-life in tissue. We found that •NO is highly
diffusible and short lived in the brain, having an effective
diffusion coefficient (D∗

NO) of 2. 2 × 10−5 cm2/s and a half-
life of 0.64 s in the rat cortex.

We have also investigated possible pathways of •NO
diffusion by testing the concepts of free, hindered, and
enhanced diffusion. The DNO obtained in agarose gel, a
model used to evaluate •NO-free diffusion, was 2.6 ×
10−5 cm2/s, only 14% higher than the in vivo D∗

NO, suggesting
that •NO could freely diffuse in the brain. Accordingly, we
found that •NO diffusion in brain tissue is distinct from
a molecule of similar size that remains in the extracellular
space (nitrite), but importantly, our data indicated that •NO
diffusion is hindered by conditions that mimic intracellular
macromolecular crowding [71].

These latter lines of evidence suggest that neither •NO
diffusion through the extracellular space nor a homogeneous
diffusion in the tissue through brain cells provides a
reasonable conceptual explanation for the similarity between
the D∗

NO obtained in vivo and the DNO found in agarose
gel. Thus, as previously suggested for O2 [72, 73], it is likely
that •NO diffusion in nervous tissue is facilitated by certain
physiological processes. A likely candidate is •NO partition
in hydrophobic media, such as cell membranes and myelin
sheaths, which may constitute low-resistance pathways that
facilitate •NO diffusion in nervous tissue, resulting in an
increased diffusion rate.

Together with diffusion, the quantification of •NO half-
life in the brain is also important to better understand the
dynamics of •NO, produced during brain function. •NO
half-life is a kinetic parameter essential for the definition of
its basal concentrations and diffusion radius. Some studies
have estimated the •NO half-life in biological tissues in the
range between 5 and 15 s [66]. Studies performed on isolated
cell preparations of brain and liver extrapolated values for
in vivo of around 100 ms [74, 75], in accordance with the
half-life obtained in heart muscle [76]. In intact brain tissue,

a half-life of 10 ms was reported in acute cerebellar slices
for [•NO] below 10 nM [77] which was 60 fold slower in
organotypic cerebellar slices [78]. Although variability exists
in the data, these works support the notion that •NO is
a short-lived messenger, in agreement with the biological
necessity to maintain •NO levels within the physiological
range. Our in vivo approach, based on the fitting of a
diffusion/inactivation equation to the signals of exogenously
applied •NO in vivo in the rat brain cortex, allowed the
estimation of a half-life of 0.64 s in that brain region, thus
providing quantitative experimental evidence for a sub-
second •NO half-life in vivo.

3.3. Mechanisms of •NO Inactivation. Several studies have
found O2-dependent mechanisms of •NO consumption/
inactivation in in vitro preparations but the direct reaction
between •NO and O2 is too slow to account for significant
•NO consumption if one considers the low concentration
of the reactants in vivo (particularly •NO). Nevertheless,
the favored partition of these molecules in the hydrophobic
phase of cell membranes greatly accelerates the reaction,
possibly accounting for •NO consumption in tissues [79].

As mentioned above, •NO direct biological activity may
play out through the reaction with transition metals, in
particular the iron contained in hemeproteins. One such
target for •NO is Cytochrome c oxidase (CcO), the terminal
complex of the mitochondrial respiratory chain. In the mid-
1990s, •NO was shown to bind to and inhibit CcO [80] and
block mitochondrial respiration in preparations as diverse as
isolated mitochondria [81] synaptosomes [82], and primary
cell cultures [83, 84].

The initial assessment of •NO interaction with CcO sug-
gested an inhibition mechanism based on the high-affinity,
reversible binding of •NO to the enzyme’s binuclear active
site, in competition with O2. [81, 82, 85]. In accordance
with this model that prevails under high enzyme turnover
conditions, •NO binds to the fully reduced binuclear center
(heme a3/CuB) and its removal from the active binuclear sites
returns CcO to a fully active state.

A second low-affinity inhibitory site has been proposed
for the fully oxidized enzyme—the CuB in the binuclear
center-rendering CcO inactive [86, 87]. This is an uncom-
petitive mechanism of inhibition of CcO by •NO. Contrary
to the simple on/off mechanism observed in the competitive
model, bound •NO reduces the enzyme and is itself oxidized
to NO2

−. Enzyme inhibition is reverted by dissociation of
NO2

− upon further reduction [88, 89]. This uncompetitive
inhibition mechanism is favored by high [O2] and low
turnover and its main biological role seems to be to consume
•NO, thus shaping •NO concentration dynamics in the tissue
[90, 91].

In mitochondria, •NO can also be consumed by the
nearly diffusion-limited reaction with O2

•− [92], generated
as a byproduct of cellular respiration. However, the physi-
ologic relevance of this reaction is questionable, since O2

•−

dismutation by MnSOD greatly decreases O2
•− concentra-

tion (in spite of the favoured competition of •NO over
SOD to O2

•−) to values in the pM range under physiologic
conditions [7, 93].
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Several heme-containing enzymes catalyze redox reac-
tions that can consume •NO in dispersed preparations.
Among others, a flavoheme protein in several mammalian
cell lines [94], lipoxygenases, prostaglandin H synthase and
cycloxygenase-1 in platelets [95–97], peroxidases [98], and
cytochrome P450 oxidoreductase [99] have been identified.

Proteins from the globin family are other likely can-
didates to participate in •NO inactivation in brain tissue
due to their rapid reaction with •NO (k ≈ 107 M−1 s−1). In
several brain regions, neurons express neuroglobin (Ngb),
cytoglobin, and also hemoglobin [100–102]. The exact
physiologic functions of these proteins in the brain tissue
are not clear. It was observed that the overexpression of
Ngb protects the brain against ischemic damage [103]
and cells overexpressing Ngb are more resistant to •NO
cytotoxicity, suggesting a possible role of •NO scavenging in
the neuroprotective mechanism of Ngb. However, given the
low intraneuronal concentration of these proteins (<1 μM),
the function of Ngb as a robust •NO scavenger would require
its association with a putative met-Ngb reductase to rapidly
regenerate ferrous heme upon reaction with •NO. Yet, this
functional association has not been reported [104]. Neuronal
hemoglobin appears to have a role in intracellular oxygen
storage or transport but insufficient data exists regarding its
capacity to metabolize •NO in neurons [102]. Conversely,
it is widely accepted that hemoglobin is the major •NO
sink in the vasculature, due to its high concentration in
erythrocytes (ca. 20 mM) and high reaction rate with •NO
[105]. The effectiveness of this reaction on the regulation
of •NO concentration in the extravascular compartment
has been disputed since erythrocytic packing of hemoglobin
and intravascular flow can decrease the effectiveness of
hemoglobin scavenging of •NO by 3-4 orders of magnitude
[105–107].

The uncertainty regarding how •NO is inactivated in
the brain in physiologic conditions is related to difficulties
in its direct measurement in intact tissue. A study on •NO
inactivation in cerebellar slices of rat brain found that •NO
was inactivated by an unknown mechanism that could not
be explained by any known mechanism of •NO consumption
[77].

3.3.1. Pathways of •NO Inactivation In Vivo. A strategy to
the study of the mechanisms that govern •NO inactivation
in vivo has included the recordings of •NO signals by
•NO-selective microelectrodes, following local application
of small volumes of exogenous •NO in the brain [10]. The
decay of •NO signals obtained by means of this approach
was very sensitive to experimental conditions impairing
vascular function in vivo. First, global ischemia induced a
90% decrease in the •NO signals decay rate constant (k),
suggesting that •NO inactivation is nearly abolished during
this condition. Second, the k values of •NO signals decay
were 3–5-fold higher in vivo than in brain slices of cortex
and hippocampus, which lack functional vasculature. Finally,
impairing the microcirculation in the brain in vivo by induc-
ing hemorrhagic shock induced an average 50% decrease
in k. Comparatively, modulation of O2 tension in the brain
in vivo, either by inducing hypoxia or hyperoxia, caused

only small changes in •NO decay (20%), thus demonstrating
that scavenging by circulating red blood cells constitutes the
major •NO inactivation pathway in the brain (Figure 1).

The •NO half-life in tissue is thereby expected to be
dependent on the vascular density, which may be tuned
to meet specific local signaling requirements. Accordingly,
using microelectrode arrays that allow monitoring •NO in
four brain sites simultaneously, we observed that the prob-
ability of •NO detection following its local application is
apparently related with the local vascular density [10].

4. The Functional Impact of •NO in Brain Tissue

4.1. •NO as a Neuromodulator. sGC is the best characterized
signaling target for •NO and is often considered a receptor-
like molecule for •NO in cells for the role of •NO as a
neuromodulator is mainly mediated by its binding to sGC,
leading to transient increases in cGMP.

The most widespread mechanism associated with cGMP
is the activation of the cGMP-dependent protein kinase
(PKG). Several substrates for PKG have been identified
and many of its actions are exerted at the level of phos-
phatases, thereby affecting the levels of phosphorylation of
effector proteins [108]. Other mechanism able to medi-
ate •NO signaling effects downstream sGC is the cGMP
activation of cyclic nucleotide-gated (CNG) ion channels
[109] and hyperpolarization-activated cyclic nucleotide-
modulated (HCN) channels [110]. CNG and HCN are
nonselective cation channels that allow the passage of several
ions, including Na+, K+, and Ca2+. For instance, studies
reported that, in neurons expressing these ionic channels, the
•NO-cGMP pathway cause a pre- or postsynaptic membrane
depolarization (depending on the location of the channels)
thereby modulating neuronal excitability [3].

It is noteworthy that the actions of •NO through the
•NO-cGMP pathway obey no general rules. Despite employ-
ing the same transduction mechanism (cGMP), the physi-
ological outcomes are tissue/cell specific since different cell
populations may arbor different cGMP targets. Thus, the
great variability of cGMP targets among different pop-
ulations of neurons seems to explain the wide range of
reported •NO effects in the nervous system. To cite some
examples, •NO has been implicated in the modulation of
neuronal excitability, synaptic plasticity, modulation of neu-
rotransmitter release, regulation of rhythmic activity, and
neurovascular coupling [3, 4, 46, 111].

4.2. Regulation of Mitochondrial Respiration. The average
[O2] in capillaries is 30 μM and typically cells experience an
intracellular concentration of O2 of around 3 μM [112]. The
high affinity of CcO for its substrate guarantees sustained
mitochondrial phosphorylation with a large safety margin
regarding O2 [113]. •NO will compete with O2 for binding
to the active site of CcO, inhibiting respiration, raising the
enzyme’s Km and limiting O2 usage even under normoxic
conditions.

The physiological and/or pathophysiological impact of
•NO inhibition of CcO will depend on the fraction of
enzyme that is effectively inhibited and if this decreases
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Figure 1: The major pathways of •NO production and inactivation in the brain. (a) •NO is synthesized following calcium entrance into the
postsynaptic density (upon glutamate activation of NMDA receptors). Calcium activates nNOS by promoting Calmodulin (CaM) binding
to the enzyme. •NO rapidly diffuses to neighboring tissue, being inactivated both by O2-dependent mechanisms and by scavenging by
circulating erythrocytes (RBCs). (b) Typical electrochemical signals obtained using microelectrodes in the rat brain in vivo and in agarose
gel following local application of small volumes (few nL) of •NO solution. First-order decay constant values (k) were used to quantify the
decay profiles. (c) Anoxia, induced by a nitrite lethal dose, induced a 20% decrease in k (k2), in contrast with a large decrease in k following
cardiac arrest, suggesting that the major route of •NO inactivation in the brain in vivo is by circulating RBCs scavenging (k1). Adapted from
[10].

O2 consumption and oxidative phosphorylation [114]. The
overall electron flow in the respiratory chain is typically
regulated by complex I in state 4 respiring mitochondria
and under these conditions, a fractional inhibition of CcO
by •NO produces no net change on O2 consumption,
contrary to what occurs in state 3 respiring mitochondria
[115, 116]. An immediate consequence of decreased O2

consumption is the increase in O2 availability and increased
tissue oxygenation at sites farther away from blood vessels
[74], an effect that may act in synergy with •NO-induced
vasodilatiion. Alternatively, increased [O2] may render it
available to participate in signaling pathways such as the
activation of hypoxia-inducible factor [117].

A key notion which has emerged in the literature is
that mitochondrial cell signaling cascades are intimately
linked to •NO regulation of CcO function [118]. The
interaction of •NO with CcO may inhibit enzyme activity

without producing a net effect in cellular respiration: steady-
state and kinetic modeling [119] have revealed that the •NO-
CcO interaction can lead to an accumulation of reduced
cytochromes upstream of CcO without producing a net
effect on cellular respiration, but with consequences in
redox signaling pathways such as increased mitochondrial
production RONS, notably O2

−• and H2O2 [114, 120, 121],
both of which can impact downstream signaling cascades.

The situation changes dramatically when inhibition of
CcO is severe and persistent-excessive inhibition of mito-
chondrial respiration results in bioenergetics dysfunction
and cellular damage, conditions associated with aging and
neurodegeneration. Under such conditions, excess O2

−•

may react with •NO yielding ONOO−, which unlike •NO
can irreversibly block all complexes of the mitochondrial
respiratory chain through oxidation and nitration chemistry
[122–124]. In 2005, Shiva et al. proposed the term nitroxia to
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describe this pathological situation resulting from a dereg-
ulation of the •NO-CcO signaling pathway with increased
production of RONS leading to mitochondrial and cellular
oxidation and nitration chemistry [125].

4.3. Neurovascular Coupling. •NO has been suggested as a
mediator of the neurovascular coupling, the active mech-
anism enlarging vessel diameter in response to the rising
of metabolic demands imposed by neuronal activity [126].
Indeed, •NO appears well suited to mediate this process
as it is a potent vasodilator, is released during enhanced
neuronal activity, and, as previously discussed, is also highly
diffusible. During the years, the role of •NO in neurovas-
cular coupling has been strengthened by the observation
that the increase in cerebral blood flow dependent on
neuronal activation is repressed by NOS inhibitors [127–
130]. However, contradictory reports have also shown the
lack of effect of NOS inhibitors, pointing towards a lack of
•NO-mediated effect associated to neurovascular coupling
[131–133]. As a matter of fact, although it is plausible
that neuronal-derived •NO is involved in the regulation of
cerebral blood flow, concrete evidence is still missing, as
well as the elucidation of the underlying mechanism [134].
Recently, by using an experimental approach that allowed the
simultaneous measurement of •NO concentration dynamics
and cerebral blood flow changes in vivo upon glutamatergic
activation in hippocampus we were able to establish the
temporal, amplitude, and spatial association of both events.
Furthermore, the coupling between neuronal activation and
local cerebral blood flow changes mediated by neuronal-
derived •NO occurs in the hippocampus regardless of the
intermediacy of other cellular players such as astrocytes
(unpublished data).

The mechanism of neuronal-derived •NO, via volume
signaling, mediating neurovascular coupling, may be a non-
canonical fashion to underlie a process of vital importance
for the brain to preserve its structural and functional
integrity [135]. However, the dual interaction of •NO con-
centration dynamics and vasculature assists the hypothesis
of a highly and intrinsically controlled mechanism to match
blood supply with the metabolic demands imposed by
increased neuronal activity. While •NO triggers the increase
in cerebral blood flow, in turn, the increase in the cerebral
blood flow, by way of hemoglobin-dependent inactivation of
•NO, helps to shape the •NO signal.

4.4. Neurodegeneration. A key tenet of •NO bioactivity is that
besides participating in important physiological functions as
those previously mentioned, it has also been implicated in
pathological processes associated with several neurodegener-
ative disorders, such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), amyotrophic lateral sclerosis (ALS), Hunting-
ton’s disease (HD), and ischemic brain injury (reviewed by
[111, 136]. The pathological role of •NO involves pathways
that are only partially different from those underlying its
physiological actions but which are associated to other stress
conditions. In AD, the three NOS isoforms are suggested
to operate as central mediators of amyloid-β (Aβ) action,
contributing to the maintenance, self-perpetuation, and

progression of the disease [137], although data regarding
changes in NOS in AD are highly inconsistent [138]. In
cell-free assays, Aβ peptides were shown to strongly inhibit
constitutive NOS (eNOS and nNOS) [139]. Conversely,
other reports have shown Aβ-dependent enhancement of
nNOS activity [140], and memory impairment appears to be
correlated with the increase in nNOS expression and •NO
levels [141].

A larger consensus exists regarding the inducible isoform
of NOS, which seems to be overexpressed in AD [138].
Various studies have reported that Aβ stimulates microglial
and astrocytic •NO production [142–144]. Moreover, mod-
ifications of iNOS expression are suggested to importantly
contribute to AD progression. The ablation of iNOS from
a transgenic mouse model of AD protected the AD-
like mice from cerebral plaque formation and increased
Aβ levels, astrocytosis, and microgliosis [145]. Moreover,
astrocytic-derived •NO triggers tau hyperphosphorylation in
hippocampal neurons [146] and Aβ-mediated inhibition of
NMDAr-dependent LTP requires iNOS activity [147].

The majority of neurotoxic effects of •NO supporting
the development of AD pathological mechanisms are due
to indirect reactions of •NO, promoting posttranslational
protein modifications, namely, nitration and S-nitrosation.
Indeed, high levels of nitrotyrosine have been found in
brains from AD patients [148–151]. Nitrated proteins were
described to be associated with Aβ deposition [150], and
recently Aβ itself was shown to be a target for •NO
bioactivity. Nitrated Aβ is characterized by an accelerated
aggregation rate, being detected in the core of plaques
of APP/PS1 mice and AD brains [152]. Also tau protein
and synaptophysin are potential targets for nitration with
relevant consequences in terms of AD progression [153].

Furthermore, lines of evidence suggest that a number of
proteins are S-nitrosated in AD. An example with impor-
tant impact in neurodegeneration is the S-nitrosation of
endoplasmic reticulum (ER) chaperone protein-dissulphide
isomerase (PDI). The modification of an active cysteine in
the PDI promotes the inhibition of both isomerase and
chaperone activities, resulting in abnormal accumulation
of misfolded and polyubiquitinated proteins, ER stress,
and ultimately in cell death [154, 155]. Also dynamin-
related protein 1 (Drp1) is a target for S-nitrosation, being
hyperactivated, a mechanism suggested to underlie Aβ-
related mitochondrial fission and neuronal injury [156].

Finally, it should be remarked that •NO may also have
a protective role in the development of AD pathology.
Under physiological conditions, endothelium-derived •NO
evidenced a protective action against Aβ accumulation
through direct modulation of Aβ, APP, and BACE-1 levels
[157].

5. Novel Perspectives on
the Mechanisms Underlying Deregulation
of •NO Dynamics in Disease

As mentioned in the sections above, the excessive activation
of NOSs is commonly regarded as the main mechanism
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leading to the buildup of cytotoxic •NO concentrations
in pathological conditions ranging from AD, PD, multiple
sclerosis (MS) to ischemic damage [158, 159]. Despite the
view of the excessive •NO production in neurodegeneration
(although the quantitation in vivo requires refinenments),
the notions presented in the previous sections of this paper
also highlight the role of the pathways of •NO diffusion
and inactivation in the regulation of •NO levels in brain
tissue. Accordingly, a pathological change of the mechanisms
controlling diffusion and inactivation might also cause a
deregulation in •NO concentration dynamics with conse-
quences for tissue homeostasis. Indeed, given the recently
found importance of the vasculature on the regulation of
•NO inactivation in vivo [10], there are several pathological
situations in which a vascular impairment might greatly
account for deregulation of •NO levels, including ischemia-
reperfusion, AD, and MS.

It is known that, in the brain of AD patients, vascular
dysfunction appears in the early stages of the disease, which
manifests as a characteristic oligemia in some brain regions
[160]. This condition might contribute to increase •NO
concentration due to lowered inactivation.

Conversely, the blood brain barrier breakdown that
occurs in MS [161] might contribute to increase •NO inacti-
vation, thereby lowering •NO concentration. But, alterations
in inactivation might also be beneficial in some circum-
stances. We observed a great decrease in •NO inactivation
rate in the brain during global ischemia [10], which might
potentiate •NO accumulation in the affected tissue, formed
from either residual NOS activity or NOS-independent •NO
synthesis mechanisms, such as ischemic reduction of nitrite
[162]. Interestingly, preischemic administration of •NO
donors or nitrite in vivo decreases brain ischemia/reperfusion
infarct volume in models of focal ischemia [162]. The
vasodilatory action of •NO may explain its neuroprotective
role during ischemia by enhancing microcirculation in the
regions adjacent to the affected area (penumbra). Thus, it
is possible that the impairment of •NO inactivation in the
brain region affected by ischemia is protective by increasing
local •NO availability and consequently enhancing microcir-
culation in the adjacent tissue.
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